
CSc 422: 
Introduction to Parallel and 

Distributed Computing

• Instructor: David Lowenthal
• TA: Makayla Bennett



Parallelizing Programs

• Goal: speed up programs using multiple 
processors/cores
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When is speedup important?

• Applications can finish sooner
– Search engines
– High-res graphics
– Weather prediction
– Nuclear reactions
– Bioinformatics
– AI



Types of parallel machines
• Special purpose

– GPU, FPGA
• General purpose

– Shared-memory multiprocessor (“multicore”)
– Distributed-memory multicomputer

• SIMD: single instruction, multiple data
– GPU is in this category

• MIMD: multiple instruction, multiple data
– Multicore and multicomputer in this category



Review: Sequential Computer

Cache

CPU (core)

Memory

What is the simplest way to extend this to a parallel computer?

Bus



Shared-Memory Multiprocessor
(“Multicore”)

Cache

CPU (core)

Memory Memory Memory

Cache

CPU (core)

Cache

CPU (core)

Memory is shared; Cache coherence is an issue
MIMD machine; each core can execute independent instruction stream

Bus



Cache Coherence Example
Initial State 
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Cache Coherence Example
First core accesses a variable 

Cache: x = 1

Core 0: access x

Memory
x = 1

Memory Memory

Cache

Core 1

Cache

Core 2

Bus



Cache Coherence Example
Second core accesses same variable 

Cache: x = 1

Core 1: access x

Memory
x = 1

Memory Memory

Core 0

Cache

Core 2

Bus

Cache: x = 1

No issues: cores 0 and 1 can both read x’s value out of their cache



Cache Coherence Example
Either core writes to the variable 

Cache: x = 1

Core 1: x = 2

Memory
x = 1

Memory Memory

Core 0

Cache

Core 2

Bus

Cache: x = 1

Now what happens?



Cache Coherence

• Cached copies must remain consistent
– Two ways to do so

• Invalidate all but one cached copy
• Update all cached copies

• Additionally, the memory copy can be:
– Updated on every write (write-through)
– Updated when cached copy is evicted (write-back)



Cache Coherence Example
Invalidate + Write Back

Cache: x = 1

Core 1

Memory
x = 1

Memory Memory

Core 0
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Core 2

Bus

Cache: x = 2

Cache Controller invalidates all copies except the writer’s



Cache Coherence Example
Update + Write Back

Cache: x = 2

Core 1

Memory
x = 1

Memory Memory

Core 0

Cache

Core 2

Bus

Cache: x = 2

Cache Controller ensures all cached copies are updated



Cache Coherence Example
Invalidate + Write Through

Cache: x = 1

Core 1

Memory
x = 2

Memory Memory

Core 0

Cache

Core 2

Bus

Cache: x = 2

A write updates the cached copy and the memory copy



Cache Coherence Example
Update + Write Through

Cache: x = 2

Core 1

Memory
x = 2

Memory Memory

Core 0

Cache

Core 2

Bus

Cache: x = 2

All values are updated



Distributed Memory Multicomputer

Cache

Interconnection Network

CPU

Local Memory

Cache

Local Memory

Cache

Local Memory

Memory is not shared
Also a MIMD machine

CPU CPU



Multicomputer Details

• Each machine (“node”) is a full computer
– Cache and memory are separate
– CPUs cannot access each other’s memory directly

• Only can do so through messages over the interconnect



All Machines today are Multicore
(this is still a multicomputer)

Interconnection Network

Hybrid approach
Memory is not shared between machines

Multicore
 Machine

Multicore
 Machine

Multicore
 Machine



Real-World Supercomputer Example:
Frontier (AMD/Oak Ridge National Lab)

• Frontier (Oak Ridge)
– 1.6 Exaflops
– 9,408 nodes
– 4 GPUs and one CPU per node
– 1 TB memory/node
– Between 20 and 30 MW of power

If you are interested:
https://www.top500.org/lists/top500/2023/11/



Key Advantage/Disadvantage: 
Shared-Memory Multiprocessors
• Advantage: 

– Can write sequential program, profile it, and 
then parallelize the expensive part(s)

• No other modification necessary

• Disadvantage:
– Does not scale to large core counts

• Bus saturation, hardware complexity



Key Advantage/Disadvantage: 
Distributed-Memory Multicomputers
• Advantage: 

– Can scale to large numbers of nodes
• Disadvantage:

– Harder to program
• Must modify entire program even if only a small part 

needs to be parallelized



(Sequential) Matrix Multiplication

double A[n][n], B[n][n], C[n][n]  // assume n x n
for i = 0 to n-1

for j = 0 to n-1
double sum = 0.0
for k = 0 to n-1

sum += A[i][k] * B[k][j]
C[i][j] = sum

Question: how can this program be parallelized? 22



Steps to parallelization

• First: find parallelism
– Concerned about what can legally execute in 

parallel
– At this stage, expose as much parallelism as 

possible
– Partitioning can be based on data structures or 

function

Other steps are architecture dependent
23



Finding Parallelism in Matrix 
Multiplication

• Can we parallelize the inner loop?

Link here



(Sequential) Matrix Multiplication

double A[n][n], B[n][n], C[n][n]  // assume n x n
for i = 0 to n-1

for j = 0 to n-1
double sum = 0.0
for k = 0 to n-1

sum += A[i][k] * B[k][j]
C[i][j] = sum
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Finding Parallelism in Matrix 
Multiplication

• Can we parallelize the inner loop?
– No, because sum would be written concurrently



Finding Parallelism in Matrix 
Multiplication

• Can we parallelize the inner loop?
– No, because sum would be written concurrently

• Can we parallelize the outer loops?



(Sequential) Matrix Multiplication

double A[n][n], B[n][n], C[n][n]  // assume n x n
for i = 0 to n-1

for j = 0 to n-1
double sum = 0.0
for k = 0 to n-1

sum += A[i][k] * B[k][j]
C[i][j] = sum

28



Finding Parallelism in Matrix Multiplication
• Can we parallelize the inner loop?

– No, because sum would be written concurrently
• Can we parallelize the outer loops?

– Yes, because (1) the write sets are disjoint for 
all iterations, 

• Write set for iteration (i,j) is sumi,j, C[i][j]
– And (2) the read set for iteration (i,j) does not 

contain sumx,y or C[x][y], unless x==i and y==j
• Read set for process (i,j) is sumi,j, A[i][k=0:n-1], 

B[k=0:n-1][j]
– Note: we have the option to parallelize just one 

of these loops Link here



Terminology
• co statement: creates concurrency
co i := 0 to n-1

Body
oc

• Semantics: n instances of body are created 
and executed concurrently until the oc
– All instances must complete before single 

thread proceeds after the oc
• Implementation: fork n threads, join them at 

the oc
• Can also be written co b1 // b2 // … // bn oc 30



Terminology

• Process statement: also creates concurrency
process i := 0 to n-1 {

Body
}

• Semantics: n instances of body are created 
and executed in parallel until the end of the 
process 

• Implementation: fork n threads
• No synchronization at end 
Need to understand what processes/threads are!31



Processes 

• History: OS had to coordinate many 
activities
– Example: deal with multiple users (each 

running multiple programs), incoming network 
data, I/O interrupts

• Solution: Define a model that makes 
complexity easier to manage
– Process (thread) model

32



What’s a process?

• Informally: program in execution
• Process encapsulates a physical processor 

– everything needed to run a program
• code (“text”)
• registers (PC, SP, general purpose)
• stack
• data (global variables or dynamically allocated)
• files

• NOTE: a process is sequential
33



Examples of Processes

• Shell: creates a process to execute 
command
lectura:> ls foo
(shell creates process that executes “ls”)
lectura:> cat foo &  grep bar & wc
(shell creates three processes, one per command)

• OS: creates a process to manage printer
– process executes code such as:

wait for data to come into system buffer
move data to printer buffer 34



Creating a Process

• Must somehow specify code, data, files, stack, 
registers

• Ex: UNIX
– Use the fork( ) system call to create a process
– Makes an exact duplicate of the current process

• (returns 0 to indicate child process)

– Typically exec( ) is run on the child

We will not be doing this (systems programming)
35



Example of Three Processes

code for ‘cat’
data

files

stack
registers

code for ‘grep’
data

files

code for ‘wc’
data

files

Process 0 Process 1 Process 2

OS switches between the three processes (“multiprogramming”)

stack
registers

stack
registers

36



Review: Run-time Stack
A(int x) {

int y = x+1;
if (x == 0) return;
else return A(y-2) + 1;

}
B( ) {

int z = 7;
A(1);

}

y (value 2)
x (value 1)

y (value 1)
x (value 0)

Stack frame for 1st invocation of  A

Stack frame for 2nd invocation of A

Stack frame for B z (value 7)



Decomposing a Process

• Process: everything needed to run a 
program

• Consists of:
– Thread(s)
– Address space

38



Thread

• Sequential stream of execution
• More concretely:

– program counter (PC)
– register set
– stack

• Sometimes called lightweight process 

39



Address Space

• Consists of:
– code
– contents of main memory (data)
– open files

• Address space can have > 1 thread
– threads share memory, files
– threads have separate stacks, register set

40



One Thread, One Address Space

code
data

files

address space

main thread
(stack,
registers)

41



Many Threads, One Address 
Space

code
data

files

thread 0
thread 1
thread 2
thread 3
thread 4
thread 5

address space

each thread:
stack, regs

main thread

42



Thread States

• Ready
– eligible to run, but another thread is running

• Running
– using CPU 

• Blocked
– waiting for something to happen

43



Thread State Graph

Ready

Blocked

Running

Scheduled

Pre-empted (timer)

I/O event or wait for thread
I/O complete
or thread we 
were waiting
for is done

44



Scheduler

• Decides which thread to run
– (from ready list only)

• Chooses from some algorithm
• From point of view of CSc 422, the scheduler 

is something we cannot control
– We have no idea which ready thread will be run
– Our programs must not depend on a particular 

ready thread running before or after another ready 
thread 45



Context Switching

• Switching between 2 threads
– change PC to current instruction of new thread

• might need to restart old thread in the future
– must save exact state of first thread 

• What must be saved?
– registers (including PC and SP)
– what about stack itself?

46



Procedure Call Picture (time goes down)

47

Procedure A( ) {

call B( ) 

call B( ) 

Procedure B( ) {

return

}

}



Procedure Call Picture (time goes down)
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Procedure A( ) {

call B( ) 

call B( ) 

Procedure B( ) {

return

}

}



Procedure Call Picture (time goes down)
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Procedure A( ) {

call B( ) 

call B( ) 

Procedure B( ) {

return

}

}



Procedure Call Picture (time goes down)
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Procedure A( ) {

call B( ) 

call B( ) 

Procedure B( ) {

return

}

}



Procedure Call Picture (time goes down)
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Procedure A( ) {

call B( ) 

call B( ) 

Procedure B( ) {

return

}

}



Context Switching Picture (time goes down)

52

Thread A 

Switch to B 

Thread B 

Switch to A

Switch to B 
Switch to A 



Context Switching Picture (time goes down)
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Thread A 

Switch to B 

Thread B 

Switch to A

Switch to B 
Switch to A 



Context Switching Picture (time goes down)
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Thread A 

Switch to B 

Thread B 

Switch to A

Switch to B 
Switch to A 



Recall: Procedure Call Picture (time goes down)
(So far this looks the same as context switching)
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Procedure A( ) {

call B( ) 

call B( ) 

Procedure B( ) {

return

}

}



Context Switching Picture (time goes down)
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Thread A 

Switch to B 

Thread B 

Switch to A

Switch to B 
Switch to A 

Resumed here!!

(Will eventually
resume B here)



Multiple Threads, One Machine
(Single Core)

Machine

PC
SP
R1
R2

Address Space

Code Data Files

Thread 1 Thread 2

PC, SP, R1, R2

Stack Stack

PC, SP, R1, R2

Initial State 
(nothing running)



Multiple Threads, One Machine
(Single Core)

Machine

PC
SP
R1
R2

Address Space

Code Data Files

Thread 1 Thread 2

PC, SP, R1, R2

Stack Stack

PC, SP, R1, R2

Start Thread 1



Multiple Threads, One Machine
(Single Core)

Machine

PC
SP
R1
R2

Address Space

Code Data Files

Thread 1 Thread 2

PC, SP, R1, R2

Stack Stack

PC, SP, R1, R2

Context Switch to
Thread 2, Step 1



Multiple Threads, One Machine
(Single Core)

Machine

PC
SP
R1
R2

Address Space

Code Data Files

Thread 1 Thread 2

PC, SP, R1, R2

Stack Stack

PC, SP, R1, R2

Context Switch to
Thread 2, Step 2



Why Save Registers?
(Suppose x == y == 0 initially)

• code for Thread 1
foo( )

x := x+1
x := x*2

Assembly code:
R1 := R1 + 1  /* !! */
R1 := R1 * 2

Suppose context switch 
occurs after line “!!”

• code for Thread 2
bar( )

y := y+2
y := y-3

Assembly code:
R1 := R1 + 2
R1 := R1 - 3

61



Why Save Registers?
(Suppose x == y == 0 initially)

• code for Thread 1
foo( )

x := x+1
x := x*2

Assembly code:
R1 := R1 + 1  /* !! */
R1 := R1 * 2

Suppose context switch 
occurs after line “!!”

• code for Thread 2
bar( )

y := y+2
y := y-3

Assembly code:
R1 := R1 + 2
R1 := R1 - 3

62

Register allocation is 
outside of our control



Example: Basic Threads 
(Code available on website)

63



Matrix Multiplication, n2 threads

double A[n][n], B[n][n], C[n][n]  // assume n x n
co i = 0 to n-1  {

co j = 0 to n-1  {
double sum = 0.0
for k = 0 to n-1

sum += A[i][k] * B[k][j]
C[i][j] = sum

}
}

We already argued the two outer 
“for” loops were parallelizable

64



Picture of Matmult, n2 threads

65

✖

A B C

T0,0 T0,n-1

Tn-1,n-1Tn-1,0



Steps to parallelization

• Second: control the granularity (amount of 
work done per parallel unit of work)
– Must trade off advantages/disadvantages of fine 

granularity
• Advantages: better load balancing, better scalability
• Disadvantages: process/thread overhead and 

communication
– Combine small threads into larger ones to 

coarsen granularity
• Try to keep the load balanced 66



Matrix Multiplication, n threads

double A[n][n], B[n][n], C[n][n]  // assume n x n
co i = 0 to n-1  {

for j = 0 to n-1  {
double sum = 0.0
for k = 0 to n-1

sum += A[i][k] * B[k][j]
C[i][j] = sum

}
}

This is plenty of parallelization 
if the number of cores is <= n

67



Picture of Matmult, n threads

68

✖

A B C

T0

Tn-1



Matrix Multiplication, c threads
double A[n][n], B[n][n], C[n][n]  // assume n x n
co i = 0 to c-1 {

startrow = i * n / c; endrow = (i+1) * n / c - 1

for r = startrow to endrow
for j = 0 to n-1 {
double sum = 0.0
for k = 0 to n-1
sum += A[r][k] * B[k][j]

C[r][j] = sum
}

}
Assuming c is the number of available 
cores, this works well…but why? 69



Picture of Matmult, c threads
In this example, c == 2

70

✖

A B C

T0

Tc-1

Note the last thread is subscripted by c, not n



Example: Matrix Multiplication Using 
Threads (Code available on website)

71



Steps to parallelization

• Third: distribute computation and data
– Assign which processor does which 

computation
• The co statement does not do this

– If memory is distributed, decide which 
processor stores which data (why is this?)

• One can also choose to replicate data
– Goals: minimize communication and balance 

the computational workload
• Often conflicting

72



Steps to parallelization
• Fourth: synchronize and/or communicate

– If shared-memory machine, synchronize
• Both mutual exclusion and sequence control

– Locks, semaphores, condition variables, barriers, reductions 
(topic that will consume several weeks)

– If distributed-memory machine, communicate
• Message passing
• Typically, communication involves implicit 

synchronization

73



Parallel Matrix Multiplication---
Distributed-Memory Version

process worker [i = 0 to p-1] {
double A[n][n], B[n][n], C[n][n]  // wasting space!
startrow = i * n / p; endrow = (i+1) * n / p – 1
if (i == 0)  {

for j = 1 to p-1 {
sr = j * n / p; er = (j+1) * n/p – 1
send A[sr:er][0:n-1], B[0:n-1][0:n-1] to process j

}
else

receive A[startrow:endrow][0:n-1], B[0:n-1][0:n-1] from 0
74



Parallel Matrix Multiplication---
Distributed-Memory Version

for i = startrow to endrow
for j = 0 to n-1 {
double sum = 0.0
for k = 0 to n-1
sum += A[i][k] * B[k][j]

C[i][j] = sum
}

// here, need to send my piece back to administrator
// how do we do this?

} // end of process statement
75



Steps to parallelization 
(summary so far)

• First: find parallelism
• Second: control (potentially coarsen) granularity
• Third: distribute computation and data
• Fourth: synchronize and/or communicate

76



Adaptive Quadrature: 
Sequential (Recursive) Program

double f( ) {…}  // some arbitrary function
double area(a, b) {
double c
c := (a+b)/2
compute area of each half and area of whole
if (close)
return area of whole

else
return area(a,c) + area(c,b)

} 77



Adaptive Quadrature: 
Parallel (Recursive) Program

double f( ) {…}  // some arbitrary function
double area(a, b) {
double c, leftArea, rightArea
c := (a+b)/2
compute area of each half and area of whole
if (close)
return area of whole

else {
co leftArea = area(a,c)  // rightArea = area(c,b) oc
return leftArea + rightArea

}
} 78



Challenge with Adaptive 
Quadrature

• For efficiency, must control granularity (step 2)
– Without such control, granularity will likely be too 

fine
– Can stop thread creation after “enough” threads 

created
• Hard in general, as do not want cores idle either

– Thread implementation can perform work stealing
• Idle cores take a thread and execute that thread, but care 

must be taken to avoid synchronization problems and/or 
efficiency problems

79



Steps to parallelization
• Fifth: assign processors to tasks (only if using 

task and data parallelism)
– Must also know dependencies between tasks
– Task parallelism is typically used if limits of data 

parallelism are reached

This slide is for completeness; we will not study 
this in CSc 422

80



Steps to parallelization
• Sixth: parallelism-specific optimizations 

– Examples: message aggregation, overlapping 
communication with computation

• Most of these refer to message-passing programs 
(targeting distributed-memory multicomputers)
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Steps to parallelization
• Seventh: acceleration

– Find parts of code that can run on 
GPU/FPGA/Cell/etc., and optimize those parts

– Difficult and time consuming
• But may be quite worth it

This slide is also for completeness; we will 
(probably) not study this in CSc 422
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Pipelines
• Example: 

– (abstract)  lec:> a | b | c | …
– (concrete) lec:> ps | grep dkl

• Producer/Consumer paradigm
– In example above, the thread executing “ps” is the 

producer, and the thread executing “grep” is the 
consumer

– Implemented by a bounded buffer (will study this 
in a couple of weeks)

83



Sequential Grep

void grep (file f, pattern pat) {
string line
while ((line = read(f)) != EOF) {
found = search (line, pat)
if (found) 

print line
}

}

84

Assume we have two cores



Apply our Steps
• Find parallelism

– Can read next line while searching current line
• Coarsen granularity: put off for now
• Distribute computation (we are assuming 

shared memory)
– One thread reads, another thread searches

• Synchronize
– co/while vs. while/co

• Optimizations: not relevant for this program
85



Concurrent Grep, First Attempt
string line[2]; int next = 0
void readNext( ) { return ((line[next] = read (f)) != EOF)) }
void grep (file f, pattern pat) {
int retval = readNext( ); next = 1
while (retval != 0) {
co 

found = search (line[1-next], pat); 
if (found) print line

//  
retval = readNext( )

oc
next = 1 - next

}
} 86



Notes on Concurrent Grep,
First Attempt

• Style: 
– “co inside while”

• Problem:
– Thread creation and synchronization on each 

iteration of while loop
• Overhead leads to slowdown, not speedup
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Concurrent Grep,
Better Version

• Style: 
– “while inside co”
– Co is invoked once

• One arm of co is the search, the other is the read
• Turns into producer/consumer paradigm, so similar to

pcBusyWait.c example already online (and textbook has 
details)

88


