
A Case for User-Level Dynamic Page Migration

Dimitrios S. Nikolopoulos I, Theodore S. Papatheodorou 1 , Constantine D. Polychronopoulos =,
Jes0s Labarta 3 and Eduard AyguadiP-,: "

Department of Computer 1
Engineering and Informatics

University of Patras
Rion, 26 500, Patras, Greece

dsn,tsp @ hpclab.ceid.upatras.gr

Department of Electrical 2
and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, IL 61 801

cdp@csrd.uiuc.edu

Depd~'tment of Computer Architecture 3
Polytechnic University of Catalonia

c/Jordi Girona 1-3, Modul D6, 08034,
Barcelona, Spain

jesus,eduard @ac.upc.es

A B S T R A C T
This paper presents user-level dynamic page migration, a
runtime technique which t ransparent ly enables parallel pro-
grams to tune their memory performance on dis t r ibuted
shared memory multiprocessors, with feedback obtained
from dynamic monitoring of memory activity. Our tech-
nique exploits the i terative nature of parallel programs and
information available to the program both at compile t ime
and at runt ime in order to improve the accuracy and the
timeliness of page migrations, as well as amortize bet ter
the overhead, compared to page migration engines imple-
mented in the operat ing system. We present an adapt ive
page migration algorithm based on a competit ive and a pre-
dictive criterion. The competi t ive criterion is used to cor-
rect poor page placement decisions of the operating system,
while the predictive criterion makes the algorithm respon-
sive to scheduling events tha t necessitate immediate page
migrations, such as preemptions and migrations of threads.
We also present a new technique for preventing page ping-
pong and a mechanism for monitoring the performance of
page migration algorithms at runtime and tuning their sen-
sitive parameters accordingly. Our experimental evidence
on a SGI Origin2000 shows tha t unmodified OpenMP codes
linked with our runtime system for dynamic page migra-
t ion are effectively immune to the page placement s trategy
of the operat ing system and the associated problems with
da ta locality. Furthermore, our runtime system achieves
solid performance improvements compared to the IRIX 6.5.5
page migration engine, for single parallel OpenMP codes and
mul t iprogrammed workloads.

1. I N T R O D U C T I O N
The current t rends in parallel computing indicate tha t
shared memory multiprocessor architectures converge to a
common model in which mult iple single-processor or sym-
metric multiprocessor (SMP) nodes are interconnected via a

Permission to make digital or hard copies of all or part of tiffs work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage amt that
copies bear this notice and the full citation on the first page. To copy
othe~'ise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
1CS 2000 Santa Fe New Mexico USA
Copyright ACM 2000 1-58 l 13 -270-0/00/5 ...$5.00

fast network and equipped with addit ional hardware support
to provide the abstract ion of shared memory to the program-
mer [8]. This architectural model was adopted in earlier re-
search prototypes such as the Stanford DASH and FLASH
multiprocessors [14] and later, in high-end commercial prod-
ucts including the Sequent Sting [17], the HP/Convex Exem-
plar [4], the SGI Origin2000 [15] and the Sun Wildfire [10].
Although these architectures promise t o meet the require-
ments of scalability and programmabili ty, they also present
the challenging problem of the Non-Uniformity of Memory
Access latencies (NUMA). NUMA introduces the notion of
distance between a thread of a parallel program and the
da ta tha t this thread accesses. A thread running on one
node of the system may access d a t a located in the memory
of another node. These memory accesses, albeit t ransparent
to the programmer, have significantly higher latency than
accesses to local memory and const i tute one of the main
sources of performance degradation.

Dealing with the latency of remote memory accesses in soft-
ware poses a tradeoff with respect to the simplicity of par-
allel programming models for shared memory multiproces-
sors. Ideally, the main system software components, namely
the compiler, the runtime system and the operat ing system
should cope with remote memory accesses by applying pro-
gram transformations and runt ime techniques tO collocate
each thread wi th the da ta tha t ~ the thread accesses more fre-
quently. However, despite the effort spent in optimizing sys-
tem software for NUMA multiprocessors, experiences with
real applications make evident that significant programming
effort is still required in order to tune data locality and
achieve acceptable scalability on moderate and large-scale
systems [12]. In particular, the programmer must be aware
of the operating system's page placement policy and either
modify the program to adapt its memory access pattern to
the operating system's policy, or bypass the operating sys-
tem and hardcode in the program a customized page place-
ment scheme. Both approaches compromise the simplicity of
the shared memory programming model, in terms of the ef-
fort needed to optimize a program and the subtleties of the
programming constructs which are required to tune data
placement. The problems related to page placement and
locality have already introduced major considerations with
respect to the widely popular OpenMP shared memory pro-
gramming standard and raised the dilemma whether data
distribution directives should beintroduced in OpenMP or
n o t [16].

119

Previous research on NUMA memory management at the
operating system level has shown that the most effective
page placement is frequently achieved by a first-touch strat-
egy, in which the processor that reads or writes to a page
in shared memory first, maps this page to a local memory
module [6; 18]. First-touch is usually sufficient for achiev-
ing reasonable amounts of data locality in applications with
regular reference patterns. In order to deal with possi-
ble inconsistencies between first-touch page placement and
dynamic memory reference patterns, researchers have pro-
posed the use of dynamic page migration by the operat-
ing system [25]. Dynamic page migration uses per-node
reference counters attached to each page in memory and
applies a competitive algorithm to automatically migrate
a page, if a node other than the home node of the page
accesses the page significantly more frequently. Page mi-
grations are performed transparently to the program with
the aid of the operating system, which is responsible for
maintaining TLB coherence and copying the page to its new
home. Page migration can reduce memory latency by con-
verting remote memory accesses into local ones. In par-
ticular for cacheocoherent systems, page migration converts
the secondary cache misses which are satisfied from remote
memory modules, into misses satisfied from local memory
modules. This optimization can reduce the latency of sec-
ondary cache misses by a factor of three to five [24].

Although the initial simulation results for dynamic page mi-
gration with engineering and commercial workloads were
promising [24; 25], practical implementations of dynamic
page migration in real operating systems have not proven
to be as effective as expected yet [10; 12; 20]. This is at-
tributed primarily to the poor accuracy and timeliness of
page migrations triggered by the operating system, due to
the inability of the operating system to associate the infor-
mation from reference counters with the semantics of the
program and at the same time amortize the cost of trigger-
ing page migrations and copying pages. Furthermore, the
operating system must deal with corner cases such as ill
application behavior, memory pressure and global resource
management constraints that limit the flexibility of a page
migration mechanism. As a consequence, the use of dynamic
page migration in contemporary operating systems for scal-
able NUMA multiprocessors is either discouraged or limited
to trivial cases, such as the replication of kernel and program
code across nodes [23].

In this paper, we propose a new runtime technique that
leverages runtime monitoring of memory activity and dy-
namic page migration at user-level, to reduce the latency
of remote memory accesses on cache-coherent NUMA mul-
tiprocessors. Our method is based on the idea that with
the aid of a runtime system that reads the page reference
counters, a parallel program has the means to monitor its
memory performance at well-defined execution points, at
which the program can obtain an accurate snapshot of its
complete memory reference pattern. Most parallel applica-
tions are iterative in nature, in the sense that they execute
the same parallel computation for a number of iterations.
We exploit the iterative nature of parallel applications to
perform accurate performance monitoring at user-level. At
the same time, with the aid of the compiler, we identify
hot memory areas of the application virtual address space
which are likely to contain candidate pages for migration
and instrument the programs to invoke the monitoring and

page migration services of the runtime system. The deci-
sions of what memory pages should be migrated and when
are taken entirely within the runtime system, while they are
still transparent to the program and subject to the enforced
global memory allocation strategies of the operating system.
Our user-level page migration engine is effectively integrated
with the operating system scheduler, which provides schedul-
ing notifications to the runtime system. The runtime sys-
tem intercepts thread migrations, which occur frequently in
multiuser/multiprogrammed systems and harm data local-
ity, since they break the association between threads and
data for which threads have affinity. The runtime system
treats thread migrations as a trigger to switch the page mi-
gration policy into an aggressive mechanism that eagerly
forwards the pages for which a thread has affinity to the
node to which a thread is migrated, if the thread is likely to
stay on this node long enough to justify the cost of forward-
ing pages.
User-level dynamic page migration enhances accuracy, time-
liness, flexibility and responsiveness compared to a dynamic
page migration engine implemented in the operating sys-
tem. Accuracy is enhanced by applying page migration at
execution points at which the reference counters provide an
accurate snapshot of the reference pattern of the parallel
program and by restricting the page migration mechanism
to hot memory areas of the address space. Timeliness is im-
proved because the runtime system has the ability to identify
quickly the pages that should migrate - - in most cases after
executing one iteration of the parallel computation-- and
migrate them altogether as soon as possible. Among other
advantages, this approach amortizes better the cost of page
migrations, since this cost is paid cumulatively at the be-
ginning of execution to stabilize the memory performance
at good levels in the long-term. Flexibility is improved by
letting the runtime system customize the page migration
algorithm for each hot memory area separately, based on
the observed memory activity in each area. Responsiveness
finally, is improved because the runtime system responds
promptly to unpredictable runtime scheduling events that
undermine data locality.
We consider user-level page migration as a methodology to-
wards implementing adaptive parallel programs, that is, pro-
grams that monitor their execution conditions and their per-
formance at runtime and adapt to these conditions by them-
selves, without relying on the enforced systemwide resource
management policies. Embedding adaptability to parallel
programs is of particular importance in modern multipro-
grammed multiprocessors, in which a program can not make
safe assumptions on resource availability.
In the rest of this paper, we present the design, the algo-
rithms, some implementation details and a preliminary per-
formance evaluation of a runtime system for user-level dy-
namic page migration. We developed the runtime system on
the SGI Origin2000, to support programs parallelized with
OpenMP. Although our runtime system encompasses sev-
eral novel ideas and solutions to challenging research prob-
lems related to page migration, the emphasis in this paper
is placed on providing a concise overview of user-level dy-
namic page migration and demonstrating some of the perfor-

• mance advantages of our approach. Sensitivity analyses and
comparative studies of relevant algorithms are left as issues
for further investigation. We provide experimental results
which demonstrate that OpenMP programs with user-level

120

dynamic page migration are effectively immune to the page
placement strategy of the operating system and have robust,
non-degrading performance even with the worst possible ini-
tial page placement. This result suggests that it might not
be necessary to compromise the simplicity of OpenMP by in-
troducing data distribution directives. Our runtime system
achieves also sizeable performance improvements compared
to the best-performing IRIX 6.5.5 memory placement and
migration strategy. The observed improvements are of up
to 28% for single parallel benchmarks and 49% for multipro-
grammed workloads, executed with space and time-sharing
by the native IRIX scheduler.
The rest of this paper is organized as follows: Section 2
outlines the motivation and the ideas behind user-level dy-
namic page migration. Section 3 presents our page migra-
tion algorithms. Section 4 discusses implementation details.
Section 5 presents our experimental evidence. Section 6 dis-
cusses related work and Section 7 concludes the paper.

2. USER-LEVEL DYNAMIC PAGE
MIGRATION

2.1 Motivation
Although results from simulations in previous works have
indicated that dynamic page migration is an effective tech-
nique to reduce memory latency on cache-coherent NUMA
systems [24; 25], the real implementations of dynamic page
migration that we are aware of, namely the implementation
in IRIX for the SGI Origin2000 [15] and the implementa-
tion in Solaris for the Sun Wildfire prototype [10] have not
demonstrated analogous results. Performance evaluations
of the Origin2000 from its vendors have not reported any
results with parallel benchmarks using the IRIX page mi-
gration engine [15; 23]. A preliminary evaluation of the
Sun Wildfire prototype with OLTP workloads reported also
no results with dynamic page migration enabled in the sys-
tem [10]. A more recent evaluation of the Wildfire [20] has
shown with a synthetic experiment that page migration can
improve computational throughput in the long-term, but
suffers from poor responsiveness and performs significantly
worse compared to coherent memory replication at the gran-
ularity of a cache line. A relevant study of the complete
SPLASH-2 benchmark suite on a large-scale Origin2000 has
shown that page migration was ineffective in dealing with
the problems introduced by the operating system's page
placement strategy and some programs required hand-tuned
page placement to scale reasonably [12]. Several application
studies with the OpenMP programming standard for shared
memory multiprocessors have reported significant perfor-
mance losses due to poor page placement and locality [5;
21]. Nevertheless, none of these studies leveraged dynamic
page migration to alleviate these problems. On the contrary,
researchers have reverted to programming models based on
message-passing such as HPF and MPI to compensate for
poor data locality.
The thesis of this paper is that dynamic page migration can
effectively solve performance problems related to page place-
ment. In particular, we believe that the factors that limit
the effectiveness of kernel-level implementations of dynamic
page migration are mainly the accuracy, the timeliness and
the flexibility of the page migration policies enforced in the
operating system. Dynamic page migration can be improved
in these three aspects by taking into account the semantics

of the program and exploiting information available to the
program from the compiler and the operating system to trig-
ger effective page migrations in response to critical external
events.

2.2 Dynamic Page Migration in the Operating
System

Page migration engines implemented in the operating sys-
tem use either an interrupt:based or a sampling-based mech-
anism for triggering page migrations. IRIX uses an inter-
rupt-based mechanism on the SGI Origin2000 [15; 22] while
Solaris uses a sampling-based mechanism on the Sun Wild-
fire [20].
In an interrupt-based page migration mechanism, the hard-
ware reference counters of a node track the number of local
and remote accesses to each page and send an interrupt to
a processor in the node if ~he difference between the local
accesses and the accesses by some remote node exceeds a
hardwired threshold. The interrupt handler decides to mi-
grate the page or not, according to a set of criteria posed by
the page migration policy. The advantage of an interrupt-
based mechanism is that the operating system detects that
a page has excessive remote accesses as soon as the coun-
ters accumulate this information. The disadvantage of an
interrupt-based mechanism is that the instantaneous values
of the reference counters that trigger page migrations can-
not be associated with the semantics of the program. This
makes an interrupt-based mechanism prone to transitory ef-
fects that occur in certain execution phases of a program.
The operating system might perform unnecessary and inac-
curate page migrations, if the counters are biased by bursts
of remote references due to compulsory cache misses, cache
reloads after context switches, or phase changes in the refer-
ence pattern of the program. The counters may also be bi-
ased by obsolete page reference history and therefore prevent
pages from migrating, although the actual execution status
of the computation might instruct otherwise. The latter can
happen upon migrations of threads. These events necessi-
tate immediate page migrations, since they move a thread
away from the pages in its memory affinity set, that is, the
pages that are accessed more frequently by this thread. A
page migration algorithm based on the observed reference
history of pages can collocate each thread with its memory
affnnity set on the same node [2]. However, if a thread mi-
grates, the algorithm should aggressively forward the pages
in the memory MIiaity set of the migrated thread to the
new home node of the thread, without relying on the past
reference history of these pages.
The aforementioned implications force the operating system
to use fairly complex and overly conservative page migra-
tion policies with an interrupt-based mechanism. IRIX uses
a multitude of heuristics to deal with corner cases and transi-
tory effects [22]. The kernel uses a dampening threshold and
migrates a page only if a processor receives many consecu-
tive migration interrupts for the page. Moreover, the kernel
uses a freezing threshold to limit the maximum number of
migrations for a page and a melting threshold to reenable
migrations for a page which is frozen for ~ a significant amount
of time. The kernel also ages the reference counters in order
to cope with the possibility of reading counters with obsolete
reference information. The operations that control freezing,
melting and aging of counters are performed periodically, at
the rate of one virtual memory page every 10 ms, in order

121

to compensate for the overhead. The periodic control op-
erations and the dampening filter can prevent timely page
migrations when the application reference pattern is stabi-
lized, as well as deteriorate the responsiveness of the page
migration mechanism to the operating system scheduling
decisions.
A sampling-based mechanism for dynamic page migration
polls periodically the reference counters of some pages and
applies the page migration policy for those pages that have
excessive remote references. Compared to an interrupt-
based mechanism, a sampling-based mechanism has the ad-
vantage that if the sampling frequency is carefully selected,
the operating system can deal more easily with transitory ef-
fects and possibly, apply more sophisticated page migration
policies. The disadvantage of a sampling-based mechanism
is its sensitivity to the sampling frequency and the over-
head of monitoring pages for migration. Different applica-
tions may need different sampling frequencies, according to
the granularity and the repeatability of the memory refer-
ence pattern. Furthermore, the number of pages that can
be scanned and migrated upon each invocation of the page
migration engine is limited because of the high overhead of
triggering and performing a page migration, which is typi-
cally in the order of 1 ms. In cases in which applications
have large resident sets the operating system might spend
a significant amount of execution time before detecting the
actual hot memory areas and start migrating pages.

2.3 Dynamic Page Migration from the
Runtime System

We propose a framework for accurate, timely and flexible
dynamic page migration, by the means of a runtime system
that implements a customizable yet transparent user-level
page migration engine. We designed and implemented a
prototype of the runtime system for codes parallelized with
OpenMP on the SGI Origin2000.
Our runtime system uses compiler-generated hints that iden-
tify hot memory areas which are likely to contain pages eli-
gible for migration. The current prototype identifies as hot
memory areas the shared arrays which are both read and
written in sets of disjoint parallel constructs, delimited by
OpenMP clauses. The native OpenMP code is transparently
instrumented by the compiler with calls that invoke the page
migration runtime system. The instrumentation exploits
the iterative nature of the vast majority of parallel codes.
The runtime system's page migration engine is invoked at
the end of each outer iteration of the program, which en-
compasses the whole parallel computation. At these points,
the runtime system can obtain a snapshot of the complete
memory reference pattern of the program, by reading the
reference counters for all the pages in the hot areas. There-
fore, the runtime system is in a position to make very ac-
curate decisions for migrating pages in a way that matches
exactly the reference pattern. This approach differentiates
from interrupt-based or sampling-based schemes, in which
the snapshots of the counters that trigger page migrations
are not correlated with the actual status of the computation,
thus leading frequently to suboptimal page migration deci-
sions. The page migration runtime system seeks the optimal
page placement with respect to the reference pattern, after
the execution of a single iteration of the program. Optimal-
ity is attained when each page is placed in the node with
the processors that access this page more frequently and

the maximum latency due to remote accesses by any other
node is the minimum among all possible placements of the
page. The necessary page migrations to achieve the optimal
placement can be dilated only because of ping-pong of pages
due ~o page-level false sharing. Palrwise page ping-pong can
be detected in at most two iterations in our runtime system
(cf. Section 3.3).
User-level page migration comes closer to the semantics of
a parallel program compared to kernel-level page migration,
since the reference counters are sampled at execution points
at which the information in the counters is not biased by
transitory effects. In addition, the runtime system batches
most, if not all, page migrations in a single invocation at the
beginning of the program. This strategy amortizes well the
cost of page migrations over time, compared to an interrupt-
based or a sampling-based strategy, in which page migra-
tions are non-uniformly distributed throughout the execu-
tion time of the program. Furthermore, the runtime system
is in a position to monitor the latency of remote accesses
with feedback from the reference counters for each hot mem-
ory area separately and customize the migration policy pa-
rameters according to the observed memory activity in each
area.
The runtime system intercepts dynamic changes of the ef-
fective processor set on which a program executes, due to
preemptions and migrations of threads. These events are in-
tercepted by polling variables in shared memory, which are
kept up-to-date by the operating system. Thread migrations
are treated by the runtime system as triggers for using an
aggressive predictive page migration scheme for pages in the
memory affinity sets of migrated threads, (cf. Section 3.2).
The runtime system and the operating system share the
same hardware support for reading reference counters, mi-
grating pages, and maintaining memory consistency there-
after. The runtime system pays an additional cost for us-
ing these services, since some of the required calls have to
cross the kernel boundaries. However, this cost can be easily
overlapped by performing page migrations in parallel with
the execution of the program. In addition, user-level page
migrations are and should be subject to resource manage-
ment constraints of the operating system, which may reject
requests to migrate pages under memory pressure. The dis-
tinctive features of user-level page migration compared to
kernel-level page migration engines are accuracy, timeliness
and good amortization of the overhead of page migrations.
Although the design of our runtime system is driven by the
iterative nature of parallel programs, the runtime system
supports also non-iterative programs, as well as programs
that exhibit fine-grain phase changes in their memory refer-
ence pattern within the parallel computation. The former
are handled with a sampling-based mechanism that serves
the hot memory areas round-robin, while the latter are han-
dled with a page forwarding mechanism that tries to perform
the necessary page migrations before a phase change in the
program's access pattern, in a record-replay fashion. Both
mechanisms are in an early evaluation stage, therefore we do
not examine them further in the remainder of this paper.

3. PAGE MIGRATION ALGORITHMS
The guidelines for the design of our page migration algo-
rithm are flexibility and adaptability to the execution condi-
tions of the program and the characteristics of the memory
regions on which the algorithm operates. Figure 1 shows

122

the pseudocode of the algorithm. This algorithm runs every
time the page migration runtime system is invoked at the
end of each outer iteration of an iterative parallel program.
At these points of execution, the algorithm scans all hot
memory areas identified by the compiler.
The main body of the algorithm (lines 2-12) identifies can-
didate pages for migration and migrates the candidate pages
that satisfy a set of criteria. Candidates for migration are
identified using either a competitive or a predictive page mi-
gration criterion, which are explained in Sections 3.1 and 3.2
respectively. The code in lines 13-16 embeds a self-tuning
discipline in the algorithm, based on feedback obtained from
the page reference counters, with respect to the effectiveness
of the algorithm in reducing the latency of remote memory
accesses. The code in lines 17-20 improves the accuracy and
reduces the overhead of the algorithm by tracking the page
migration activity in each memory area separately. The al-
gorithm is explained in detail in the following paragraphs.

3.1 Competitive Criterion
Equation 1 shows the competit ive criterion used in our page
migration algorithm. For each node i in the system and for
each page in a hot memory area the criterion checks if the
following inequality is satisfied:

raltot (i, h) > (ru (i, h)/lu), laltot + ml (1)

We denote as h the home node of the page. The home node
is the node tha t caches the page in a local memory frame.
We est imate the total latency due to remote memory ac-
cesses from node i to the page (raltot(i, h)), and the total
latency of local memory accesses from the processors on the
home node h of the page (lalto~) to the page. A page is con-
sidered as candidate for migration, if ralto~(i) is at least as
much as laltot, multiplied by the rat io ru(i, h)/l~, in which
r~,(i, h) is the latency of a single uncontended memory ac-
cess from node i to node h, and l~ is the latency of a single
uncontended local memory access from a processor in the
home node h. The values of r~(i, h) and l~, are obtained
from the system's technical specifications. For the SGI Ori-
gin2000, l~ ~ 300 ns and rt,(i, h) ~ 300 + 100 - d(i, h) ns,
where d(i, h) is the distance in network hops between nodes
i and h in the system.
We compute raltot(i, h) by est imating first the contended
latency for a single remote memory access from node i to
node h (re(i, h)) and then multiplying this est imation by the
number of remote accesses from i to h, which is obtained
from the hardware reference counters. In the Origin2000,
we use the following formula to est imate re(i, h):

rc(i, h) ~ ru(i, h) + 50. c(h) (2)

where c(h) is a contention factor. We set c(h) heuristically,
to be equal to the number of nodes tha t have more accesses
to the page than the home node h. This information can
be obtained from the hardware reference counters. For each
node tha t contends for the page, we add a constant factor
of 50ns to the base uncontended memory latency, in order
to compute the contended memory latency. This value is
extracted from a previous s tudy tha t computed the latencies
in the Origin2000 memory hierarchy [11].

Our competi t ive criterion is accurate, in the sense that a
page migration will always reduce the maximum latency due
to remote accesses ~ r the processors tha t compete for the
page. Assuming tha t each remote memory access from the
same node to the same page has constant latency, our com-
peti t ive criterion is equivalent to a criterion that compares
the number of references obtained by the reference coun-
ters [21 . In reality, on cache-coherent systems the remote
memory access latency is variable and depends on the type
of cache miss tha t triggers the remote access, the distance
in network hops between the home node and the accessing
node and contention at the memory module to which the
access is issued.
If the competi t ive criterion is satisfied by more than one
nodes, the page is migrated to the node tha t has the high-
est ratio of ra/tot(i , h)/laltot. The migration latency ml is
added in Equation 1 to offset the cost of page migrations by
the earnings from reducing the number of remote memory
accesses. We calculate the migrat ion latency experimentally,
using microbenchmarks. The runt ime system supports also
a variant of the algorithm in which the migration latency is
not taken into account. This optimist ic algorithm is based
on the observation tha t if most page migrations are per-
formed early in the execution of the program, then it is likely
that their overhead will be offset in the long-term, even if
this is not reflected in the es t imated memory latencies.

3.2 Predictive Criterion
The predictive criterion is used in the place of the compet-
itive criterion, when the runtime system detects migrations
of threads from the operating system. The page migration
algorithm switches from the competitive to the predictive
criterion if the scheduling notifications from the operating
system indicate that either the number of threads used by
the program to execute parallel code has changed and/or
some of the threads have migrated to other nodes.
The starting point for the predictive criterion is the as-
sumption that the competitive algorithm achieves an op-
timal page placement, in which the threads in the home
node of a page are the threads that access the page more
frequently and the maximum latency due to remote mem-
ory accesses to each page is minimized. At this point the
program has a stable repetitive reference pattern and the
number of memory references from each node is expected to
increase linearly to the number of iterations of the program
at a constant rate.
The critical observation tha t motivates the predictive cri-
terion is tha t if across two i terat ions of the program the
number of local accesses from the home node of a page in-
creases at a lower ra te with respect to previous iterations,
while the number of accesses from some remote node to the
same page increases at a faster ra te with respect to previous
iterations, then i t is likely tha t the information in the refer-
ence counters is obsolete due to one of the following reasons:
the threads tha t were running on the home node of the page
have migrated; the threads tha t were running on the home
node of the page were preempted by the operat ing system
and their computat ion was taken up by threads running on
remote nodes in subsequent i terat ions of the program; or
some preempted threads tha t used to access the page more
frequently in the past were resumed in remote nodes and
access the page again 1.

1The second and third cases occur if the program adjusts

123
'?

(1) for each hot memory area {
(2)
(3)
(4)
(S)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)}

identSfy candidate pages for migration with either the competitive
or the pred ic t ive c r i t e r i o n ;
i f the pred ic t ive c r i t e r i o n i s used {

apply ping-port E p r e v e n t i o n a lgor i thm;
}
for each candidate page {

if the page must not be frozen and is not lSkely to ping-pong {
migrate it;
update page bookkeeping data;

}
}
estimate the maximum memory latency due to remote accesses in this area;
if this latency increases compared to previous invocations {

tune the selectiveness of the migration algorithm;
}
if the area had no candidate pages for migration {

if the area had no candidates in several previous invocations {
mark the area as cold;

}
}

Figure 1: Pseudocode for the page migration algorithm.

Equation 3 shows the predictive page migration criterion for
a page:

3i, racc(i, t) > racc(i, t -- 1) A lacc(t) < lacc(t -- 1) (3)

in which t - I and t correspond to two successive outer it-
erations of the parallel program, racc(i, t) is the number of
remote accesses from node i to the page during iteration t ,
and lacc(t) is the number of local accesses from the home
node during iteration t. If the criterion in Equation 3 is
satisfied by some node i, and there is at least one thread
that has migrated to node i, then the algorithm migrates
the page to node i, speculating that the observed anomaly
in the reference rates is due to the thread migration. If more
than one nodes satisfy the predictive criterion, the page is
migrated to the node that issued the most remote accesses
during iteration t.
The predictive criterion identifies pages that belong to the
memory affinity set of a migrated thread within at most two
iterations of the program and migrates these pages with-
out waiting for the counters to collect reference history that
would justify migration according to the conservative com-
petitive page migration criterion. The page migration algo-
rithm switches back to the competitive criterion, if it detects
that the predictive criterion is no longer satisfied by any page
in the hot memory areas.

3.3 Dealing with Ping-Pong
Dynamic page migration algorithms suffer from the page
ping-pong problem. Ping-pong occurs when the migration
algorithm starts bouncing a page between two nodes, with-
out deciding to freeze the page to any of the nodes. Ping-
pong is an artifact of ill application behavior which may
introduce page*level faise sharing. The solution that we
adopt to circumvent ping-pong is in the direction of pre-
venting rather than detecting it after its occurrence. The
ping-pong prevention algorithm maintains a history entry
for each page selected for migration. The history tracks the
current and the previous home node of the page if the page

dynamically the number of threads used to execute parallel
constructs as a response to changes of the system load.

has already migrated before. If the page migration algo-
rithm selects to migrate a page for a second time and the
candidate target node was the home node of the page be-
fore its first migration the page freezes and does not migrate.
This strategy prevents ping-pong under the assumption that
the threads running in the two competing nodes have not
migrated. Therefore, the ping-pong prevention mechanism
is activated only while the competitive page migration cri-
terion is active.

3.4 Tuning the Performance of the Algorithm
at Runtime

Our page migration algorithm uses two metrics for self-
tuning. The first metric is the estimated maximum latency
due to remote memory accesses seen by any processor, for
each memory area on which the algorithm operates. The
algorithm maintains different migration thresholds for each
memory area and checks if between successive invocations of
the algorithm on the same memory area the maximum mem-
ory latency due to remote accesses increases or decreases
(Figure 1, lines 13-16). If this latency increases, the al-
gorithm improves its selectiveness by increasing the ratio
r~(i, h) / l , in Equation 1 by a constant factor. The second
metric used by the algorithm is the number of pages se-
lected for migration upon each invocation of the algorithm
on the same memory area. If no pages are selected for mi-
gration across several invocations of the algorithm, the area
is marked as cold mad the algorithm does not scan it further
in subsequent invocations (Figure 1, lines 17-20), unless new
thread migrations trigger a switch of the page migration cri-
terion to predictive. This optimization improves further the
accuracy of the algorithm and reduces drastically the run-
time overhead.

4. IMPLEMENTATION DETAILS
Our runtime •system requires two system services, a service
to access the reference counters of memory pages and a ser-
vice to migrate a range of the program's virtual address
space to a specified node in the system. The Origin2000
operating system (IRIX 6.5.5), provides both services, via
its memory management control interface (mnci).

124

Migration of a virtual address space range can be requested
at user-level with the migr_range_migra teO system call
[22]. User-level memory migrations in IRIX move ranges
of the vir tual address space between different Memory Lo-
cality Domains (MLDs). A MLD virtualizes the memory of
a node in the system. NUMA-sensitive memory allocation,
placement and migration can be implemented by associating
ranges of the virtual address space to MLDs. In our run-
t ime system, we preinitialize as many MLDs as the number
of nodes in the system and bind each MLD to a different
node. In this way the runtime system can use directly the
id 's of the MLDs as if they were the physical nodes in the
system.
The SGI Origin2000 memory modules are equipped with
hardware reference counters. Each hardware memory page,
the size of which is 4 Kbytes, has one l l - b i t hardware counter
per node in the system, for configurations of up to 64 nodes
(128 processors). The counters track all types of accesses to
memory during the service of L2 cache misses by the cache
coherence protocol. IRIX maps the l l - b i t hardware counters
of each page to software-extended 32-bit counters which are
maintained in the kernel. When an l l - b i t hardware counter '
of a page overflows, an interrupt is generated and the oper-
ating system adds the contents of all the hardware counters
of this page to the corresponding software-extended coun-
ters. Both hardware and software-extended reference coun-
ters can be accessed via t h e / p r o c interface and their values
can be either stored in a user-allocated buffer with an i o c t l
call, or memory mapped to the applicat ion's address space.
We selected the former approach since the lat ter required
root privileges on the system on which we experimented. In
order to deal with the asynchrony between hardware and
software-extended counters, our runt ime system reads both
sets of counters and sums their values in all cases in which
the value of a hardware counter is lower than the value of
the corresponding software-extended counter [22].

We explicitly manage the reference counters in the runtime
system, in order to map to virtual instead of physical mem-
ory pages. Furthermore, we batch page migration requests
for consecutive pages in the virtual address space whenever
possible to reduce the overhead of multiple system calls.
Since placing the overhead of scanning pages and triggering
page migrations on the critical pa th of the program is unde-
sirable, the runtime system uses a separate thread for access-
ing counters, managing buffers and migrating pages. This
thread, called the memory manager, communicates with the
master thread of the program. The master thread triggers
the memory manager at the end of outer iterations and the
memory manager applies the specified page migration pol-
icy. The execution of page migrations is overlapped with the
execution of the program's threads. For this purpose, the
runtime system sacrifices one processor to execute the mem-
ory manager. This l imitation is not too restrictive. Previous
studies on the Origin2000 have shown that dedicating one
node to execute operat ing system code alleviates the inter-
ferences between the operat ing system and parallel programs
and leads often to be t te r speedups [12].
We also provide an al ternative implementation in which the
memory manager, instead of communicating with the mas-
ter thread, wakes up periodically and scans a number of
pages in the hot memory areas. This implementation tar-
gets parallel programs which are not inherently i terative and
have no apparent points of execution at which the page mi-

gration runt ime system should be invoked. The sampling
period and the number of ~ages scanned upon each invo-
cation can be tuned by the user, or automatical ly by the
runtime system.
The runtime system identifies the effective processor set on
which OpenMP programs execute at any instance during
the execution of the programs, via the s c h e d c t l (SETHINTS)
call. This call polls the t_cpu field of the private da ta area
(prda) of IRIX threads and records the physical processor
on which each thread ran during the last t ime quantum.
Polling is performed before and after the execution of each
parallel OpenMP construct. This technique records thread
migrations at a relatively coarse granularity, in the sense
that thread migrations tha t occur during the execution of
parallel constructs are not captured b y the runtime system.
This decision is made deliberately, in order to avoid biasing
our predictive page migration mechanism from the effects
of temporary, short- term thread migrations. The intuition
behind our approach is tha t due to the overhead and the
aggressiveness of the page forwarding mechanism, the pre-
dictive criterion should be triggered only if a thread tha t
was migrated to node i, is likely to stay on node i for suffi-
ciently long t ime to justify the decision of moving the pages
of its memory aiTmity set to node i. In the actual imple-
mentation, the predictive criterion is triggered if a thread
migrates and stays on the same node for the execution of
two consecutive parallel OpenMP constructs. This heuristic
makes the predictive mechanism more robust and works well
with schedulers tha t give relatively high weight on maintain-
ing the affinity of threads to processors.
The pages selected for migration by the runtime system are
maintained in a hash table. This allows fast retrieval of page
id 's for updat ing bookkeeping information for each page,
such as the page history for ping-pong detection.

5. PERFORMANCE EVALUATION
We linked our runt ime system for user-level dynamic page
migration with three FORTRAN codes from the NAS bench-
marks suite, parallelized with OpenMP [13]. We used the
BT and SP application benchmarks and the CG kernel
benchmark. BT is a simulated CFD application tha t solves
3-D Navier Stokes equations, using Alternat ing Direction
Implicit (ADI) factorization. SP is similar to BT, but uses
the Beam-Warming approximate factorization. CG approx-
imates the smallest eigenvalue of a large, sparse matr ix with
the Conjugate-Gradient method. We ran experiments with
the Class A problem size. The selected problem sizes scaled
well up to 32 processors on the system on which we experi-
mented, a 64-processor SGI Origin2000 with R10000 proces-
sors clocked at 250 MHz, 4 Nlbytes of L2 cache per processor
and 8 Gbytes of memory. The speedups tended to flatten
beyond 32 processors.
The codes were a priori hand- tuned by their provider, to
exploit the first-touch page placement s trategy of IRIX [13].
This was achieved by executing one cold-start i terat ion of
the complete computat ion before star t ing the main loop, in
order to warm-up the memory and the caches, m i X uses
an interrupt-based page migrat ion engine and a competit ive
algorithm that migrates a page if the difference between the
local and remote accesses to a page exceeds a fixed thresh-
old stored in a hardware register (cf. Section 2). Automat ic
page migration is by default disabled in the system, how-
ever, the user can enable page migration on a per-program

125

basis by setting the ..DSM.hIIGRATION environment variable.
For all the experiments, we used the default values for the
tunable parameters of the IRIX page migration engine, such
as the migration, freezing, and dampening thresholds [22].
Changing the values of the tunable parameters of the IRIX
page migration engine required root privileges, therefore we
could not conduct tests to assess the impact of modifying
the aggressiveness of the IRIX page migration policy.
We instrumented the OpenMP codes by hand to mark the
hot arrays and use the page migration runtime system. The
instrumentation excluded the first iteration of each bench-
mark to alleviate cold-start effects. The instrumentation
pass for user-level dynamic page migration is currently be-
ing integrated in the OpenMP NanosCompiler [1].

5.1 Experiments with Single Parallel
Benchmarks on an Idle System

We executed the benchmarks initially on an idle system, us-
ing 16 and 32 processors. In the first set of experiments
we ran the unmodified versions of the benchmarks with the
IRIX first-touch page placement and with first-touch and
the dynamic page migration mechanism of the IRIX kernel
enabled for each benchmark. We call these schemes ft-IRIX
and ft-IRIXmig respectively. We then ran the instrumented
versions of the benchmarks, utilizing our user-level page mi-
gration engine with first-touch page placement enabled and
the IRIX page migration engine disabled. These versions
utilized our competitive page migration algorithm. We call
this scheme ft-umig. The three leftmost shaded bars of the
charts in Figure 2 show the results from these experiments.
We repeated the same experiments on an idle system, after
applying the following two modifications to the benchmarks.
In the first case, instead of using the default first-touch page
placement, we activated the IRIX round-robin page place-
ment scheme, by setting the ..DSM_PLACFEMEN'r environment
variable. We call these schemes, rr-IRIX, rr-IRIXmig and
rr -umig respectively. The three middle bars in the charts of
Figure 2 show the results from the experiments with round-
robin page placement. In the second case, we reactivated
first-touch and used the IRIX mp_suggeszed_numth.veads O
call to force the first iteration of each benchmark to execute
sequentially. With the first-touch page placement policy,
this modification implied that all pages used by the bench-
marks were allocated on a single node, thus emulating an
hypothetical page placement scheme which corresponds to
the worst case for benchmarks tuned to use first-touch. In
this worst-case scenario, all but two threads of each bench-
mark (i.e. the two threads that ran on the node where all
data was placed), had to fetch data from remote memory
upon every L2 cache miss. Since the benchmarks were ex-
ecuted on 8 nodes (16 processors) and 16 nodes (32 pro-
cessors) of the system, 87.5% (7/8) and 93.75% (15/16) of
the pages in the resident set of the benchmarks respectively
were badly placed. Furthermore, all data was fetched from a
single memory module, therefore contention at this memory
module was exacerbated. We conducted this brute-force ex-
periment in order to evaluate accurately the extent to which
automatic kernel-level or user-level page migration can fix
locality problems due to poor page placement. We call the
worst-case page placement schemes sn-IRIX, sn-IRIXmig,
and sn-umig, where the prefix sn- stands for single-node.
The three rightmost striped bars of the charts in Figure 2
show the results from these experiments.

The results in the charts are averages of three independent
experiments. The variance in execution time was negligible.

5.2 Performance with Worst-Case Page
Placement

Our first observation stems from performing pairwise com-
parisons between shaded and stripped bars with the same
color. We detect that the OpenMP codes exhibit strong sen-
sitivity to the page placement strategy. If page migration
is not employed, a worst-case initial page placement slows
down the benchmarks by a factor of at least 1.26 (BT on 16
processors) and at most 2.47 (SP on 32 processors), com-
pared to first-touch. The average slowdown factor due to
the worst-case page placement strategy is 1.79. Using dy-
namic page migration in the IRIX kernel reduces this slow-
down factor slightly, down to 1.76 (ft-IRIXmig compared to
sn-IRIXmig). The user-level page migration runtime system
takes the slowdown factor down to 1.12, 36% less than the
IRIX page migration engine. This practically means that
with the user-level page migration mechanism, the bench-
marks were on average penalized by no more than 12% even
if the resident memory pages of each benchmark were placed
in the worst possible arrangement. We tracked this effect
further by measuring the slowdown of all the benchmarks
in the last half iterations of the main computational loop.
The average slowdown was measured to 1.03, while in 4
out of 6 cases the slowdown was less than 1.01. Observe
that in all cases the user-level page migration algorithm with
the worst-case initial page placement outperforms the plain
IRIX first-touch page placement.
The trends observed with round-robin page placement are
identical to those observed with the worst-case page place-
ment, with the exception that the slowdown factor with
round-robin is modest, namely 1.27 on average.

5.3 Performance with First-Touch Page
Placement

Using dynamic page migration in the IRIX kernel improves
execution times compared to first-touch (f t-IRIX compared
to fZ-IRITaaig) by 6% on average and at most by 17%, for
SP on 32 processors. User-level page migration with the
competitive page migration algorithm improves the execu-
tion time of the benchmarks on average by 19% compared
to f t - IRIX and by 11% compared to :[t-IRIYan£g. The max-
imum gain is obtained for BT on 32 processors (28%). The
improvements stem from optimally placing pages with more
than one sharers, with respect to the reference pattern of one
iteration of each benchmark. We consider the improvements
as sizeable, considering that the machine on which we exper-
imented provided enough cache space to reduce drastically
the total number of L2 cache misses in the benchmarks and
the ratio of remote to local memory access latency for the
system was less than 3:1, so the relative penalty of remote
memory accesses was not as severe as in other realizations
of NUMA architectures. We would expect more significant
improvements by using larger problem sizes, larger system
sizes, or systems with less efficient communication infras-
tructure compared to that of the Origin2000.

5.4 Detailed Analysis
Figure 3 illustrates two histograms of the number of remote
accesses issued to two heavily referenced arrays (u and rhs)
in the NAS BT and SP benchmarks, executed with the user-
level page migration system and first-touch page placement

126

e

° o iiI i !• I Ilij :,
-

<o 5 o - ~
i I

o o~ - 3i °

100. 150.

80-

~ ' ~ °) ° i,°.
5 0 .

2 0 .

0 . - • 0. -- .~,

NAS BT, Class A, 32 processors NAS SP, Class A, 16 p rocessors N A S CG, C lass A, 32 p r o c e s s o r s

Figure 2: Experiments with page placements and page migration for the NAS BT, SP and CG benchmarks running on an
idle system. All execution times are in seconds.

on 32 processors. Each bar in the histograms corresponds
to the total number of remote accesses to an array, during
an interval of 20 i terations for BT and 40 iterations for SP.
The values were collected by recording the reference coun-
ters before each page migration performed by the runt ime
system and polling the counters every 20 and 40 i terations
respectively. The same experiment could not be repeated
with the IRIX page migration engine because we could not
intercept the page migrations performed by the IRIX kernel
at runtime. The histogram¢ illustrate how user-level page
migration reduces the number and hence the latency of re-
mote memory accesses as the computat ion evolves. We note
tha t in both cases the user-level page migration engine re-
duces drastically the number of remote accesses after the
first invocations of the runtime system and tha t the bench-
marks reach very soon an optimal execution point at which
the number of remote accesses is practically minimized.
Table 1 gives some more statistics for the two page migra-
tion engines. The statistics in the table were collected from
executions of BT and SP on 32 processors. BT and SP
presented the greatest challenge for the page migration sys-
tems as their memory reference counts indicated tha t with
first-touch page placement at least 1000 pages were always
misplaced with respect to the optimal placement. In CG the
corresponding number was between 10 and 20.
We instrumented the page migration calls in our runt ime
system to collect statistics. We used the n s t a t s - r com-
mand to collect post-mortem statistics for the IRIX page
migration engine. The table from left to right reports: the
size of the resident set of each benchmark in pages; the num-
ber of pages in the hot arrays identified by the OpenMP

compiler; the number of pages migra ted on average by the
IRIX kernel over the total number of pages tha t were consid-
ered eligible for migration; the same rat io for our user-level
page migration engine with the competi t ive migration al-
gorithm; and the percentage of page migrations tha t were
performed by our runt ime system in the first two iterations
of the benchmarks. The la t ter information could not be
obtained for m i X , again because we were not able to inter-
cept page migrations performed by the IRIX kernel during
the execution of the benchmarks.
The statist ics show tha t the user-level page migration run-
t ime system migrates about one order of magnitude more
pages compared to I I~X, al though bo th the IPJX kernel and
the runtime system identify approximate ly the same num-
ber of pages as candidates for migration, m i x migrates only
24% of the pages considered eligible for migration. The rest
of the pages are not migrated due to the mult i tude of con-
straints in the IRIX page migrat ion engine, including the
dampening, bouncing, and memory pressure filters (cf. Sec-
tion 2). The runt ime system migrates on average 84% of the
pages considered eligible for migration. This is a good indi-
cation of the high accuracy of our page migration mechanism
and the effectiveness of ping-pong prevention. Only 16% of
the pages selected for migrat ion were frozen due to actual
ping-pong (i.e. migrated more than twice) by our runtime
system. Witness tha t with the worst-case page placement
the runt ime system migrates 90% and 85% of the hot pages
for BT and SP respectively. Considering that the bench-
mark executed on 16 nodes of the Origin2000 and 93.75% of
the hot pages should migrate, it appears that the runtime
system comes very close to the opt imal point. In BT, the

127

20 40 60 80 100 120 140 160 180 200 40
iteflltion$

N A S BT, 32 processors, ft-umig ,

II0 120 160 200 240 280 320 360 400
iterations

NAS SP, 32 prooessors, f t * u m i g

Figure 3: Histogram of remote accesses to two heavily referenced shared arrays in NAS BT and SP.

Table 1: Pase]aigration statist ics for executions of BT and SP on 32 processors.
B e n c h m a r k Res. set Ho t pages I R I X migr . User-Level Migr . % Migr . in first 2 i ter .

BT, first-touch 3107 2688 255/1052 (24%) 1002/1233 (81%) 83%
BT, single-node 3107 2688 466/2607 (18%) 2405/2759 (87%) 73%
SP, first-touch 3055 2688 258/1010 (25%) 818/1014 (81%) 88%
SP, single-node 3055 2688 743/2670 (27%) 2260/2641 (86%) 78%

runtime system identifies more pages than the to ta l number
of hot pages as candidate for migration. This is a conse-
quence of excessive ping-pong of some pages between more
than two nodes, which was not detected by our ping-pong
prevention algorithm.
The page migrat ion overhead is not a major consideration
since the implementat ion overlaps this overhead with useful
computat ion. We measured with microbenchmarks tha t the
amort ized cost per page migration was approximately 1.1
ms on the system on which we experimented and we used
this t ime as an est imation of migration latency in our page
migration criteria. The machine on which we experimented
did not utilize the Block Transfer Engine and the lazy TLB
shootdown algorithm used in Origin2000 systems to reduce
the cost of page migrations [15]. Although the high latency
of migrations is overlapped by the runt ime system, there is
an implicit cost associated with page migrations, since page
migration requests trigger operations such as TLB flushes,
which interrupt the processors while executing application
code. However, even with this restriction, the implicit cost
of page migrations is well amort ized over t ime by the run-
t ime system. Our stat ist ics show tha t 73%-88% of the page
migrations are executed in the first 2 i terations of the bench-
marks.

5.5 Experiments with Multiprogrammed
Workloads

We conducted a second set of experiments to evaluate the
effectiveness of user-level dynamic page migrat ion in a mul-
t iprogrammed execution environment. In these experiments
we executed three workloads with the NAS BT and SP
benchmarks. The first workload included two copies of BT,
the second workload included two copies of SP, and the third
workload included one copy of BT and one copy of SP. We
call the workloads wl-1, wl-2 and wl-3 respectively. We ex-
ecuted the workloads using first-touch page placement and
the IRIX page migrat ion enabled (: f t - IRIX~.g) and then
first-touch page placement and our predictive page migra-

 150t I I I

Muniprogrammed workloads, 32 processors

Figure 4: Execution t ime of BT and SP in the multipro-
grammed workloads.

tion mechanism enabled (f t -p redmig) .
All benchmarks in the workloads requested 32 processors to
execute. The experiments were conducted on a 32-processor
part i t ion of the SGI Origin2000, using the m i s e r scheduler
to establish an isolated 32-processor set [22]. Each program
in the workload s tar ted executing with 32 threads therefore
each processor in the part i t ion was initially t ime-shared be-
tween two threads. In the course of execution the programs
adjusted their number of running threads according to the
mult iprogramming load and the observed processor utiliza-
tion. Automat ic thread adjus tment was accomplished by
setting the 01~IP_SET..DYNAHIC variable to true, thus lett ing
the IPJX kernel take control of the number of threads tha t
execute parallel constructs in coordination with the IRIX
MP parallelization library, which serves as the SGI OpenMP
compiler backend [22].
Figure 4 illustrates the average execution t imes of BT and

128

SP in the three workloads, obtained from 5 independent ex-
ecutions of each workload in which the variance was less
than 10%. The predictive dynamic user-level page migra-
tion mechanism reduces the execution times in all three
workloads by 28% to 49%. The improvement originates
mainly from the acceleration of the iterations executed af-
ter the benchmarks adjusted their number of threads, due
to migrations triggered by the predictive page migration al-
gorithm, as soon as the runtime system detected that the
number of running threads in the benchmark has changed
and some threads were migrated. Our experiment merely
demonstrates the ability of our runtime system to react to
scheduling events that may degrade application's perfor-
mance in multiprogr~mmed environments. Further exper-
imentation with multiprogrammed workloads is required to
extract more accurate conclusions.

6. RELATED WORK
Dynamic page placement triggered by TLB misses was stud-
ied for NUMA multiprocessors with and without hardware
cache coherence [3; 6; 18]. The related work motivated the
introduction of first-touch, as the page placement policy of
choice in multiprocessors with distributed shared memory.
Dynamic page migration based on reference counters was
introduced in [2] and its first implementation in a real oper-
ating system was presented in [25]. Our work extends these
previous works towards the direction of making dynamic
page migration more accurate, flexible and precise in time.
We also differentiate from previous works with respect to
the perception of dynamic page migration. Instead of us-
ing dynamic page migration as merely an optimization, we
consider it as the means to introduce self-adaptability in par-
allel programs that execute in dynamic environments, given
that in practically all production systems optimal execution
conditions are hard to guarantee for parallel programs and
this problem is likely to become worse in the near future. A
third issue that differentiates our work is the study of dy-
namic page migration with the popular OpenMP standard,
which demonstrates that page migration can tackle what is
considered to be the major drawback of OpenMP i.e. the
negligence of memory locality.
The integration of runtime support for improving data lo-
cality on cache-coherent NUMA multiprocessors has been
explored in the COOL language [7]. COOL included affinity
hints for associating threads with data and dynamically mi-
grating data close to the threads for which they have affinity.
COOL was primarily relying on programmer's knowledge for
distributing tasks and data in a manner that exploits effi-
ciently the memory hierarchy. Our infrastructure is trans-
parent and relies on the compiler for driving the page mi-
gration engine. Although our first prototype does not utilize
truly advanced compiler techniques to improve data locality
at runtime, our approach is convenient, since it preserves
the simplicity of the OpenMP programming standard and
avoids exporting the subtle details of data distribution to
the programmer.
The idea of exploiting the iterative nature of parallel ap-
plications and performance feedback mechanisms for apply-
ing runtime techniques that self-tune performance was ex-
ploited in several contexts such as dynamic processor alloca-
tion for multiprogrammed multiprocessors [19] and adaptive
synchronization techniques [9]. Our work applies the idea of
runtime performance monitoring and self-tuning in the con-

text of page migratiau. A distinctive feature of our work
is that runtime p~formance monitoring is applied to tune
both the performance of the program and the parameters of
the page migration algorithms, that is, we use dynamic per-
formauce feedback to implement twb levels of adaptability
in the runtime system.

7. CONCLUSIONS AND FUTURE WORK
This paper presented the design, algorithms, implementa-
tion de'tails and a preliminary evaluation of a runtime system
for user-level dynamic page migration. Our runtime system
provides an infrastrugture which enhances the memory per-
formance of OpenMP programs on NUMA multiprocessors
and arms the programs with immunity to the anomalies of
the underlying execution environment with respect to data
placement and locality, we analyzed how user-level page
migration policies with compile time and nmtime informa-
tion can improve the accuracy and the timeliness of page
migrations. We also presented several new approaches for
solving critical problems related to page migration, includ-
ing new cost-based competitive and predictive page migra-
tion algorithms and a ping-pong prevention scheme. Our
results have exemplified that OpenMP programs executed
with dynamic user-level page migration have indistinguish-
able performance with best-case and worst-case initial page
placement strategies, without using explicit data placement
directives. Furthermore, our runtime system provided size-
able improvements over the IRIX 6.5.5 memory placement
and migration mechanisms, for single parallel benchmarks
and multiprogrammed workloads.
Several of the issues outlined in this paper offer opportuni-
ties for further investigation. Our current prototype exploits
the compiler solely to activate reference counting for shared
arrays and instrument the programs. However, the runtime
system is designed to exploit more advanced compiler knowl-
edge and hints for further improving the accuracy of page
migrations. For example, the compiler could annotate the
program at specific points of execution at which the program
exhibits a phase change in the memory access pattern and
would benefit from activating an aggressive page migration
mechanism. Mechanisms for migrating pages between phase
changes in the reference patterns merit further investigation,
since they can potentially obviate the need for data redistri-
bution directives. Sensitivity analysis of our page migration
algorithms is required to extract conclusions on the rela-
tive importance of parameters such as latency, contention
and number of remote accesses. More experimentation with
multiprogrammed workloads is also required to investigate
the interaction between our runtime system and different
job scheduling strategies. User-level page migration for non-
iterative as well as irregular applications is an open issue as
well. Finally, porting our infrastructure to other NUMA
hardware platforms, including non tightly-coupled clusters
with software shared memory and investigating the associ-
ated tradeoffs between page and thread migration are within
our current plans.

Acknowledgments
This work was supported by the European Commission,
through the TMR Contract ERBFMGECT-950062 and in
part through the ESPRIT IV Project No. 21907 (NANOS).
The experiments were conducted with resources provided by

129

the European Center for Parallelism of Barcelona (CEPBA).
The authors would like to gratefully acknowledge the help of
Xavier Martorell and the CEPBA systems support staff.

8. REFERENCES

[1] E. Ayguadd et al. NanosCompiler: A Research Platform
for OpenMP Extensions. In Proc. of the First European
Workshop on OpenMP, pages 27-31, October 1999.

[2] D. Black and D. Sleator. Competitive Algorithms for
Replication and Migration Problems. Technical Re-
port CMU-CS-89-201, Department of Computer Sci-
ence, Carnegie-Mellon University, 1989.

[3] W. Bolosky, M. Scott, R. Fitzgerald, and A. Cox.
NUMA Policies and their Relationship to Memory Ar-
chitecture. In Proc. of the 4th International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 212-221, 1991.

[4] T. Brewer and G. Astfalk. The Evolution of the
HP/Convex Exemplar. In Proc. of the COMPCON
Spring'97 Conference, pages 81-96, Februrary 1997.

[5] L. Brieger. HPF to OpenMP on the Origin2000: A
Case Study. In Proc. of the First European Workshop
on OpenMP, pages 19-20, October 1999.

[6] R. Chandra, S. Devine, A. Gupta, and M. Rosen-
blum. Scheduling and Page Migration for Multiproces-
sor Compute Servers. In Proc. of the 6th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 12-24, Octo-
ber 1994.

[7] R. Chandra, A. Gupta, and J. Hennessy. COOL:
An Object-Based Language for Parallel Programming.
IEEE Computer, 27(8):13-26, 1994.

[8] D. Culler, J. P. Singh, and A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufman, 1998.

[9] P. Diniz and M. Rinard. Eliminating Synchronization
Overhead in Automatically Parallelized Programs Us-
ing Dynamic Feedback. A CM Transactions on Com-
puter Systems, 17(2):89-132, 1999.

[10] E. Hagersten and M. Koster. Wildfire: A Scalable Path
for SMPs. In Proc. of the 5th International Symposium
on High Performance Computer Architecture, pages
172-181, January 1999.

[11] C. Hristea, D. Lenoski, and J. Keen. Measuring Mem-
ory Hierarchy Performance of Cache-Coherent Multi-
processors Using Micro Benchmarks. In Proc. of Super-
computing'97, November 1997.

[12] D. Jiang and J. P. Singh. Scaling Application Perfor-
mance on a Cache-Coherent Multiprocessor. In Proc. of
the 26th International Symposium on Computer Archi-
tecture, pages 305-316, May 1999.

[13] H. Jin, M. Frumkin, and J. Yam The OpenMP Im-
plementation of NAS Parallel Benchmarks and its Per-
formance. Technical Report NAS-99-011, NASA Ames
Research Center, 1999.

[14] J. Kuskin et al. The Stanford FLASH Multiprocessor.
In Proc. of the 21st International Symposium on Com-
puter Architecture, pages 302-313, April 1994.

[15] J. Laudon and D. Lenoski, The SGI Origin: A ccNUMA
Highly Scalable Server. In Proc. of the 24th Inter-
national Symposium on Computer Architecture, pages
171-181, June 1997.

[16] J. Levesque. The Future of OpenMP on IBM SMP
Systems. In Proc. of the First European Workshop on
OpenMP, pages 5-6, October 1999.

[17] T. Lovett and R. Clapp. STING : A CC-NUMA Com-
puter System for the Commercial Marketplace. In Proc.
of the 23rd International Symposium on Computer Ar-
chitecture, pages 308-317, May 1996.

[18] M. Marchetti, L. Kontothanassis, R. Bianchini, and
M. Scott. Using Simple Page Placement Policies to
Reduce the Cost of Cache Fills in Coherent Shared-
Memory Systems. In Proc. of the 9th International Par-
allel Processing Symposium, April 1995.

[19] T. Nguyen, R. Vaswani, and J. Zahorjan. Maximizing
Speedup Through Self-Tuning of Processor Allocation.
In Proc. of the 10th International Parallel Processing
Symposium, April 1996.

[20] L. Noordergraaf and R. Van der Pas. Performance Ex-
periences on Sun's Wildfire Prototype. In Proc. of Su-
percomputing'Y9, November 1999.

[21] M. Resch and B. Sander. A Comparison of OpenMP
and MPI for the Parallel CFD Test Case. In Proc. of the
First European Workshop on OpenMP, October 1999.

[22] Silicon Graphics Inc. IRIX 6.5 Operating System Man
Pages. http://techpubs.sgi.com, 1999.

[23] Silicon Graphics Inc. Origin2000 and Onyx2
Performance Tuning and Optimization Guide.
http://techpubs.sgi.com, 1999.

[24] V. Soundararajan et al. Flexible Use of Memory for
Replication/Migration in Cache-Coherent DSM Multi-
processors. In Proc. of the 25th International Sympo-
sium on Computer Architecture, pages 342-355, June
1998.

[25] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum.
Operating System Support for Improving Data Locality
on CC-NUMA Compute Servers. In Proc. of the 7th
International Conference on Architectural Support for
Programmin 9 Languages and Operatin 9 Systems, pages
279-289, October 1996.

130

. 4 --'

