
Eraser: A Dynamic Data Race Detector for
Multithreaded Programs
STEFAN SAVAGE
University of Washington
MICHAEL BURROWS, GREG NELSON, and PATRICK SOBALVARRO
Digital Equipment Corporation
and
THOMAS ANDERSON
University of California at Berkeley

Multithreaded programming is difficult and error prone. It is easy to make a mistake in
synchronization that produces a data race, yet it can be extremely hard to locate this mistake
during debugging. This article describes a new tool, called Eraser, for dynamically detecting
data races in lock-based multithreaded programs. Eraser uses binary rewriting techniques to
monitor every shared-memory reference and verify that consistent locking behavior is ob-
served. We present several case studies, including undergraduate coursework and a multi-
threaded Web search engine, that demonstrate the effectiveness of this approach.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Pro-
gramming—parallel programming; D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids; monitors; tracing; D.4.1 [Operating Systems]: Process Management—
concurrency; deadlock; multiprocessing/multiprogramming; mutual exclusion; synchronization

General Terms: Algorithms, Experimentation, Reliability

Additional Key Words and Phrases: Binary code modification, multithreaded programming,
race detection

1. INTRODUCTION

Multithreading has become a common programming technique. Most com-
mercial operating systems support threads, and popular applications like
Microsoft Word and Netscape Navigator are multithreaded.

An earlier version of this article appeared in the Proceedings of the 16th ACM Symposium on
Operating System Principles, St. Malo, France, 1997.
Authors’ addresses: S. Savage and T. Anderson, Department of Computer Science and
Engineering, University of Washington, Box 352350, Seattle, WA 98195; email:
savage@cs.washington.edu; M. Burrows, G. Nelson, and P. Sobalvarro, Systems Research
Center, Digital Equipment Corporation, 130 Lytton Avenue, Palo Alto, CA 94301.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0734-2071/97/1100–0391 $03.50

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997, Pages 391–411.

Unfortunately, debugging a multithreaded program can be difficult.
Simple errors in synchronization can produce timing-dependent data races
that can take weeks or months to track down. For this reason, many
programmers have resisted using threads. The difficulties with using
threads are well summarized by John Ousterhout.1

In this article we describe a tool, called Eraser, that dynamically detects
data races in multithreaded programs. We have implemented Eraser for
Digital Unix and used it to detect data races in a number of programs,
ranging from the AltaVista Web search engine to introductory program-
ming exercises written by undergraduates.

Previous work in dynamic race detection is based on Lamport’s happens-
before relation [Lamport 1978] and checks that conflicting memory accesses
from different threads are separated by synchronization events. Happens-
before algorithms handle many styles of synchronization, but this general-
ity comes at a cost. We have aimed Eraser specifically at the lock-based
synchronization used in modern multithreaded programs. Eraser simply
checks that all shared-memory accesses follow a consistent locking disci-
pline. A locking discipline is a programming policy that ensures the
absence of data races. For example, a simple locking discipline is to require
that every variable shared between threads is protected by a mutual
exclusion lock. We will argue that for many programs Eraser’s approach of
enforcing a locking discipline is simpler, more efficient, and more thorough
at catching races than the approach based on happens-before. As far as we
know, Eraser is the first dynamic race detection tool to be applied to
multithreaded production servers.

The remainder of this article is organized as follows. After reviewing
what a data race is, and describing previous work in race detection, we
present the Lockset algorithm used by Eraser, first at a high level and then
at a level low enough to reveal the main performance-critical implementa-
tion techniques. Finally, we describe the experience we have had using
Eraser with a number of multithreaded programs.

Eraser bears no relationship to the tool by the same name constructed by
Mellor-Crummey [1993] for detecting data races in shared-memory parallel
Fortran programs as part of the ParaScope Programming Environment.

1.1 Definitions

A lock is a simple synchronization object used for mutual exclusion; it is
either available, or owned by a thread. The operations on a lock mu are
lock(mu) and unlock(mu). Thus it is essentially a binary semaphore used
for mutual exclusion, but differs from a semaphore in that only the owner
of a lock is allowed to release it.

A data race occurs when two concurrent threads access a shared variable
and when

1Invited talk at the 1996 USENIX Technical Conference (Jan. 25). Presentation slides
available via http://www.smli.com/people/john.ousterhout/threads.ps (PostScript) or
/threads.ppt (PowerPoint).

392 • Stefan Savage et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

—at least one access is a write and
—the threads use no explicit mechanism to prevent the accesses from being

simultaneous.

If a program has a potential data race, then the effect of the conflicting
accesses to the shared variable will depend on the interleaving of the
thread executions. Although programmers occasionally deliberately allow a
data race when the nondeterminism seems harmless, usually a potential
data race is a serious error caused by failure to synchronize properly.

1.2 Related Work

An early attempt to avoid data races was the pioneering concept of a
monitor, introduced by Hoare [1974]. A monitor is a group of shared
variables together with the procedures that are allowed to access them, all
bundled together with a single anonymous lock that is automatically
acquired and released at the entry and exit of the procedures. The shared
variables in the monitor are out of scope (i.e., invisible) outside the monitor;
consequently they can be accessed only from within the monitor’s proce-
dures, where the lock is held. Thus monitors provide a static, compile-time
guarantee that accesses to shared variables are serialized and therefore
free from data races. Monitors are an effective way to avoid data races if all
shared variables are static globals, but they do not protect against data
races in programs with dynamically allocated shared variables, a limitation
that early users found was significant [Lampson and Redell 1980]. By
substituting dynamic checking for static checking, our work aims to allow
dynamically allocated shared data while retaining as much of the safety of
monitors as possible.

Some attempts have been made to create purely static (i.e., compile-time)
race detection systems that work in the presence of dynamically allocated
shared data: for example, Sun’s lock lint [SunSoft 1994] and the Extended
Static Checker for Modula-3 [Detlefs et al. 1997].2 But these approaches
seem problematical, since they require statically reasoning about the
program’s semantics.

Most of the previous work in dynamic race detection has been carried out
by the scientific parallel programming community [Dinning and Schonberg
1990; Mellor-Crummey 1991; Netzer 1991; Perkovic and Keleher 1996] and
is based on Lamport’s happens-before relation, which we now describe.

The happens-before order is a partial order on all events of all threads in
a concurrent execution. Within any single thread, events are ordered in the
order in which they occurred. Between threads, events are ordered accord-
ing to the properties of the synchronization objects they access. If one
thread accesses a synchronization object, and the next access to the object
is by a different thread, then the first access is defined to happen before the
second if the semantics of the synchronization object forbid a schedule in

2See also the Extended Static Checking home page: http://www.research.digital.com/SRC/esc/
Esc.html.

Eraser: A Dynamic Data Race Detector for Multithread Programs • 393

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

which these two interactions are exchanged in time. For example, Figure 1
shows one possible ordering of two threads executing the same code
segment. The three program statements executed by Thread 1 are ordered
by happens-before because they are executed sequentially in the same
thread. The lock of mu by Thread 2 is ordered by happens-before with the
unlock of mu by Thread 1 because a lock cannot be acquired before its
previous owner has released it. Finally, the three statements executed by
Thread 2 are ordered by happens-before because they are executed sequen-
tially within that thread.

If two threads both access a shared variable, and the accesses are not
ordered by the happens-before relation, then in another execution of the
program in which the slower thread ran faster and/or the faster thread ran
slower, the two accesses could have happened simultaneously; that is, a
data race could have occurred, whether or not it actually did occur. All
previous dynamic race detection tools that we know of are based on this
observation. These race detectors monitor every data reference and syn-
chronization operation and check for conflicting accesses to shared vari-
ables that are unrelated by the happens-before relation for the particular
execution they are monitoring.

Unfortunately, tools based on happens-before have two significant draw-
backs. First, they are difficult to implement efficiently because they require
per-thread information about concurrent accesses to each shared-memory
location. More importantly, the effectiveness of tools based on happens-
before is highly dependent on the interleaving produced by the scheduler.

Fig. 1. Lamport’s happens-before orders events in the same thread in temporal order, and
orders events in different threads if the threads are synchronized with one another between
the events.

394 • Stefan Savage et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

F
igure

2
show

s
a

sim
ple

exam
ple

w
here

the
happens-before

approach
can

m
iss

a
data

race.
W

hile
there

is
a

potential
data

race
on

the
unprotected

accesses
to

y,
it

w
ill

not
be

detected
in

the
execution

show
n

in
the

figure,
because

T
hread

1
holds

the
lock

before
T

hread
2,

and
so

the
accesses

to
y

are
ordered

in
this

interleaving
by

happens-before.A
toolbased

on
happens-

before
w

ould
detect

the
error

only
if

the
scheduler

produced
an

interleaving
in

w
hich

the
fragm

ent
of

code
for

T
hread

2
occurred

before
the

fragm
ent

of
code

for
T

hread
1.

T
hus,

to
be

effective,
a

race
detector

based
on

happens-
before

needs
a

large
num

ber
of

test
cases

to
test

m
any

possible
interleav-

ings.
In

contrast,
the

program
m

ing
error

in
F

igure
2

w
ill

be
detected

by
E

raser
w

ith
any

test
case

that
exercises

the
tw

o
code

paths,
because

the
paths

violate
the

locking
discipline

for
y

regardless
of

the
interleaving

produced
by

the
scheduler.

W
hile

E
raser

is
a

testing
tool

and
therefore

cannot
guarantee

that
a

program
is

free
from

races,
it

can
detect

m
ore

races
than

tools
based

on
happens-before.

T
he

lock
covers

technique
of

D
inning

and
S

chonberg
is

an
im

provem
ent

to
the

happens-before
approach

for
program

s
that

m
ake

heavy
use

of
locks

[D
inning

and
S

chonberg
1991].

Indeed,
one

w
ay

to
describe

our
approach

w
ould

be
that

w
e

extend
D

inning
and

S
chonberg’s

im
provem

ent
and

discard
the

underlying
happens-before

apparatus
that

they
w

ere
im

proving.

F
ig.2.

T
he

program
allow

s
a

data
race

on
y,but

the
error

is
not

detected
by

happens-before
in

this
execution

interleaving.

E
raser:

A
D

ynam
ic

D
ata

R
ace

D
etector

for
M

ultithread
P

rogram
s

•
395

A
C

M
T

ransactions
on

C
om

puter
S

ystem
s,

V
ol.

15,
N

o.
4,

N
ovem

ber
1997.

2. THE LOCKSET ALGORITHM

In this section we describe how the Lockset algorithm detects races. The
discussion is at a fairly high level; the techniques used to implement the
algorithm efficiently will be described in the following section.

The first and simplest version of the Lockset algorithm enforces the
simple locking discipline that every shared variable is protected by some
lock, in the sense that the lock is held by any thread whenever it accesses
the variable. Eraser checks whether the program respects this discipline by
monitoring all reads and writes as the program executes. Since Eraser has
no way of knowing which locks are intended to protect which variables, it
must infer the protection relation from the execution history.

For each shared variable v, Eraser maintains the set C(v) of candidate
locks for v. This set contains those locks that have protected v for the
computation so far. That is, a lock l is in C(v) if, in the computation up to
that point, every thread that has accessed v was holding l at the moment of
the access. When a new variable v is initialized, its candidate set C(v) is
considered to hold all possible locks. When the variable is accessed, Eraser
updates C(v) with the intersection of C(v) and the set of locks held by the
current thread. This process, called lockset refinement, ensures that any
lock that consistently protects v is contained in C(v). If some lock l
consistently protects v, it will remain in C(v) as C(v) is refined. If C(v)
becomes empty this indicates that there is no lock that consistently
protects v.

In summary, here is the first version of the Lockset algorithm:

Let locks held(t) be the set of locks held by thread t.
For each v, initialize C(v) to the set of all locks.
On each access to v by thread t,

set C(v) :! C(v) ! locks held(t);
if C(v) ! { }, then issue a warning.

Figure 3 illustrates how a potential data race is discovered through
lockset refinement. The left column contains program statements, executed
in order from top to bottom. The right column reflects the set of candidate
locks, C(v), after each statement is executed. This example has two locks,
so C(v) starts containing both of them. After v is accessed while holding
mu1, C(v) is refined to contain that lock. Later, v is accessed again, with
only mu2 held. The intersection of the singleton sets {mu1} and {mu2} is
the empty set, correctly indicating that no lock protects v.

2.1 Improving the Locking Discipline

The simple locking discipline we have used so far is too strict. There are
three very common programming practices that violate the discipline, yet
are free from any data races:

—Initialization: Shared variables are frequently initialized without holding
a lock.

396 • Stefan Savage et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

—Read-Shared Data: Some shared variables are written during initializa-
tion only and are read-only thereafter. These can be safely accessed
without locks.

—Read-Write Locks: Read-write locks allow multiple readers to access a
shared variable, but allow only a single writer to do so.

In the remainder of this section we will extend the Lockset algorithm to
accommodate initialization and read-shared data, and then extend it fur-
ther to accommodate read-write locks.

2.2 Initialization and Read-Sharing

There is no need for a thread to lock out others if no other thread can
possibly hold a reference to the data being accessed. Programmers often
take advantage of this observation when initializing newly allocated data.
To avoid false alarms caused by these unlocked initialization writes, we
delay the refinement of a location’s candidate set until after it has been
initialized. Unfortunately, we have no easy way of knowing when initializa-
tion is complete. Eraser therefore considers a shared variable to be initial-
ized when it is first accessed by a second thread. As long as a variable has
been accessed by a single thread only, reads and writes have no effect on
the candidate set.

Since simultaneous reads of a shared variable by multiple threads are
not races, there is also no need to protect a variable if it is read-only. To
support unlocked read-sharing for such data, we report races only after an
initialized variable has become write-shared by more than one thread.

Figure 4 illustrates the state transitions that control when lockset
refinement occurs and when races are reported. When a variable is first
allocated, it is set to the Virgin state, indicating that the data are new and
have not yet been referenced by any thread. Once the data are accessed, it

Fig. 3. If a shared variable is sometimes protected by mu1 and sometimes by lock mu2, then
no lock protects it for the whole computation. The figure shows the progressive refinement of
the set of candidate locks C(v) for v. When C(v) becomes empty, the Lockset algorithm has
detected that no lock protects v.

Eraser: A Dynamic Data Race Detector for Multithread Programs • 397

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

enters the Exclusive state, signifying that it has been accessed, but by one
thread only. In this state, subsequent reads and writes by the same thread
do not change the variable’s state and do not update C(v). This addresses
the initialization issue, since the first thread can initialize the variable
without causing C(v) to be refined. When and if another thread accesses
the variable, then the state changes. A read access changes the state to
Shared. In the Shared state, C(v) is updated, but data races are not
reported, even if C(v) becomes empty. This takes care of the read-shared
data issue, since multiple threads can read a variable without causing a
race to be reported. A write access from a new thread changes the state
from Exclusive or Shared to the Shared-Modified state, in which C(v) is
updated and races are reported, just as described in the original, simple
version of the algorithm.

Our support for initialization makes Eraser’s checking more dependent
on the scheduler than we would like. Suppose that a thread allocates and
initializes a shared variable without a lock and erroneously makes the
variable accessible to a second thread before it has completed the initializa-
tion. Then Eraser will detect the error if any of the second thread’s accesses
occur before the first thread’s final initialization actions, but otherwise
Eraser will miss the error. We do not think this has been a problem, but we
have no way of knowing for sure.

2.3 Read-Write Locks

Many programs use single-writer, multiple-reader locks as well as simple
locks. To accommodate this style we introduce our last refinement of the
locking discipline: we require that for each variable v, some lock m protects
v, meaning m is held in write mode for every write of v, and m is held in
some mode (read or write) for every read of v.

Fig. 4. Eraser keeps the state of all locations in memory. Newly allocated locations begin in
the Virgin state. As various threads read and write a location, its state changes according to
the transition in the figure. Race conditions are reported only for locations in the Shared-
Modified state.

398 • Stefan Savage et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

We continue to use the state transitions of Figure 4, but when the
variable enters the Shared-Modified state, the checking is slightly differ-
ent:

Let locks held(t) be the set of locks held in any mode by thread t.
Let write locks held(t) be the set of locks held in write mode by thread t.
For each v, initialize C(v) to the set of all locks.
On each read of v by thread t,

set C(v) :! C(v) ! locks held(t);
if C(v) :! { }, then issue a warning.

On each write of v by thread t,
set C(v) :! C(v) ! write locks held(t);
if C(v) ! { }, then issue a warning.

That is, locks held purely in read mode are removed from the candidate
set when a write occurs, as such locks held by a writer do not protect
against a data race between the writer and some other reader thread.

3. IMPLEMENTING ERASER

Eraser is implemented for the Digital Unix operating system on the Alpha
processor, using the ATOM [Srivastava and Eustace 1994] binary modifica-
tion system. Eraser takes an unmodified program binary as input and adds
instrumentation to produce a new binary that is functionally identical, but
includes calls to the Eraser runtime to implement the Lockset algorithm.

To maintain C(v), Eraser instruments each load and store in the pro-
gram. To maintain lock held(t) for each thread t, Eraser instruments each
call to acquire or release a lock, as well as the stubs that manage thread
initialization and finalization. To initialize C(v) for dynamically allocated
data, Eraser instruments each call to the storage allocator.

Eraser treats each 32-bit word in the heap or global data as a possible
shared variable, since on our platform a 32-bit word is the smallest
memory-coherent unit. Eraser does not instrument loads and stores whose
address mode is indirect off the stack pointer, since these are assumed to be
stack references, and shared variables are assumed to be in global locations
or in the heap. Eraser will maintain candidate sets for stack locations that
are accessed via registers other than the stack pointer, but this is an
artifact of the implementation rather than a deliberate plan to support
programs that share stack locations between threads.

When a race is reported, Eraser indicates the file and line number at
which it was discovered and a backtrace listing of all active stack frames.
The report also includes the thread ID, memory address, type of memory
access, and important register values such as the program counter and
stack pointer. When used in conjunction with the program’s source code, we
have found that this information is usually sufficient to locate the origin of
the race. If the cause of a race is still unclear, the user can direct Eraser to
log all the accesses to a particular variable that result in a change to its
candidate lock set.

Eraser: A Dynamic Data Race Detector for Multithread Programs • 399

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

3.1 Representing the Candidate Lock Sets

A naive implementation of lock sets would store a list of candidate locks for
each memory location, potentially consuming many times the allocated
memory of the program. We can avoid this expense by exploiting the
fortunate fact that the number of distinct sets of locks observed in practice
is quite small. In fact, we have never observed more than 10,000 distinct
sets of locks occurring in any execution of the Lockset monitoring algo-
rithm. Consequently, we represent each set of locks by a small integer, a
lockset index into a table whose entries canonically represent the set of
locks as sorted vectors of lock addresses. The entries in the table are never
deallocated or modified, so each lockset index remains valid for the lifetime
of the program.

New lockset indexes are created as a result of lock acquisitions, lock
releases, or through application of the intersection operation. To ensure
that each lockset index represents a unique set of locks we maintain a hash
table of the complete lock vectors that is searched before a new lockset
index is created. Eraser also caches the result of each intersection, so that
the fast case for set intersection is simply a table lookup. Each lock vector
in the table is sorted, so that when the cache fails, the slow case of the
intersection operation can be performed by a simple comparison of the two
sorted vectors.

For every 32-bit word in the data segment and heap, there is a corre-
sponding shadow word that is used to contain a 30-bit lockset index and a
2-bit state condition. In the Exclusive state, the 30 bits are not used to store
a lockset index, but used instead to store the ID of the thread with
exclusive access.

All the standard memory allocation routines are instrumented to allocate
and initialize a shadow word for each word allocated by the program. When
a thread accesses a memory location, Eraser finds the shadow word by
adding a fixed displacement to the location’s address. Figure 5 illustrates
how shadow memory and the lockset index representation are used to
associate each shared variable with a corresponding set of candidate locks.

3.2 Performance

Performance was not a major goal in our implementation of Eraser and
consequently there are many opportunities for optimization. Applications
typically slow down by a factor of 10 to 30 while using Eraser. This time
dilation can change the order in which threads are scheduled and can affect
the behavior of time-sensitive applications. Our experience suggests that
differences in thread scheduling have little effect on Eraser’s results. We
have less experience with very time-sensitive applications, and it is possi-
ble that they would benefit from a more efficient monitoring technique.

We estimate that half of the slowdown in the current implementation is
due to the overhead of making a procedure call at every load and store
instruction. This overhead could be eliminated by using a version of ATOM
that can inline monitoring code [Scales et al. 1996]. Also, there are many

400 • Stefan Savage et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

opportunities for using static analysis to reduce the overhead of the
monitoring code; but we have not explored them.

In spite of our limited performance tuning, we have found that Eraser is
fast enough to debug most programs and therefore meets the most essential
performance criterion.

3.3 Program Annotations

As expected, our experience with Eraser showed that it can produce false
alarms. Part of our research was aimed at finding effective annotations to
suppress false alarms without accidentally losing useful warnings. This is a
key to making a tool like Eraser useful. If the false alarms are suppressed
with accurate and specific annotations, then when a program is modified,
and the modified program is tested, only fresh and relevant warnings will
be produced.

In our experience false alarms fell mainly into three broad categories:

—Memory Reuse: False alarms were reported because memory is reused
without resetting the shadow memory. Eraser instruments all of the
standard C, C"", and Unix memory allocation routines. However, many
programs implement free lists or private allocators, and Eraser has no
way of knowing that a privately recycled piece of memory is protected by
a new set of locks.

Fig. 5. Eraser associates a lockset index with each variable by adding the variable’s address
to a fixed shadow memory offset. The index, in turn, selects a lock vector from the lockset
index table. In this case, the shared variable v is associated with a set of locks containing mu1
and mu2.

Eraser: A Dynamic Data Race Detector for Multithread Programs • 401

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

—Private Locks: False alarms were reported because locks are taken
without communicating this information to the Eraser at runtime. This
was usually caused by private implementations of multiple-reader/single-
writer locks, which are not part of the standard pthreads interface that
Eraser instruments.

—Benign Races: True data races were found that did not affect the
correctness of the program. Some of these were intentional, and others
were accidental.

For each of these categories, we developed a program annotation to allow
users of Eraser to eliminate the false report. For benign races, we added

EraserIgnoreOn()
EraserIgnoreOff()

which inform the race detector that it should not report any races in the
bracketed code. To prevent memory reuse races from being reported, we
added

EraserReuse(address, size)

which instructs Eraser to reset the shadow memory corresponding to the
indicated memory range to the Virgin state. Finally, the existence of
private lock implementations can be communicated by annotating them
with

EraserReadLock(lock)
EraserReadUnlock(lock)
EraserWriteLock(lock)
EraserWriteUnlock(lock)

We found that a handful of these annotations usually suffices to elimi-
nate all false alarms.

3.4 Race Detection in an OS Kernel

We have begun to modify Eraser to detect races in the SPIN operating
system [Bershad et al. 1995]. A number of SPIN’s features, such as runtime
code generation and late code binding, complicate the instrumentation
process, and consequently Eraser does not yet work in this environment.
Nevertheless, while we do not have results in terms of data races found, we
have acquired some useful experience about implementing such a tool at
the kernel level, which is different from the user level in several ways.

First, SPIN (like many operating systems) often raises the processor
interrupt level to provide mutual exclusion to shared data structures
accessed by device drivers and other interrupt-level code. In most systems,
raising the interrupt level to n ensures that only interrupts of priority
greater than n will be serviced until the interrupt level is lowered. Raising
and then restoring the interrupt level can be used instead of a lock, as
follows:

402 • Stefan Savage et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

level :" SetInterruptLevel(n);
(! Manipulate data !)
RestoreInterruptLevel(level);

However, unlike locks, a particular interrupt level inclusively protects all
data protected by lower interrupt levels. We have incorporated this differ-
ence into Eraser by assigning a lock to each individual interrupt level.
When the kernel sets the interrupt level to n, Eraser treats this operation
as if the first n interrupt locks had all been acquired. We expect this
technique to allow us to detect races between code using standard locks and
code using interrupt levels.

Another difference is that operating systems make greater use of post/
wait style synchronization. The most common example is the use of
semaphores to synchronize execution between a thread and an I/O device
driver. Upon receiving data, the device driver will perform some minimal
processing and then use a V operation to signal a thread waiting on P
operation, for example, to wake up a thread waiting for an I/O completion.
This can cause problems for Eraser if data are shared between the device
driver and the thread. Because semaphores are not “owned” it is difficult
for Eraser to infer which data they are being used to protect, leading it to
issue false alarms. Systems that integrate thread and interrupt processing
[Kleiman and Eykholt 1995] may have less trouble with this problem.

4. EXPERIENCE

We calibrated Eraser on a number of simple programs that contained
common synchronization errors (e.g. forgot to lock, used the wrong lock,
etc.) and versions of those programs with the errors corrected. While
programming these tests, we accidentally introduced a race, and encourag-
ingly, Eraser detected it. These simple tests were extremely useful for
finding bugs in Eraser. After convincing ourselves that the tool worked, we
tackled some large multithreaded servers written by experienced research-
ers at Digital Equipment Corporation’s System Research Center: the HTTP
server and indexing engine from AltaVista, the Vesta cache server, and the
Petal distributed disk system. We also applied Eraser to some homework
problems written by undergraduate programmers at the University of
Washington.

As described in detail below, Eraser found undesirable race conditions in
three of the four server programs and in many of the undergraduate
homework problems. It also produced false alarms, which we were able to
suppress with annotations. As we found race conditions or false alarms, we
modified the program appropriately and then reran Eraser to locate the
remaining problems. Ten iterations of this process were usually sufficient
to resolve all of a program’s reported races.

The programmers of the servers on which we tested Eraser did not begin
with a plan to test Eraser or even to use Eraser’s locking discipline. The
fact that Eraser worked well on the servers is evidence that experienced

Eraser: A Dynamic Data Race Detector for Multithread Programs • 403

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

programmers tend to obey the simple locking discipline even in an environ-
ment that offers many more elaborate synchronization primitives.

In the remainder of this section we report on the details of our experi-
ences with each program.

4.1 AltaVista

We examined two components of the popular AltaVista Web indexing
service: mhttpd and Ni2.3

The mhttpd program is a lightweight HTTP server designed to support
the extremely high server loads experienced by AltaVista. Each search
request is handled by a separate thread and relies on locking to synchro-
nize access by concurrent requests to shared data structures. In addition,
mhttpd employs several additional threads to manage background tasks
such as configuration and name cache management. The server consists of
approximately 5000 lines of C source code. We tested mhttpd by invoking a
series of test scripts from three separate Web browsers. The mhttpd test
used approximately 100 distinct locks that formed approximately 250
different lock sets.

The Ni2 indexing engine is used to look up information in response to
index queries. Index data structures are shared among all of the server
threads and explicitly use locks to guarantee that updates are serialized.
The basic Ni2 libraries contain approximately 20,000 lines of C source
code. We tested Ni2 separately using a utility called ft that submits a
series of random requests using a specified number of threads (we used 10).
The ft test used approximately 900 locks that formed approximately 3600
distinct lock sets.

We found a large number of reported races, most of which turned out to
be false alarms. These were primarily caused by memory reuse, followed by
private locks and benign races. The benign races found in Ni2 are particu-
larly interesting, because they exemplify the intentional use of races to
reduce locking overhead. For example, consider the following code frag-
ment:

if (p3ip fp "" (NI2 XFILE !) 0) { // has file pointer been set?
NI2 LOCKS LOCK (&p3ip lock); // no? take lock for update
if (p3ip fp "" (NI2 XFILE !) 0) { // was file pointer set

// since we last checked?
p3ip fp " ni2 xfopen (

p3ip name, “rb”);
// no? set file pointer

}
NI2 LOCKS UNLOCK (&p3ip lock);

}
. . . // no locking overhead if file

// pointer is already set

In this code fragment the ip fp field is tested without a lock held, which
creates a data race with other threads that modify the field with the

3http://altavista.digital.com/

404 • Stefan Savage et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

ip lock lock held. The race was deliberately programmed as an optimiza-
tion to avoid locking overhead in the common case that ip fp has already
been set. The program is correct even with the race, since the ip fp field
never transitions from nonzero to zero while in the scope of multiple
threads, and the program repeats the test inside the lock in case the field
tested zero (thus avoiding the race in which two threads find the field zero
and both then initialize it).

This kind of code is very tricky. For example, it might seem safe to access
the p3ip fp field in the rest of the procedure (the lines replaced by the
ellipsis in the code fragment). But in fact this would be a mistake, because
the Alpha’s memory consistency model permits processors to see memory
operations out of order if there is no intervening synchronization. Although
the Ni2 code was correct, after using Eraser the programmer decided to
reprogram this part of it so that its correctness argument was simpler.

We also found a benign race in the Ni2 test harness program, where
multiple threads race on reads and writes to a global variable called
kill queries. This variable is initialized to false and is set to true to
indicate that all threads should exit. Each thread periodically polls the
variable and exits when it is set to true. Other finalization code had similar
benign races. To keep the race detector from reporting such races, we used
the EraserIgnoreOn/Off() annotations. Similarly, mhttpd omits locks
when periodically updating global configuration data and statistics. These
are indeed synchronization errors, but their effect is relatively minor,
which is perhaps why they were undetected for so long.

Inserting nine annotations in the Ni2 library, five in the ft test harness,
and 10 in the mhttpd server reduced the number of reported races from
more than a hundred to zero.

4.2 Vesta Cache Server

Vesta is an advanced software configuration management system.4 Config-
urations are written in a specialized functional language that describes the
dependencies and rules used to derive the current state of the software.
Partial results, such as “.o” files generated by the C compiler, are cached in
the Vesta cache server and used by the Vesta builder to create a particular
configuration. The cache server consists of approximately 30,000 lines of
C"" code. We tested the cache server using the TestCache utility that
issues a stream of concurrent random requests. The cache server used 10
threads, acquired 26 distinct locks, and instantiated 70 different lock sets.

In testing the cache server, Eraser reported a number of races, mostly
revolving around three data structures. The first set of races was detected
in the code maintaining the fingerprints in cache entries. Because comput-
ing a fingerprint can be expensive, the cache server maintains a boolean
field in the cache entry recording whether the fingerprint is valid. The
fingerprint is computed only if its true value is needed and its current

4http://www.research.digital.com/SRC/vesta/

Eraser: A Dynamic Data Race Detector for Multithread Programs • 405

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

value is invalid. Unfortunately, the boolean was accessed without a protect-
ing lock, in code like this:

Combine"XorFPTag"FPVal() {
if (!this3validFP) { // is fingerprint marked valid?

// no? calculate fingerprint
NamesFP(fps, bv, this3fp, imap); // (NamesFP changes this3fp)
this3validFP " true; // and mark it as valid

}
return this3fp;

}

This is a serious data race, since in the absence of memory barriers the
Alpha semantics does not guarantee that the contents of the validFP field
are consistent with the fp field.

Another set of races revolved around free lists in the CacheS object. The
CacheS object maintains a free list of various kinds of log entries. Our first
response was to use EraserReuse() annotations where elements were
allocated off this free list. However, this did not make all the warnings
disappear; calls to flush the log still caused races. Examination revealed
that the head of each log was protected by a lock, but not the individual
entries. The Flush routines lock the head of the log, store its value in a
stack variable, set the head to 0, and release the lock. After this they access
the individual entries without any locks held, ultimately putting them onto
the free list. This is correct because other threads access the log entries
with the log head lock held, and threads do not maintain pointers into the
log. Consequently, Flush effectively makes the data private to the thread
in which Flush was called. We eliminated the report of these races by
moving the EraserReuse() annotations to the three Flush routines.

Finally, there were several false alarms related to the TCP sock and
SRPC objects that are used to implement server-side RPCs. The cache
server uses a main server thread to wait for incoming RPC requests. Upon
receiving a request, this thread passes the current socket and RPC data
structures to a worker thread that is responsible for handling the rest of
the RPC. Since the main thread and the worker thread will never access
the data structures concurrently they do not need to use locks to serialize
access. To Eraser this looks like a violation of the locking discipline and is
flagged as a race. With some effort it would be possible to modify Eraser to
recognize this locking discipline, but we were able to achieve the same
effect with two EraserReuse() annotations.

In total, 10 annotations and one bug fix were enough to reduce the race
reports from several hundred to zero.

4.3 Petal

Petal is a distributed storage system that presents its clients with a huge
virtual disk implemented by a cluster of servers and physical disks [Lee
and Thekkath 1996]. Petal implements a distributed consensus algorithm
as well as failure detection and recovery mechanisms. The Petal server is

406 • Stefan Savage et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

roughly 25,000 lines of C code, and we used 64 concurrent worker threads
in our tests. We tested Petal using a utility that issued random read and
write requests.

We found a number of false alarms caused by a private reader-writer lock
implementation. These were easily suppressed using annotations. We also
detected a real race in the routine GMapCh CheckServerThread().
This routine is run by a single thread and periodically checks to make sure
that the neighboring servers are running. However, in so doing, it reads the
gmap3state field without holding the gmapState lock (that all other
threads hold before writing gmap3state).

We found two races where global variables containing statistics were
modified without locking. These races were intentional, based on the
premises that locking is expensive and that the server statistics need to be
only approximately correct.

Finally, we found one false alarm that we were unable to annotate away.
The function GmapCh Write2() forks a number of threads and passes
each a reference to a component of GmapCh Write2’s stack frame.
GmapCh Write2() implements a join-like construct to keep the stack
frame active until the threads return. But Eraser does not reinitialize the
shadow memory for each new stack frame; consequently the reuse of the
stack memory for different instances of the stack frame resulted in a false
alarm.

4.4 Undergraduate Coursework

As a counterpoint to our experience with mature multithreaded server
programs, two of our colleagues at the University of Washington used
Eraser to examine the kinds of synchronization errors found in the home-
work assignments produced by their undergraduate operating systems
class (personal communication, S. E. Choi and E. C. Lewis, 1997). We
report their results here to demonstrate how Eraser functions with a less
sophisticated code base.

The class was required to complete four standard multithreading assign-
ments. These assignments can be roughly categorized as low-level (build
locks from test-and-set), thread-level (build a small threads package),
synchronization-level (build semaphores and mutexes), and application-
level (producer/consumer-style problems). Each assignment builds on the
implementation of the previous assignment. Our colleagues used Eraser to
examine each of these assignments for roughly 40 groups; a total of about
100 runnable assignments were turned in (not all groups completed all
assignments; some did not compile; and a few immediately deadlocked). Of
these “working” assignments, 10% had data races found by Eraser. These
were caused by forgetting to take locks, taking locks during writes but not
for reads, using different locks to protect the same data structure at
different times, and forgetting to reacquire locks that were released in a
loop.

Eraser: A Dynamic Data Race Detector for Multithread Programs • 407

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

Eraser also reported a false alarm that was triggered by a queue that
implicitly protected elements by accessing the queue through locked head
and tail fields (much like Vesta’s CacheS object).

4.5 Effectiveness and Sensitivity

Since Eraser uses a testing methodology it cannot prove that a program is
free from data races. But we believe that Eraser works well, compared to
manual testing and debugging, and that Eraser’s testing is not very
sensitive to the scheduler interleaving. To test these beliefs we performed
two additional experiments.

We consulted the program history of Ni2 and reintroduced two data races
that had existed in previous versions. The first error was an unlocked
access to a reference count used to garbage collect file data structures. The
other race was caused by failing to take an additional lock needed to
protect the data structures of a subroutine called in the middle of a large
procedure. These races had existed in the Ni2 source code for several
months before they were manually found and fixed by the program author.
Using Eraser, one of us was able to locate both races in several minutes
without being given any information about where the races were or how
they were caused. It took 30 minutes to correct both errors and verify the
absence of further race reports.

We examined the issue of sensitivity by rerunning the Ni2 and Vesta
experiments, but using only two concurrent threads instead of 10. If Eraser
was sensitive to differences in thread interleaving then we would expect to
find a different set of race reports. In fact, we found the same race reports
(albeit sometimes in different order) across multiple runs using either two
threads or 10.

5. ADDITIONAL EXPERIENCE

In this section we briefly touch on two further topics, each of which
concerns a form of dynamic checking for synchronization errors in multi-
threaded programs that we experimented with and believe is important
and promising, but which we did not implement in Eraser.

The first topic is protection by multiple locks. Some programs protect
some shared variables by multiple locks instead of a single lock. In this
case the rule is that every thread that writes the variable must hold all the
protecting locks, and every thread that reads the variable must hold at
least one protecting lock. This policy allows a pair of simultaneous accesses
only if both accesses are reads, and therefore prevents data races.

Using multiple protecting locks is in some ways similar to using reader
locks and writer locks, but it is not so much aimed at increasing concur-
rency as at avoiding deadlock in a program that contains upcalls.

Using an earlier version of Eraser that detected race conditions in
multithreaded Modula-3 programs, we found that the Lockset algorithm
reported false alarms for Trestle programs [Manasse and Nelson 1991] that
protected shared locations with multiple locks, because each of two readers

408 • Stefan Savage et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

could access the location while holding two different locks. As an experi-
ment, we dealt with the problem by modifying the Lockset algorithm to
refine the candidate set only for writes, while checking it for both reads and
writes, as follows:

On each read of v by thread t,
if C(v) ! { }, then issue a warning.

On each write of v by thread t,
set C(v) :! C(v) ! locks held(t);
if C(v) ! { }, then issue a warning.

This prevented the false alarms, but it is possible for this modification to
cause false negatives. For example, if a thread t1 reads v while holding lock
m1, and a thread t2 writes v while holding lock m2, the violation of the
locking discipline will be reported only if the write precedes the read. In
general, the modified version will do a good job only if the test case causes
enough shared variable reads to follow the corresponding writes.

Theoretically it would be possible to handle multiple protecting locks
without any risk of false negatives, but the data structures required (sets of
sets of locks instead of just sets of locks) seem to have a cost in complexity
that is out of proportion to the likely gain. Since we are uncomfortable with
false negatives, and since the multiple protecting lock technique is not
common, the current version of Eraser ignores the technique, producing
false alarms for programs that use it.

The second topic is deadlock. If the data race is Scylla, the deadlock is
Charybdis.

A simple discipline that avoids deadlock is to choose a partial order
among all locks and to program each thread so that whenever it holds more
than one lock, it acquires them in ascending order. This discipline is
similar to the locking discipline for avoiding data races: it is suitable for
checking by dynamic monitoring, and it is easier to produce a test case that
exposes a breach of the discipline than it is to produce a test case that
actually causes a deadlock.

For a stand-alone experiment, we chose a large Trestle application that
was known to have complicated synchronization (formsedit, a double-view
user interface editor), logged all lock acquisitions, and tested to see if an
order existed on the locks that was respected by every thread. A few
seconds into formsedit startup our experimental monitor detected a cycle
of locks, showing that no partial order existed. Examining the cycle closely
revealed a potential deadlock in formsedit. We consider this a promising
result and conjecture that deadlock-checking along these lines would be a
useful addition to Eraser. But more work is required to catalog the sound
and useful variations on the partial-order discipline and to develop annota-
tions to suppress false alarms.

6. CONCLUSION

Hardware designers have learned to design for testability. Programmers
using threads must learn the same. It is not enough to write a correct

Eraser: A Dynamic Data Race Detector for Multithread Programs • 409

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

program; the correctness must be demonstrable, ideally by static checking,
realistically by a combination of partial static checking followed by disci-
plined dynamic testing.

This article has described the advantages of enforcing a simple locking
discipline instead of checking for races in general parallel programs that
employ many different synchronization primitives and has demonstrated
that with this technique it is practical to dynamically check production
multithreaded programs for data races.

Programmers in the area of operating systems seem to view dynamic race
detection tools as esoteric and impractical. Our experience leads us to
believe instead that they are a practical and effective way to avoid data
races, and that dynamic race detection should be a standard procedure in
any disciplined testing effort for a multithreaded program. As the use of
multithreading expands, so will the unreliability caused by data races,
unless better methods are used to eliminate them. We believe that the
Lockset method implemented in Eraser is promising.

ACKNOWLEDGMENTS

We would like to thank the following individuals for their contributions to
this project. Sung-Eun Choi and E. Christoper Lewis were responsible for
all of the undergraduate experiments. Alan Heydon, Dave Detlefs, Chandu
Thekkath, and Edward Lee provided expert advice on Vesta and Petal.
Puneet Kumar worked on an earlier version of Eraser. Cynthia Hibbard,
Brian Bershad, Michael Ernst, Paulo Guedes, Wilson Hsieh, Terri Watson,
and the SOSP and TOCS reviewers provided useful feedback on earlier
drafts of this article.

REFERENCES

BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G., FIUCZYNSKI, M., BECKER, D., EGGERS, S.,
AND CHAMBERS, C. 1995. Extensibility, safety and performance in the SPIN operating
system. In Proceedings of the 15th ACM Symposium on Operating Systems Principles
(Copper Mountain, Colo., Dec.). ACM, New York, 267–284.

DETLEFS, D. L., LEINO, R. M., NELSON, G., AND SAXE, J. B. 1997. Extended static checking.
Tech. Rep. Res. Rep. 149, Systems Research Center, Digital Equipment Corp., Palo Alto,
Calif.

DINNING, A. AND SCHONBERG, E. 1990. An empirical comparison of monitoring algorithms for
access anomaly detection. In Proceedings of the 2nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Seattle, Wash., Mar.). ACM, New York,
1–10.

DINNING, A. AND SCHONBERG, E. 1991. Detecting access anomalies in programs with critical
sections. In Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging.
ACM SIGPLAN Not. 26, 12 (Dec.), 85–96.

HOARE, C. 1974. Monitors: An operating system structuring concept. Commun. ACM 17, 10
(Oct.), 549–557.

KLEIMAN, S. AND EYKHOLT, J. 1995. Interrupts as threads. ACM Oper. Syst. Rev. 29, 2 (Apr.),
21–26.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 7 (July), 558–565.

410 • Stefan Savage et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

LAMPSON, B. AND REDELL, D. 1980. Experiences with processes and monitors in Mesa.
Commun. ACM 23, 2 (Feb.), 104–117.

LEE, E. K. AND THEKKATH, C. A. 1996. Petal: Distributed virtual disks. In Proceedings of the
7th International Conference on Architectural Support for Programming Languages and
Operating Systems (Cambridge, Mass, Oct.). ACM, New York, 84–93.

MANASSE, M. S. AND NELSON, G. 1991. Trestle reference manual. Res. Rep. 68, Systems
Research Center, Digital Equipment Corp., Palo Alto, Calif.

MELLOR-CRUMMEY, J. 1991. On-the-fly detection of data races for programs with nested
fork-join parallelism. In Proceedings of the 1991 Supercomputer Debugging Workshop
(Albuquerque, N. Mex., Nov.). 1–16.

MELLOR-CRUMMEY, J. 1993. Compile-time support for efficient data race detection in
shared-memory parallel programs. In Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging (San Diego, Calif., May). ACM, New York, 129–139.

NETZER, R. H. B. 1991. Race condition detection for debugging shared-memory parallel
programs. Ph.D. thesis, Univ. of Wisconsin-Madison, Madison, Wisc.

PERKOVIC, D. AND KELEHER, P. 1996. Online data-race detection via coherency guarantees.
In Proceedings of the 2nd USENIX Symposium on Operating Systems Design and Implemen-
tation (Seattle, Wash., Oct.). USENIX Assoc., Berkeley, Calif., 47–58.

SCALES, D. J., GHARACHORLOO, K., AND THEKKATH, C. A. 1996. Shasta: A low overhead,
software-only approach for supporting fine-grain shared memory. In Proceedings of the 7th
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems (Cambridge, Mass., Oct.). ACM, New York, 174–185.

SRIVASTAVA, A. AND EUSTACE, A. 1994. ATOM: A system for building customized program
analysis tools. In Proceedings of the 1994 ACM SIGPLAN Conference on Programming
Language Design and Implementation (Orlando, Fla., June). ACM, New York, 196–205.

SUNSOFT. 1994. lock lint user’s guide. SunSoft Manual, Sun Microsystems, Inc., Palo Alto,
Calif.

Received July 1997; revised September 1997; accepted September 1997

Eraser: A Dynamic Data Race Detector for Multithread Programs • 411

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

