
Example Concurrent Program
(x is shared, initially 0)

• code for Thread 0
foo( )

x := x+1

Assume both threads 
execute at about the 
same time.

What’s the output?

• code for Thread 1
bar( )

x := x+2



Example Concurrent Program 
(cont.)

• One possible execution order is:
– Thread 0: R1 := x (R1 == 0)
– Thread 1: R2 := x (R2 == 0) 
– Thread 1: R2 := R2 + 2 (R2 == 2) 
– Thread 1: x := R2 (x == 2)
– Thread 0: R1 := R1 + 1 (R1 == 1) 
– Thread 0: x := R1 (x == 1)

• Final value of x is 1 (!!)
• Question: what if Thread 1 also uses R1?



More Concurrent Programming: Linked Lists
(head is shared)

Insert(head, elem) {
elem-> next := head;
head := elem;

}

(Assume one thread calls Insert and 
one calls Delete)

Void *Delete(head) {
Void *t;
t:= head;
head := head->next;
return t;

}



Example Execution

1. head

head2.

Insert: elem->next := head;

elem

head

Delete: t := head;

3.

elem

t

head

Insert: head := elem;

4.

elem

t

head

Delete: head := head->next;

5.

elem

t
Delete: return t;



Some Definitions

• Race condition
– when output depends on ordering of thread 

execution
– more formally:

• (1) two or more threads access a shared variable 
with no synchronization (or incorrect 
synchronization), and

• (2) at least one of the threads writes to the variable



More Definitions

• Atomic Operation
– an operation that, once started, runs to completion

• note: more precisely, logically runs to completion

– indivisible
– in this class: loads and stores

• meaning: if thread A stores “1” into variable x and 
thread B stores “2” into variable x about about the same 
time, result is either “1” or “2”



Critical Section

• section of code that:
– must be executed by one thread at a time 
– if more than one thread executes at a time, have 

a race condition
– ex: linked list from before

• Insert/Delete code forms a critical section
• What about just the Insert or Delete code?

– is that enough, or do both procedures belong in a single 
critical section?



Critical Section (CS) Problem

• Provide entry and exit routines:
– all threads must call entry before executing CS
– all threads must call exit after executing CS
– thread must not leave entry routine until it’s safe

• CS solution properties
– Mutual exclusion: at most one thread is executing CS
– Absence of deadlock: two or more threads trying to get 

into CS, and no threads in => at least one succeeds
– Absence of unneccessary delay: if only one thread 

trying to get into CS, and no thread is in, it succeeds
– Eventual entry: thread eventually gets into CS



Structure of threads for Critical 
Section problem

Threads do the following:
while (1) {

do other stuff (non-critical section)
call enter
execute CS
call exit
do other stuff (non-critical section)

}



Critical Section Assumptions

• Threads must call enter and exit
• Threads must not die or quit inside a critical 

section
• Threads can be context switched inside a 

critical section
– this does not mean that the newly running 

thread may enter the critical section



Critical Section Solution Attempt #1 
(2 thread version, with id’s 0 and 1)

Initially, turn == 0  /* turn is shared */

entry(id)  {  /* note id local to each thread */
while (turn != id) ;  /* if not my turn, spin */

}
exit(id) {

turn := 1-id;  /* other thread’s turn */

}



Critical Section Solution Attempt #2 
(2 thread version, with id’s 0 and 1)

Initially, flag[0] = flag[1] = false 
/* flag is a shared array */

entry(id)  {
flag[id] := true;  /* I want to go in */
while (flag[1-id]) ; /*proceed if other not trying*/

}
exit(id) {

flag[id] := false;  /* I’m out */

}



Critical Section Solution Attempt #3 
(2 thread version, with id’s 0 and 1)

Initially, flag[0] == flag[1] == false, turn == 0
/* flag and turn are shared variables */

entry(id)  {
flag[id] := true;  /* I want to go in */
turn := 1-id;  /* in case other thread wants in */
while (flag[1-id] and turn == 1-id) ; 

}
exit(id) {

flag[id] := false;  /* I’m out */

}



Satisfying the 4 properties
• Mutual exclusion

– turn must be 0 or 1 => only one thread can be in CS

• Absence of deadlock
– turn must be 0 or 1 => one thread will be allowed in

• Absence of unnecessary delay
– only one thread trying to get into CS => flag[other] is     

false => will get in

• Eventual Entry
– spinning thread will not modify turn 
– thread trying to go back in will set turn equal to 

spinning thread



Hardware Support

• Provide instruction that is:
– atomic
– fairly easy for hardware designer to implement

• Read/Modify/Write
– atomically read value from memory, modify it 

in some way, write it back to memory

• Use to develop simpler critical section 
solution for any number of threads



Test-and-Set

Many machines have it
function TS(ref target: bool) returns bool

bool b := target;  /* return old value */
target := true;
return b;

Executes atomically



CS solution with Test-and-Set
Initially, s == false  /* s is a shared variable */
entry( )  {

bool spin;  /* spin is local to each thread! */
spin := TS(s);
while (spin) 

spin := TS(s);

}
exit( ) {

s := false;

}

Function TS(ref target: bool) returns bool
bool b := target
target := true
return b



Partial List of Atomic Instructions

• Compare and Swap (x86)
• Load linked and conditional store (RISC)
• Fetch and Add (Ultracomputer)
• Atomic Swap
• Atomic Increment



Basic Idea with Atomic 
Instructions

• Each thread has a local flag
• One variable shared by all threads
• Use the atomic instruction with flag, shared 

variable
– on a change, allow thread to go in
– other threads will not see this change

• When done with CS, set shared variable 
back to initial state



Problems with busy-waiting CS solution

• Complicated
• Inefficient

– consumes CPU cycles while spinning

• Priority inversion problem
– low priority thread in CS, high priority thread 

spinning can end up causing deadlock
– example: Mars Pathfinder problem

May want to block when waiting for CS



Locks
• Two operations: 

– Acquire (get it, if can’t go to sleep)
– Release (give it up, possibly wake up a waiter)

• Acquire and Release are atomic
• A thread can only release a previously 

acquired lock
• entry( ) is then just Acquire(lock)
• exit( ) is just Release(lock)

Lock is shared among all threads



First Attempt at Blocking Lock 
Implementation

• Acquire(lock) disables interrupts
• Release(lock) enables interrupts
• Advantages:

– is a blocking solution; can be used inside OS in 
some situations

• Disadvantages:
– CS can be in user code [could infinite loop], 

might need to access disk in middle of CS, 
system clock could be skewed, etc.



Correct Blocking Lock 
Implementation

lock class has queue, value
Initially: 

queue is empty
value is free

Aquire(lock)
Disable interrupts
if (lock.value == busy)

enQ(lock.queue,thread)
go to sleep

else
lock.value := busy

Enable interrupts

Release(lock)
Disable interrupts
if notEmpty(lock.queue)

thread := deQ(lock.queue)
enQ(readyList, thread)

else
lock.value := free

Enable interrupts



Can interrupts be enabled before sleep?

lock class has queue, value
Initially: 

queue is empty
value is free

Aquire(lock)
Disable interrupts
if (lock.value == busy)

Enable interrupts
enQ(lock.queue,thread)
go to sleep

else
lock.value := busy

Enable interrupts

Release(lock)
Disable interrupts
if notEmpty(lock.queue)

thread := deQ(lock.queue)
enQ(readyList, thread)

else
lock.value := free

Enable interrupts



Can interrupts be enabled before sleep?

lock class has queue, value
Initially: 

queue is empty
value is free

Aquire(lock)
Disable interrupts
if (lock.value == busy)

enQ(lock.queue,thread)
Enable interrupts
go to sleep

else
lock.value := busy

Enable interrupts

Release(lock)
Disable interrupts
if notEmpty(lock.queue)

thread := deQ(lock.queue)
enQ(readyList, thread)

else
lock.value := free

Enable interrupts



What about a “spin-lock”?
Need to fix all items in red

lock class has queue, value
Initially: 

queue is empty
value is free

Aquire(lock)
Disable interrupts
if (lock.value == busy)

enQ(lock.queue,thread)
go to sleep

else
lock.value := busy

Enable interrupts

Release(lock)
Disable interrupts
if notEmpty(lock.queue)

thread := deQ(lock.queue)
enQ(readyList, thread)

else
lock.value := free

Enable interrupts



Spin Lock Implementation 
(should look familiar)

Initially, s == false  /* s is a shared variable */
Acquire(lock)  {

bool spin;  /* spin is local to each thread! */
spin := TS(s);
while (spin) 

spin := TS(s);

}
Release (lock) {

s := false;

} Many more algorithms in MCS paper!



Problems with Locks

• Not general
– only solve simple critical section problem
– can’t do any more general synchronization
– often we want to enforce strict orderings 

between threads

• Condition synchronization
– need to wait until some condition is true
– example: bounded buffer (next slide)
– example: thread join



Bounded Buffer Problem
• Consider 2 threads:

– one producer, one consmer
– real OS example: ps | grep dkl

• shell forks a thread for “ps” and a thread for “grep
dkl”

– “ps” writes its output into a fixed size buffer; 
“grep” reads the buffer

– access to a specific buffer slot a critical section, 
but:

– between buffer slots, not a critical section
• also may need to wait for buffer to be empty or full



Bounded Buffer Cont.
• Have the following:

– buffer of size n (i. e., char buffer[n])
– one producer thread
– one consumer thread

• Locks are hard to use here
– example: producer grabs lock, but must release 

it if buffer is full
– example: producer and consumer access 

distinct locations -- can be concurrent!
• Need something more general



Semaphores (Dijkstra)

• Semaphore is an object
– contains a (private) value and 2 operations

• Semaphore value must be nonnegative
• P operation (atomic):

– if value is 0, block; else decrement value by 1

• V operation (atomic):
– if thread blocked, wake up; else value++

• Semaphores are “resource counters”



Critical Sections with Semaphores

sem mutex := 1
entry( )

– P(mutex)

exit( )
– V(mutex)

• Semaphores are more powerful than locks
• For mutual exclusion, initialize semaphore 

to 1



Bounded Buffer
(1 producer, 1 consumer)

char buf[n], int front := 0, rear := 0 
sem empty := n, full := 0
Producer( ) Consumer()

do forever... do forever...
produce message m P(full)
P(empty) m := buf[front]
buf[rear] := m; front := front “+” 1 
rear := rear “+” 1 V(empty)
V(full) consume m 



Bounded Buffer (multiple 
producers and consumers)

char buf[n], int front := 0, rear := 0 
sem empty := n, full := 0, mutexC := 1, mutexP := 1

Producer( ) Consumer()
do forever... do forever...
produce message m P(full); P(mutexC)
P(empty); P(mutexP) m := buf[front]
buf[rear] := m; front := front “+” 1 
rear := rear “+” 1 V(mutexC); V(empty)
V(mutexP); V(full) consume m



Readers/Writers 

• Given a database 
– can have multiple “readers” at a time

• don’t ever modify database

– can only have one “writer” at a time
• will modify database
• readers not allowed in while writer is

• Problem has many variations



Idea of Readers/Writers Solution
• Need mutual exclusion in both entry and exit

– use mutex semaphore, initialized to one
• Keep state of database, enforce constraints

– number of delayed readers and writers
– number of readers and writers in database
– Ex: better not have nr, nw simultaneously > 0

• One semaphore blocks readers, different 
semaphore blocks writers

• Readers going in can let other readers go in


