
Resilience in High-Performance
Computing

• Increasingly important area
– Exascale systems will have extremely large

numbers of cores
– Failures will happen with high probability
– Something has to be done, or exascale simply

won’t happen

State of the art for Reliability in
HPC: Checkpointing

• Basic idea:
1. Stop entire application at a specific global

synchronization point
2. All nodes send part of their system state

(memory, generally) to dedicated I/O nodes in
a checkpoint operation

• Whatever is needed to re-start application
3. I/O nodes store checkpoint info to disk
4. If the application crashes, execute a restore

from checkpoint operation

State of the art for Reliability in
HPC: Checkpointing

• Some questions with checkpointing
– Is it application-level or system-level?

• Former is generally used; requires user intervention
(bad) but is much more lightweight and efficient (good)

– Is it coordinated (e.g., at barrier) or uncoordinated?
• Former is simpler to implement but has high overhead;

latter is more efficient but the implementation requires
more work (e.g., keeping message logs)

• Uncoordinated may allow checkpointing to be
overlapped with idle time, but also can have multiple
rollbacks (bad)

Why has Checkpointing been
dominant?

• Application state can be saved/restored much
more quickly than mean time to interrupt
(MTTI)

• Checkpointing has generally been only 10-
20% of total program execution time

• Non-crash system faults are rare
– E.g., per the paper you read, few memory errors
– Note: since publication of the paper you read, there

is more concern about memory (“soft”) errors

Why Checkpointing (may be)
Doomed at Exascale

• Paper claim: exascale socket counts likely to
be in the 100,000 range***
– MTTI for the system has been projected in the 3-

37 minute range
– Checkpoints themselves at this range might take

longer than this!
• And if they don’t, the checkpoint + restart might!

***This doesn’t seem to be happening, but this is still
interesting as newer systems with “fat nodes” will
likely fail more often, since any component can fail

Why Checkpointing (may be)
Doomed at Exascale

• Paper points out that even assuming optimistic
checkpoint time (15 mins) and MTTI (1 hour):
– System should checkpoint once every 27 minutes,

which means utilization below 50% (assumes
checkpoint time equals restart time)

• Unacceptable!

– Would require checkpoint time of 1 minute to
achieve > 80% utilization

• Here, utilization means % of the time computing

– Checkpointing preserves soft (e.g., memory) errors
• This is bad---it means that errors can persist on disk

Other Approaches
• High-speed storage

– E.g., Flash memory
– Main problems: expense and durability

• Expense has decreased a lot recently; exists on some systems

• Memory-based checkpointing
– Checkpoint to remote memory rather than disk
– Main problem: expense

• Create nodes with larger mean time between
failures (MTBF)
– Doesn’t really address the problem (and nodes are now

more significant, not less)

Different idea: Replication

• Simple idea: have a replica node for each
primary node
– In general, every node does not have to be

replicated, but we’ll assume full replication
• E.g., might know that certain nodes in the data center

are much more likely to fail (e.g., not near the A/C)

• Still need checkpoints, but can greatly
decrease frequency

Different idea: Replication

• Costs
– Full replication doubles hardware requirement,

or takes away half of the performance
immediately

• These are logically equivalent

– Maintaining replicas has overhead
• So, it’s actually slightly more than half of the

performance that’s lost

Different idea: Replication
• Benefits

– Increased MTTI
• All replicas must fail

– Reduced I/O requirement
• Spend less on I/O system

– Can potentially detect soft errors
• E.g., checksum memory regions
• Could be quite expensive, though

– Increased system flexibility
• Could, depending on application and number of

nodes, vary the actual number of nodes for replication

Model-Based Analysis
(courtesy of Ferreira et al.)

Shaded areas correspond to exascale socket counts

rMPI

• Implements replication within MPI
• Two possible protocols: mirrored and parallel

– Mirrored: every message is sent to primary and
replica

– Parallel: duplicate messages only sent when a rank
is down, and the remaining shadow rank “covers”

• Interesting implementation issues with
Mirrored protocol
– E.g., multiple messages with same tag from a rank

• Set high-order (unused) bit for redundant messages

Mirrored Protocol
(courtesy of Ferreira et al.)

Parallel Protocol
(courtesy of Ferreira et al.)

rMPI
• Problematic: need all replicas to receive from

the same rank on wildcard receives
(ANY_SOURCE)
– E.g., can’t have rank A receive ANY_SOURCE and

have that match rank B, while rank A’ receives
ANY_SOURCE and matches rank C

• Solution: Designate one node per pair the leader
– Replicas replace their wildcard receive with a

receive of metadata from the leader
– Leader sends who the matching sender was
– Replica then posts a non-wildcard receive from the

correct sender

Overhead of rMPI for LAMMPS
(courtesy of Ferreira et al.)

Simulations

• Needed to examine potential exascale
systems with large core counts

• Studied:
– Different socket MTBFs
– Different checkpoint rates
– Different failure distributions

Different Socket MTBFs
(courtesy of Ferreira et al.)

Shaded areas correspond to exascale socket MTBF

Different Checkpoint Rates
(courtesy of Ferreira et al.)

Shaded areas correspond to exascale socket MTBF

Different Failure Distributions

Shaded areas correspond to exascale socket counts

