
Parallel Programming Models

• Fundamental question: what is the “right” 
way to write parallel programs
– And deal with the complexity of finding 

parallelism, coarsening granularity, distributing 
computation and data, synchronizing, 
optimizing, etc.

• Oh, and we want to achieve high performance
• And make the program portable across different 

architectures



Parallel Programming Models
(from “Multithreaded, Parallel, and 

Distributed Programming” by Andrews)

MapReduce

UPC, Chapel, X10

OpenMP

MPI

Additional Models



OpenMP

• Add annotations to a sequential program, 
target is multicore machines
– Language independent---implementations exist 

in C, C++, Fortran
– Programmer does not add library calls (whereas 

the MPI programmer does add them)
• Programmer is still responsible for finding 

parallelism
– It’s just easier to use than pthreads

• Modern OpenMP supports GPUs as a target



Parallelizing with OpenMP
• Most common: parallel directive

– Can be a (1) parallel for loop or (2) task parallelism

int N = 100000; int i, a[N]; 
#pragma omp parallel for shared(a) private(i)

for (i = 0; i < N; i++) 
a[i] = 2 * i; 

• Implicit barrier at end of the for loop, unless “nowait” specified
• Number of threads can be specified by programmer, or the 

default will be chosen



Parallelizing with OpenMP
• Most common: parallel directive

– Can be a (1) parallel for loop or (2) task parallelism

#pragma omp parallel sections
{
#pragma omp parallel section
{

f();
}

#pragma omp parallel section
{

g();
} 

}



Parallelizing with OpenMP
• Other constructs: single, master

– indicate that one thread should perform a block 
• (former mandates a barrier, latter does not)



Parallelizing with OpenMP
• Data annotations

– shared: visible to all threads
– private: local to a thread

• For shared, OpenMP runtime system will 
promote the variable to the global scope 
(think: program 1)

• For private, OpenMP runtime system will push 
the variable definition into the thread code
– So that it’s on the thread’s private stack



Parallelizing with OpenMP
• Synchronization constructs

– critical: a critical section
– atomic: a one-statement critical section, possibly 

optimized (by an atomic instruction)
– barrier
– reduction: efficiently handles finding the sum, 

product, max, or min of a shared variable when 
many threads are updating the shared variable 

#pragma omp parallel for reduction(+:sum) 
for (i=0; i < n; i++) 

sum = sum + (a[i] * b[i]);



Parallelizing with OpenMP
• Loop scheduling

– static: equal sized chunk (parameter set by user) per thread
– dynamic: threads can get more work if they finish their 

assigned work (again, chunk is size of block of iterations 
assigned to threads)

• Chunk size must be sufficiently small; if, for example, there are p
threads and p chunks, dynamic is the same as static

– guided: threads get a successively smaller chunk each time 
they finish their work

• Goal: minimize overhead and eliminate tail-end load imbalance



Parallelizing with Cilk
• Supports efficiently recursive parallelism
• Classic recursive example is computing Fibonacci 

numbers (an idiotic implementation but a good example)
int fib(int n) {
if (n < 2)  return 1;
else {

x = fib(n-1); 
y = fib(n-2);
return x + y;

}
}



Parallelizing with Cilk
cilk int fib(int n) {
if (n < 2)  return 1;
else {

x = spawn fib(n-1); 
y = spawn fib(n-2);
sync;
return x + y;

}
}



Parallelizing with Cilk
• Extremely simple model

– Can quickly adapt sequential recursive programs
– But, can only adapt sequential recursive programs

• What does Cilk runtime system have to do?
– Quite a bit, actually
– Must deal with:

• Not creating too much parallelism
• Efficiently allowing work stealing to happen between processors to 

avoid load balancing



Parallelizing with Data Parallel 
Languages

• Example: HPF (High Performance Fortran)
• Idea: data parallel language, plus annotations that 

determine data distributions
– Step 3 in developing a parallel program

• If the compiler knows the data distribution, it is 
straightforward to distribute the work and determine 
where to insert communication
– If the rule is “owner computes”

• Challenge: 
– Figuring out the most efficient data distribution 

isn’t easy for the programmer



Example HPF code fragment
double A[N,N], B[N,N] {BLOCK, BLOCK}
…
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {

A[i][j] = 0.25 * (B[i][j+1] + B[i][j-1] + 
B[i+1][j] + B[i-1][j]);

…
}

}



HPF Compiler Analysis
• From number of processors and distribution 

annotations, determines what each processor owns
• Determines what can legally execute in parallel

– User could annotate here, conceptually

• Divides up iterations between processors based on data 
distribution annotations

• Determines necessary communication by looking at 
array references along with data owned; then, inserts 
that communication



Partitioned Global Address Space 
Languages

• Idea: “flat MPI” (one MPI process per core) is not 
sustainable for many-core machines
– Copying cost (even though MPI processes will commonly be 

on same machine)
– Memory overhead (what about boundary rows as number of 

MPI processes increases?)

• Possibilities to deal with this
– MPI + pthreads (your first programming assignment)

• In general, MPI + (some shared memory model)

– PGAS model



Partitioned Global Address Space Languages 
• Provides a global (shared) address space

– Any thread can access any data element, just as if one were on a 
multicore machine

– However, all data is either local or global (not hidden from programmer, 
unlike NUMA on a multicore machine)

• Specific PGAS example: UPC (others include Chapel and X10)
– Adds restriction that parallelism is SPMD, with owner-computes
– User writes a multithreaded program
– User can declare variables as private (the default) or shared (use shared 

as little as possible)---similar idea to OpenMP
– User can give shared variables a distribution, just as with HPF Leads to a 

hybrid shared/distributed programming model
• Sits in the middle between a multithreaded model and a message-passing 

model in terms of programming difficulty and efficiency



Example UPC code fragment

shared [*][*] double A[N,N], B[N,N]
…
upc_forall (i = 0; i < N; i++) {
upc_forall (j = 0; j < N; j++) {

A[i][j] = 0.25 * (B[i][j+1] + B[i][j-1] + 
B[i+1][j] + B[i-1][j]);

…
}

}



Parallelizing with Functional Languages

• It’s “easy”---the user does nothing but write the 
sequential program

• (Pure) functional languages do not have side effects
– As soon as the arguments are available to a function, the 

function can be executed
– A function can operate only on local data (again, assuming a 

pure functional language)
– Therefore, determining what executes in parallel is a trivial 

problem…but limiting the parallelism (i.e., coarsening 
granularity) becomes a problem (as in the Fibonacci 
example)

– Also, functional languages do not handle data distribution, 
communication, optimization



Parallelizing with Functional 
Languages

• One approach was a single-assignment language
– Note that functional languages are basically also single 

assignment

• Best known was SISAL, developed to be a competitor 
to Fortran in the 1980s

• Every variable can be written to at most once
– Can express as: x = old x, meaning that conceptually there is 

a new variable on the left-hand side (otherwise you would 
violate single assignment)



Parallelizing with Functional 
Languages

• Think about Jacobi; an array is a variable, so 
every assignment (in the inner loop!) is to a 
new entire array
– Compiler must determine when it can update in 

place.
double A[N,N] 
for (first sweep) {

A[i][j] = 0.25 * (old B[i][j+1] + old B[i][j-1] + 
old B[i+1][j] + old B[i-1][j]);

}
for (second sweep) {

B[i][j] = 0.25 * (old A[i][j+1] + old A[i][j-1] + 
old A[i+1][j] + old A[i-1][j]);

}



Parallelizing with Coordination 
Languages

• Best known example is Linda
• Not a language itself, but a set of primitives added to 

any language
– Similar to OpenMP in that sense, but here we use primitives 

and not pragmas

• Linda creates a tuple space
– Shared, associative memory
– Basically a shared communication channel

• Javaspaces is based on Linda
– Also, tuple spaces have been developed for Python and Ruby



Parallelizing with Coordination 
Languages

• Linda primitives
– OUT (similar to send)
– IN (similar to receive)
– RD (similar to a “peek”, which means view message but 

don’t receive it; no immediate analogy in MPI)
– EVAL (similar to fork)
– INP and RDP (nonblocking versions of IN and RD)



Parallelizing with Coordination 
Languages

• A tuple has the form (“tag”, value1, …, valueN)
• OUT therefore has the form

– OUT(“tag”, expr1, …, exprN)
– Means: put this tuple into the tuple space

• IN has the form
– IN(“tag”, field1, …, fieldN)
– Means: block until there is a matching tuple in the tuple space, 

and then remove the tuple from the tuple space, placing its 
values into the respective fields

– field1, …, fieldN must be an l-val, takes the form ?var
• EVAL takes a function to execute, like fork



Parallelizing with Coordination 
Languages

• Mostly used for “bag of tasks” paradigm
• Takes the following form: each process does…

Init: OUT(“task”, initX, initY, …)
while (not done) {

IN(“task”, ?x, ?y, …)
do work using x, y, …
if (need to create more work) {

OUT(“task”, x1, y1, …)
OUT(“task”, x2, y2, …)

}
}



Coordination Languages: 
Example (Adaptive Quadrature)
Init: OUT(“quad”, a, b)
while (RD(“quad”, ?x, ?y) {   // terminate in deadlock

IN(“quad”, ?a, ?b)
c = (a+b)/2
compute area of each half and area of whole
if (close)
localSum += area of whole

else {
OUT(“quad”, a, c)
OUT(“quad”, c, b)

}
}

This code is executed by each process
Finalization code: do a sum-reduction



Parallelizing with MapReduce
• Allows massive parallelization on large numbers of nodes
• Functional programming model

– Restricts application domain
– Map(f, nil) = nil
– Map(f, (cons(e, L)) = cons(f(e), Map(f, L))

• Map takes list as input, applies function to each element, 
and produces a list as output

– Reduce(f, z, nil) = z
– Reduce(f, z, cons(e, L)) = f(e, Reduce(f, z, L))

• Reduce takes a list as input and applies a function to the 
entire list, producing a value



Parallelizing with MapReduce

• Google’s MapReduce involves:
– First, applying a map function to each logical record 

in the input
• Produces a set of intermediate key/value pairs

– Then, applying a reduce function to all values that 
have a common key

• Critical that this is a functional model so there 
are no side effects
– Will become quite important in the implementation



MapReduce Example 
(dumb example!)

Map(String key, String value):
For each word w in value:

EmitIntermediate(w, “1”);

Reduce(String key, Iterator values):
Int result = 0;
For each v in values:

result += ParseInt(v);
Emit(AsString(result));



Other MapReduce Examples
• URL Access Frequency (same idea as WordCount)

– Map outputs <URL, 1> for each URL
– Reduce adds for same URL 

• Reverse Web-Link Graph
– Map outputs <target, source> for each link to a target 

URL found in source
– Reduce concatenates source URLs for each target

• Inverted Index
– Map outputs <word, documentID>
– Reduce outputs <word, list(documentID)>



MapReduce Implementation
(Picture from MapReduce paper [Dean and Ghemawat]) 



MapReduce Implementation

• Basic idea (for clusters of commodity machines):
– 1. Split input files into M chunks
– 2. Split reduce tasks into R pieces (hash on key)
– 3. Use Master/Worker paradigm; one master

• Master assigns M map tasks and R reduce tasks to workers

– 4. Workers doing a map task write key/value lists 
into different files per R piece

• If the key “indicates” the i'th reduce task, write to file "i".   
• Pass back this file info to master, who tells reduce tasks



MapReduce Implementation
– 5. Reduce worker grabs its data from all local disks, 

sorts, and reduces.  
• Sorting occurs because may be many keys assigned to each 

reduce task
• One call to user’s reduce function per unique key; 

parameter is list of all values for that key
• Appends output into final output file.

– 6. When everything done, wake up MapReduce call. 



Fault Tolerance with MapReduce

• Critical to handle fault tolerance because there 
will be thousands of machines involved
– Lessons learned from RAID

• Master keeps track of each map and reduce task
– Marks it as idle, in progress, or completed
– Master assumed to never fail (could checkpoint to 

alleviate this problem)



Fault Tolerance with MapReduce

• For workers:
– Ping periodically; if no response mark worker as 

“failed”;  mark worker’s task as idle
– Completed map tasks are re-executed because the 

worker’s local disk is assumed inaccessible
– Notify reduce tasks if a map task changes hands, so 

reduce tasks know where to read from



Fault Tolerance with MapReduce
• Fault tolerance is simple because MapReduce is a 

functional model
– Can have duplicate tasks, for example---no side effects

• Very important to removing tail-end load imbalance of 
reduce workers

– Depends on atomic commits of map and reduce task 
outputs

• Map task sends completion message after writing R files; 
includes names in message (to master)

• Reduce task writes to temp file, then renames to final output 
file---depends on atomic rename operation from file system 
in case many machines execute rename on same reduce task 



MapReduce “Optimizations”
• There are a host of these

– Many of them are completely obvious
• E.g., “Combiner function” to avoid sending large amounts 

of easily reducible data
• For WordCount, there will be many (“the”, 1) records; may 

as well just add them all up locally
• Also can “roll your own” partitioning function

– All “optimizations” affect only performance, not 
correctness



MapReduce Performance


