
Another reason to slow down 
CPU: leveraging load imbalance

• Best course is to keep load balanced
– Load balancing is hard
– Decrease frequency/voltage to save energy if 

not critical node

• How to tell if not critical node?
– Assume global synchronization (e.g., barrier) 

occurs after each program iteration
• No benefit to arriving early

– Measure blocking time
– Assume program behavior (mostly) the same 

between iterations



performance = (t-slack)/t

Example

performance = 1

synch pt synch pt
predicted
synch pt

iteration k iteration k+1

Reduced performance & power
à Energy savings

slack predicted t



Measuring slack
• Measure blocking operations by intercepting 

MPI calls
– Receive
– Wait
– Barrier

• Compute slack over one or more iterations 
– Measure times for computing and blocking phases

• T= C1 + B1 + C2 + B2 + …+ Cn + Bn

– Determine aggregate slack
• S = (B1+B2+…+Bn)/T



Per-node slack 

• Slack
– Varies between nodes
– Varies between applications

• Use net slack
– Each node individually 

determines slack
– Reduction to find min slack
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Stage 2: don’t increase execution 
time

• HPC application programmers do not care 
about saving energy
– If you can save energy with no increase in 

execution time, great!
– Otherwise, go away: they won’t think a tradeoff 

of, say, 20% energy savings for a 1% time 
increase is a good thing



Overall approach
• Divide the application into discrete “tasks”
• Create a task graph to represent execution 

behavior
• Execute the tasks on a process at every 

frequency
• Use linear programming to determine frequency 

per task
– Constraint: do not slow down program

• Validate by re-running application, using 
schedule



Program execution time

…

• Determined by critical path (you know this!)
– Tasks not on critical path are (potentially) scalable

• Running slower may not impact execution time

Tasks on critical path
must execute at the fastest 
frequency



Program execution time

…

• Determined by critical path
– Tasks not on critical path are (potentially) scalable

• Running slower may not impact execution time

Tasks not on the critical 
path can stretch to fill in the 
time between processes on 
the critical path



Task Precedence Constraint (1)

…

Task Cannot Start 
Until Same-Process 
Predecessor Done



Task Precedence Constraint (2)

…

Task Cannot Start 
Until Cross-Process 
Predecessor Done
(Plus Message Latency)



Application Timing Constraint

…

Sink Vertex Must
Complete Within 
Original Execution Time



Objective Function

…

Minimize Sum of Tasks’ Energy
Plus “Idle Energy” 



Adagio: Converting the theoretical 
to the practical

Process 0

High CPU
Frequency
Computation

Low CPU
Frequency
Computation

Blocking Communication

Time



Another picture of tasks

Begins at end of
previous MPI call

Ends at beginning
of following MPI call Send

Barrier

Barrier

Process 0 Process 1

Recv



Assumptions
Iterative code

Per core DVFS

Send

Barrier

Barrier

Processor 0 Processor 1

Recv



Send

Barrier

Processor 0 Processor 1

Critical Path Approximation

1. Identify Tasks off the critical 
path--blocking

Recv

Barrier

Critical Path

If task does not block, assume on critical path



Send

Barrier

Processor 0 Processor 1

Critical Path

Critical Path Approximation
1. Identify Tasks off the critical 
path--blocking

2. On following iteration, slow 
off-critical path to 
(approximately) meet critical path

Recv

Barrier



Send

Barrier

Processor 0 Processor 1

Critical Path

Critical Path Approximation
1. Identify Tasks off the critical 
path--blocking

2. On following iteration, slow 
off-critical path to 
(approximately) meet critical path

3. Slow remaining 
communication

Recv

Barrier



Experiments

• 16-node, dual socket, dual-core Opteron
265s
– Single core per socket used
– 1.0-1.8 GHz in steps of 0.2 GHz
– Power measurements taken from wall socket
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Current Issue: Power a Problem at Exascale

• DOE originally stated that 20 MW is the 
limit for Exascale
– Now appears to be 40 MW

• Unlimited power, though, is not tenable



Stage 3: Power-Constrained HPC
• Traditional (wrong) thinking: it’s a 

power/energy/delay problem
– Derive metrics (and argue about them)
– Energy-delay, Energy-delay-squared, etc
– Save as much energy as possible subject to a fixed delay

• Alternative (correct) thinking: it’s a performance 
problem
– Limited power into the HPC facility
– Machine peak power > HPC facility power
– So have a power budget for the machine and thus per application
– Goal: Maximize  performance subject to the power budget



Therefore: Manage Machine Resources
• Direct power to where it’s most useful

• How do we manage these resources in a holistic manner?
– Requires fine-grain control, models, and system software

Note: possible to run a given node hotter if we run another node cooler

Hypothetical Future Machine: Max < 330W (* 10,000?)

Cores: 10W-50W

DRAM: 15W-30W

Cache: 5W-10W

GPU: 100W-200W

FPGA: 20W-30W

Disk: 5W-10W

Total: 155W-330 W



Fine-Grain Control on Modern Machines: Power 
Measurement and Power Capping

• Power measurement: cores, DRAM
• Limit power to a node and its components

– Example: Node allocated 200 watts, and 
user/runtime/OS directs 150 to the sockets/cores, 
40 to the DRAM, and 10 to everything else

• Also, possibly dynamic over the program run


