
Another reason to slow down
CPU: leveraging load imbalance

• Best course is to keep load balanced
– Load balancing is hard
– Decrease frequency/voltage to save energy if

not critical node

• How to tell if not critical node?
– Assume global synchronization (e.g., barrier)

occurs after each program iteration
• No benefit to arriving early

– Measure blocking time
– Assume program behavior (mostly) the same

between iterations

performance = (t-slack)/t

Example

performance = 1

synch pt synch pt
predicted
synch pt

iteration k iteration k+1

Reduced performance & power
à Energy savings

slack predicted t

Measuring slack
• Measure blocking operations by intercepting

MPI calls
– Receive
– Wait
– Barrier

• Compute slack over one or more iterations
– Measure times for computing and blocking phases

• T= C1 + B1 + C2 + B2 + …+ Cn + Bn

– Determine aggregate slack
• S = (B1+B2+…+Bn)/T

Per-node slack

• Slack
– Varies between nodes
– Varies between applications

• Use net slack
– Each node individually

determines slack
– Reduction to find min slack

Aztec Sweep3d CG

C
om

m
un

ic
at

io
n

sl
ac

k

Aztec frequencies

Results
A
zt
ec

Sw
ee
p3
d

Stage 2: don’t increase execution
time

• HPC application programmers do not care
about saving energy
– If you can save energy with no increase in

execution time, great!
– Otherwise, go away: they won’t think a tradeoff

of, say, 20% energy savings for a 1% time
increase is a good thing

Overall approach
• Divide the application into discrete “tasks”
• Create a task graph to represent execution

behavior
• Execute the tasks on a process at every

frequency
• Use linear programming to determine frequency

per task
– Constraint: do not slow down program

• Validate by re-running application, using
schedule

Program execution time

…

• Determined by critical path (you know this!)
– Tasks not on critical path are (potentially) scalable

• Running slower may not impact execution time

Tasks on critical path
must execute at the fastest
frequency

Program execution time

…

• Determined by critical path
– Tasks not on critical path are (potentially) scalable

• Running slower may not impact execution time

Tasks not on the critical
path can stretch to fill in the
time between processes on
the critical path

Task Precedence Constraint (1)

…

Task Cannot Start
Until Same-Process
Predecessor Done

Task Precedence Constraint (2)

…

Task Cannot Start
Until Cross-Process
Predecessor Done
(Plus Message Latency)

Application Timing Constraint

…

Sink Vertex Must
Complete Within
Original Execution Time

Objective Function

…

Minimize Sum of Tasks’ Energy
Plus “Idle Energy”

Adagio: Converting the theoretical
to the practical

Process 0

High CPU
Frequency
Computation

Low CPU
Frequency
Computation

Blocking Communication

Time

Another picture of tasks

Begins at end of
previous MPI call

Ends at beginning
of following MPI call Send

Barrier

Barrier

Process 0 Process 1

Recv

Assumptions
Iterative code

Per core DVFS

Send

Barrier

Barrier

Processor 0 Processor 1

Recv

Send

Barrier

Processor 0 Processor 1

Critical Path Approximation

1. Identify Tasks off the critical
path--blocking

Recv

Barrier

Critical Path

If task does not block, assume on critical path

Send

Barrier

Processor 0 Processor 1

Critical Path

Critical Path Approximation
1. Identify Tasks off the critical
path--blocking

2. On following iteration, slow
off-critical path to
(approximately) meet critical path

Recv

Barrier

Send

Barrier

Processor 0 Processor 1

Critical Path

Critical Path Approximation
1. Identify Tasks off the critical
path--blocking

2. On following iteration, slow
off-critical path to
(approximately) meet critical path

3. Slow remaining
communication

Recv

Barrier

Experiments

• 16-node, dual socket, dual-core Opteron
265s
– Single core per socket used
– 1.0-1.8 GHz in steps of 0.2 GHz
– Power measurements taken from wall socket

Freeh ‘05 Ge ‘07

Current Issue: Power a Problem at Exascale

• DOE originally stated that 20 MW is the
limit for Exascale
– Now appears to be 40 MW

• Unlimited power, though, is not tenable

Stage 3: Power-Constrained HPC
• Traditional (wrong) thinking: it’s a

power/energy/delay problem
– Derive metrics (and argue about them)
– Energy-delay, Energy-delay-squared, etc
– Save as much energy as possible subject to a fixed delay

• Alternative (correct) thinking: it’s a performance
problem
– Limited power into the HPC facility
– Machine peak power > HPC facility power
– So have a power budget for the machine and thus per application
– Goal: Maximize performance subject to the power budget

Therefore: Manage Machine Resources
• Direct power to where it’s most useful

• How do we manage these resources in a holistic manner?
– Requires fine-grain control, models, and system software

Note: possible to run a given node hotter if we run another node cooler

Hypothetical Future Machine: Max < 330W (* 10,000?)

Cores: 10W-50W

DRAM: 15W-30W

Cache: 5W-10W

GPU: 100W-200W

FPGA: 20W-30W

Disk: 5W-10W

Total: 155W-330 W

Fine-Grain Control on Modern Machines: Power
Measurement and Power Capping

• Power measurement: cores, DRAM
• Limit power to a node and its components

– Example: Node allocated 200 watts, and
user/runtime/OS directs 150 to the sockets/cores,
40 to the DRAM, and 10 to everything else

• Also, possibly dynamic over the program run

