Power and Energy 1in High-
Performance Computing

* A similar story as with resilience

— Exascale systems will have extremely large
numbers of cores

— Power limit for exascale system 1s
(approximately) 20 Megawatts

— Today’s petascale (roughly, 10-30 PF) consume
slightly less than 10 MW

— So, “all” we need to do 1s improve performance
by a factor of 100 while restricting power
increase to a power of 2



Taking a step back 1n time...

* Interest in power and energy (mostly energy)
started 1n the mobile computing community
— Late 1990s
— Focused on battery life

— Mobile computing has a huge market (unlike
HPC, which 1s in many ways a niche market)



DVES

 First major feature for saving power and
energy was dynamic voltage and frequency
scaling (DVES)
— Execute program at lower frequency/voltage
— Idea existed in a sense much earlier (overclocking)

— Power can be greatly reduced via DVFS

» Idea was that users of mobile devices rarely
use the processor to 1ts full capacity
— Think about what you do on your laptop

* Memory bound activities
* Network bound activities



. . ower oC frequency x voltage?
DVES, pictorially — - "

power

* Reduce frequency & voltage

— Reduces CPU power & performance . frequency

— Energy-time tradeoff

 Why is this a good 1dea?
— Applications may not be CPU-bound

application throughput

— CPU 1s large power consumer

frequency



Three stages 1n the evolution of high-
performance, power-aware computing

1. Lower energy-delay product of HPC jobs

— 1.e., some time delay 1s acceptable for lower
energy

2. Lower energy without a time increase

3. Optimize performance under a fixed power
budget



Stage 1: Lower Energy of HPC
Jobs

* Coincided with desire to reduce energy in
society

* Observation: parallel programs are inefficient

— Recall: Parallel efficiency i1s the ratio of speedup
to the number of cores

— Parallel efficiency falls in range (0,1); 1 1s best

— Gordon Bell prize given at Supercomputing
conference each year for top performing HPC app

» Typically, the parallel efficiency of winner 1s between
50% and 80%---and that’s the winner!



What does poor parallel
efficiency mean?

* Reasons why parallel efficiency 1s poor:
— Communication/synchronization
— Load imbalance

— Purely sequential phases

* So, why should we run fast?

— Essentially, blocking communication is an

opportunity to use DVFES to lower CPU speed and
therefore CPU power (and therefore energy)

* Goal: save a lot of energy and increase
execution time only slightly (if at all)



Other reason to slow down CPU

* Memory bottleneck

— If program 1s spending a lot of time accessing
memory, the CPU speed 1s (relatively) 1rrelevant

— Another opportunity to save energy with only a
modest increase in execution time

— Note: not all cache levels run at chip speed
T(fr) - (Tcpu * fbase/ fr) T Tmem

— 11,4 18 top frequency; f.1s reduced frequency

— Tepy (Tipem) 18 time spent in CPU (memory) ops

— Unfortunately, determining T, and T, 1s not
simple (depends on hardware and program)



How does change in frequency on a
core affect execution time?

* Complex: depends on mix of instructions
— Memory bound vs CPU bound (or 1n the middle)
* Many have studied this problem

— Mostly architects: create new architectural features
that allow for a more accurate prediction



How might we decide what’s
g00d?

 It’s a two-dimensional problem: energy and
time

* Many (bad) metrics for evaluation discussed
— Energy * Delay
— Energy * Delay?
— Really, 1t depends on who you ask
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Is DVFS a win?
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Some results
e Cluster used: 10 nodes, AMD Athlon-64

— Processor supports 7 frequency-voltage settings

Frequency (MHz) 2000 1800 1600 1400 1200 1000 800
Voltage (V) 1.5 14 135 13 12 1.1 1.0

* Measure
— Wall clock time (gettimeofday system call)
— Energy (external power meter)



NAS Composite Results (1 node)
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Energy (kJ)
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Energy (kJ)
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Energy Consumption (KJ)
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Energy Consumption (KJ)
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