Power and Energy 1in High-
Performance Computing

* A similar story as with resilience

— Exascale systems will have extremely large
numbers of cores

— Power limit for exascale system 1s
(approximately) 20 Megawatts

— Today’s petascale (roughly, 10-30 PF) consume
slightly less than 10 MW

— So, “all” we need to do 1s improve performance
by a factor of 100 while restricting power
increase to a power of 2

Taking a step back 1n time...

* Interest in power and energy (mostly energy)
started 1n the mobile computing community
— Late 1990s
— Focused on battery life

— Mobile computing has a huge market (unlike
HPC, which 1s in many ways a niche market)

DVES

 First major feature for saving power and
energy was dynamic voltage and frequency
scaling (DVES)
— Execute program at lower frequency/voltage
— Idea existed in a sense much earlier (overclocking)

— Power can be greatly reduced via DVFS

» Idea was that users of mobile devices rarely
use the processor to 1ts full capacity
— Think about what you do on your laptop

* Memory bound activities
* Network bound activities

. . ower oC frequency x voltage?
DVES, pictorially — - "

power

* Reduce frequency & voltage

— Reduces CPU power & performance . frequency

— Energy-time tradeoff

 Why is this a good 1dea?
— Applications may not be CPU-bound

application throughput

— CPU 1s large power consumer

frequency

Three stages 1n the evolution of high-
performance, power-aware computing

1. Lower energy-delay product of HPC jobs

— 1.e., some time delay 1s acceptable for lower
energy

2. Lower energy without a time increase

3. Optimize performance under a fixed power
budget

Stage 1: Lower Energy of HPC
Jobs

* Coincided with desire to reduce energy in
society

* Observation: parallel programs are inefficient

— Recall: Parallel efficiency i1s the ratio of speedup
to the number of cores

— Parallel efficiency falls in range (0,1); 1 1s best

— Gordon Bell prize given at Supercomputing
conference each year for top performing HPC app

» Typically, the parallel efficiency of winner 1s between
50% and 80%---and that’s the winner!

What does poor parallel
efficiency mean?

* Reasons why parallel efficiency 1s poor:
— Communication/synchronization
— Load imbalance

— Purely sequential phases

* So, why should we run fast?

— Essentially, blocking communication is an

opportunity to use DVFES to lower CPU speed and
therefore CPU power (and therefore energy)

* Goal: save a lot of energy and increase
execution time only slightly (if at all)

Other reason to slow down CPU

* Memory bottleneck

— If program 1s spending a lot of time accessing
memory, the CPU speed 1s (relatively) 1rrelevant

— Another opportunity to save energy with only a
modest increase in execution time

— Note: not all cache levels run at chip speed
T(fr) - (Tcpu * fbase/ fr) T Tmem

— 11,4 18 top frequency; f.1s reduced frequency

— Tepy (Tipem) 18 time spent in CPU (memory) ops

— Unfortunately, determining T, and T, 1s not
simple (depends on hardware and program)

How does change in frequency on a
core affect execution time?

* Complex: depends on mix of instructions
— Memory bound vs CPU bound (or 1n the middle)
* Many have studied this problem

— Mostly architects: create new architectural features
that allow for a more accurate prediction

How might we decide what’s
g00d?

 It’s a two-dimensional problem: energy and
time

* Many (bad) metrics for evaluation discussed
— Energy * Delay
— Energy * Delay?
— Really, 1t depends on who you ask

power

Is DVFS a win?

%

full

time

v

Is DVFS a win?

benefit

T

e

‘ T T+AT ‘

time

full reduced

Some results
e Cluster used: 10 nodes, AMD Athlon-64

— Processor supports 7 frequency-voltage settings

Frequency (MHz) 2000 1800 1600 1400 1200 1000 800
Voltage (V) 1.5 14 135 13 12 1.1 1.0

* Measure
— Wall clock time (gettimeofday system call)
— Energy (external power meter)

NAS Composite Results (1 node)

2 -
1.8
1.6
1.4 F
1.2

1 k-
0.8
06
0.4

2000 1800 1600 1400 1200 1000 800
Speed (MHz)

time —I— enerqy .)(. power - *

Energy (kJ)

CG —1 node

60000 , ' 1 1 r ' ,
2000MHz
50000 ROOMEy T
40000 ¢ T: +1% —]
E: -17%

30000

20000 f Not CPU bound: i
Little time penalty
eLarge energy savings

10000 t]

0

0 100 200 300 400 500 600 700 800
Time (secs)

Energy (kJ)

50000

45000 r
40000 r
35000
30000 f
25000 f
20000 f
15000 |
10000 t
5000

0

EP — 1 node

I 1 1 1 I I I

T: +11%
E: -3%

CPU bound:
*Big time penalty
*No (little) energy savings

—

R

0

100 200 300 400 500 600 700 800

Time (secs)

Energy (kJ)

Energy (J)

60000

50000 r

40000

30000 r

20000 r

10000 |

0

120000

100000

80000

60000

40000

20000

Operations per

T T T

CG: 24

0

100 200 300 400 500
Time (secs)

600 700 800

BT: 1293

1 1 1 1 1

250 500 750 1000 1250
Time (secs)

1500 1750 2000

Energy (J)

Energy (kJ)

140000

120000

100000

80000

60000

40000

20000

0

50000

45000 |
40000 f
35000 |
30000 f
25000 r
20000 f
15000
10000

5000

0

memory accCess

SP: 409
0 250 500 750 1000 1250 1500 1750 2000
Time (secs)
EP: 8304
0 100 200 300 400 500 600 700 800

Time (secs)

Energy Consumption (KJ)

70

60

50

40

30

20

10

Multiple nodes — EP

d »n !
Ss=79 |/ rd |
..-E’ ".-” Q,-:cr"”.m-w _
%ﬂ "."' M“%”wy‘ﬂf ‘\/
S4=4.0 Y
Perfect speedup:
E constant
as N increases
E=1.02 :
1 node ——
2 nodes ---- -]
4 nOdeS Woonen
! i . 8 nodes Sl

50 100 150 200 250 300 350 400
Execution time (s)

Energy Consumption (KJ)

250

200

150

100

50

M Si=53 1_6 nodes — LU

Es=1.16
1.6 GHz
RS : . ;
Sg=5.8 o X e
Fs=128 | [s4=33 S I
Bam LS Good speedup:
E-T tradeoff
as N increases
2 nodes -
4 nOdeS Weovrne
1] i 8 ﬂOdeSl """""" Py
200 400 600 800 1000

Execution time (s)

