
Power and Energy in High-
Performance Computing

• A similar story as with resilience
– Exascale systems will have extremely large

numbers of cores
– Power limit for exascale system is

(approximately) 20 Megawatts
– Today’s petascale (roughly, 10-30 PF) consume

slightly less than 10 MW
– So, “all” we need to do is improve performance

by a factor of 100 while restricting power
increase to a power of 2

Taking a step back in time…

• Interest in power and energy (mostly energy)
started in the mobile computing community
– Late 1990s
– Focused on battery life
– Mobile computing has a huge market (unlike

HPC, which is in many ways a niche market)

DVFS
• First major feature for saving power and

energy was dynamic voltage and frequency
scaling (DVFS)
– Execute program at lower frequency/voltage
– Idea existed in a sense much earlier (overclocking)
– Power can be greatly reduced via DVFS

• Idea was that users of mobile devices rarely
use the processor to its full capacity
– Think about what you do on your laptop

• Memory bound activities
• Network bound activities

DVFS, pictorially

• Reduce frequency & voltage
– Reduces CPU power & performance
– Energy-time tradeoff

• Why is this a good idea?
– Applications may not be CPU-bound
– CPU is large power consumer

power µ frequency x voltage2

frequency

po
w

er
ap

pl
ic

at
io

n
th

ro
ug

hp
ut

frequency

Three stages in the evolution of high-
performance, power-aware computing
1. Lower energy-delay product of HPC jobs

– i.e., some time delay is acceptable for lower
energy

2. Lower energy without a time increase
3. Optimize performance under a fixed power

budget

Stage 1: Lower Energy of HPC
Jobs

• Coincided with desire to reduce energy in
society

• Observation: parallel programs are inefficient
– Recall: Parallel efficiency is the ratio of speedup

to the number of cores
– Parallel efficiency falls in range (0,1); 1 is best
– Gordon Bell prize given at Supercomputing

conference each year for top performing HPC app
• Typically, the parallel efficiency of winner is between

50% and 80%---and that’s the winner!

What does poor parallel
efficiency mean?

• Reasons why parallel efficiency is poor:
– Communication/synchronization
– Load imbalance
– Purely sequential phases

• So, why should we run fast?
– Essentially, blocking communication is an

opportunity to use DVFS to lower CPU speed and
therefore CPU power (and therefore energy)

• Goal: save a lot of energy and increase
execution time only slightly (if at all)

Other reason to slow down CPU
• Memory bottleneck

– If program is spending a lot of time accessing
memory, the CPU speed is (relatively) irrelevant

– Another opportunity to save energy with only a
modest increase in execution time

– Note: not all cache levels run at chip speed
T(fr) = (Tcpu * fbase/fr) + Tmem

– fbase is top frequency; fr is reduced frequency
– Tcpu (Tmem) is time spent in CPU (memory) ops
– Unfortunately, determining Tcpu and Tmem is not

simple (depends on hardware and program)

How does change in frequency on a
core affect execution time?

• Complex: depends on mix of instructions
– Memory bound vs CPU bound (or in the middle)

• Many have studied this problem
– Mostly architects: create new architectural features

that allow for a more accurate prediction

How might we decide what’s
good?

• It’s a two-dimensional problem: energy and
time

• Many (bad) metrics for evaluation discussed
– Energy * Delay
– Energy * Delay2

– Really, it depends on who you ask

Is DVFS a win?

T
time

power

Eother

ECPU

Pother

PCPU

Psystem

full

Is DVFS a win?

T
time

power

Eother

ECPU

T+DT

Pother

PCPU

Psystem

full

Pother

PCPU

Psystem

reduced

benefit

cost

Some results
• Cluster used: 10 nodes, AMD Athlon-64

– Processor supports 7 frequency-voltage settings
Frequency (MHz) 2000 1800 1600 1400 1200 1000 800
Voltage (V) 1.5 1.4 1.35 1.3 1.2 1.1 1.0

• Measure
– Wall clock time (gettimeofday system call)
– Energy (external power meter)

NAS Composite Results (1 node)

CG – 1 node

Not CPU bound:
•Little time penalty
•Large energy savings

T: +1%
E: -17%

2000MHz

800MHz

EP – 1 node

CPU bound:
•Big time penalty
•No (little) energy savings

T: +11%
E: -3%

CG: 24

EP: 8304

SP: 409

BT: 1293

Operations per memory access

Multiple nodes – EP

S2 = 2.0S4 = 4.0

S8 = 7.9

Perfect speedup:
E constant
as N increases

E = 1.02

Multiple nodes – LU

S2 = 1.9
E2 = 1.03

S4 = 3.3
E4 = 1.15

S8 = 5.8
E8 = 1.28

Good speedup:
E-T tradeoff
as N increases

S8 = 5.3
E8 = 1.16
1.6 GHz

