
Parallelizing Programs

• Goal: speed up programs using multiple 
processors/cores



(Sequential) Matrix Multiplication

double A[n][n], B[n][n], C[n][n]  // assume n x n
for i = 0 to n-1

for j = 0 to n-1
double sum = 0.0
for k = 0 to n-1

sum += A[i][k] * B[k][j]
C[i][j] = sum

Question: how can this program be parallelized?



Steps to parallelization

• First: find parallelism
– Concerned about what can legally execute in 

parallel
– At this stage, expose as much parallelism as 

possible
– Partitioning can be based on data structures or 

by function

Note: other steps are architecture dependent



Finding Parallelism in Matrix 
Multiplication

• Can we parallelize the inner loop?



Finding Parallelism in Matrix 
Multiplication

• Can we parallelize the inner loop?
– No, because sum would be written concurrently



Finding Parallelism in Matrix 
Multiplication

• Can we parallelize the inner loop?
– No, because sum would be written concurrently

• Can we parallelize the outer loops?



Finding Parallelism in Matrix 
Multiplication

• Can we parallelize the inner loop?
– No, because sum would be written concurrently

• Can we parallelize the outer loops?
– Yes, because the read and write sets are 

independent for each iteration (i,j)
• Read set for process (i,j) is sum, A[i][k=0:n-1], 

B[k=0:n-1][j]
• Write set for process (i,j) is sum, C[i][j]

– Note: we have the option to parallelize just one 
of these loops



Terminology
• co statement: creates parallelism

co i := 0 to n-1
Body

oc
• Meaning: n instances of body are created 

and executed concurrently until the end of 
the co (i.e., at the oc)

• Implementation: fork n threads, join them at 
the oc

Need to understand what processes/threads are!



Processes 

• History: OS had to coordinate many 
activities
– Example: deal with multiple users (each 

running multiple programs), incoming network 
data, I/O interrupts

• Solution: Define a model that makes 
complexity easier to manage
– Process (thread) model



What’s a process?

• Informally: program in execution
• Process encapsulates a physical processor 

– everything needed to run a program
• code (“text”)
• registers (PC, SP, general purpose)
• stack
• data (global variables or dynamically allocated)
• files

• NOTE: a process is sequential



Examples of Processes

• Shell: creates a process to execute 
command
lectura:> ls foo
(shell creates process that executes “ls”)
lectura:> ls foo &  cat bar & more
(shell creates three processes, one per command)

• OS: creates a process to manage printer
– process executes code such as:

wait for data to come into system buffer
move data to printer buffer



Creating a Process

• Must somehow specify code, data, files, stack, 
registers

• Ex: UNIX
– Use the fork( ) system call to create a process
– Makes an exact duplicate of the current process

• (returns 0 to indicate child process)

– Typically exec( ) is run on the child

We will not be doing this (systems programming)



Example of Three Processes

code for ‘ls’
data

files

stack
registers

code for ‘cat’
data

files

code for more
data

files

Process 0 Process 1 Process 2

OS switches between the three processes (“multiprogramming”)

stack
registers

stack
registers



Review: Run-time Stack
A(int x) {

int y = x;
if (x == 0) return;
else return A(y-1) + 1;

}
B( ) {

int z;
A(1);

} z

y (1)
x (1)

y (0)
x (0)



Decomposing a Process

• Process: everything needed to run a 
program

• Consists of:
– Thread(s)
– Address space



Thread

• Sequential stream of execution
• More concretely:

– program counter (PC)
– register set
– stack

• Sometimes called lightweight process 



Address Space

• Consists of:
– code
– data
– open files

• Address space can have > 1 thread
– threads share code, data, files
– threads have separate stacks, register set



One Thread, One Address Space

code
data

files

address space

main thread
(stack,
registers)



Many Threads, One Address 
Space

code
data

files

thread 0
thread 1
thread 2
thread 3
thread 4
thread 5

address space

each thread:
stack, regs

main thread



Thread States

• Ready
– eligible to run, but another thread is running

• Running
– using CPU 

• Blocked
– waiting for something to happen



Thread State Graph

Ready

Blocked

Running

Scheduled

Pre-empted (timer)

I/O event or wait for thread
I/O complete
or thread we 
were waiting
for is done



Scheduler

• Decides which thread to run
– (from ready list only)

• Chooses from some algorithm
• From our point of view, the scheduler is 

something we cannot control
– We have no idea which thread will be run, and 

our programs must not depend on execution 
order of two ready threads



Context Switching

• Switching between 2 threads
– change PC to current instruction of new thread

• might need to restart old thread in the future
– must save exact state of first thread 

• What must be saved?
– registers (including PC and SP)
– what about stack itself?



Multiple Threads, One Machine
(Single Core)

Machine

PC
SP
R1
R2

Address Space

Code Data Files

Thread 1 Thread 2

PC, SP, R1, R2

Stack Stack

PC, SP, R1, R2

Initial State 
(nothing running)
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Why Save Registers?

• code for Thread 0
foo( )

x := x+1
x := x*2

Assembly code:
R1 := R1 + 1  /* !! */
R1 := R1 * 2

Suppose context switch 
occurs after line “!!”

• code for Thread 1
bar( )

y := y+2
y := y-3

Assembly code:
R1 := R1 + 2
R1 := R1 - 3



Matrix Multiplication, n2 threads

double A[n][n], B[n][n], C[n][n]  // assume n x n
co i = 0 to n-1  {

co j = 0 to n-1  {
double sum = 0.0
for k = 0 to n-1

sum += A[i][k] * B[k][j]
C[i][j] = sum

}
}

We already argued the two outer 
“for” loops were parallelizable



Steps to parallelization

• Second: control granularity
– Must trade off advantages/disadvantages of 

fine-granularity
• Advantages: better load balancing, better scalability
• Disadvantages: process/thread overhead and 

communication
– Combine small processes into larger ones to 

coarsen granularity
• Try to keep the load balanced



Matrix Multiplication, n threads

double A[n][n], B[n][n], C[n][n]  // assume n x n
co i = 0 to n-1  {

for j = 0 to n-1  {
double sum = 0.0
for k = 0 to n-1

sum += A[i][k] * B[k][j]
C[i][j] = sum

}
}

This is plenty of parallelization
if the number of cores is <= n



Matrix Multiplication, p threads
double A[n][n], B[n][n], C[n][n]  // assume n x n
co t = 0 to p-1 {

startrow = t * n / p; endrow = (t+1) * n/p - 1

for i = startrow to endrow
for j = 0 to n-1 {
double sum = 0.0
for k = 0 to n-1
sum += A[i][k] * B[k][j]

C[i][j] = sum
}

}



Steps to parallelization

• Third: distribute computation and data
– Assign which processor does which 

computation
• The co statement does not do this

– If memory is distributed, decide which 
processor stores which data (why is this?)

• Data can be replicated also
– Goals: minimize communication and balance 

the computational workload
• Often conflicting goals



Steps to parallelization
• Fourth: synchronize and/or communicate

– If shared-memory machine, synchronize
• Both mutual exclusion and sequence control
• Locks, semaphores, condition variables, barriers, 

reductions

– If distributed-memory machine, communicate
• Message passing
• Usually communication involves implicit 

synchronization



Parallel Matrix Multiplication---
Distributed-Memory Version

process worker [i = 0 to p-1] {
double A[n][n], B[n][n], C[n][n]  // wasting space!
startrow = i * n / p; endrow = (i+1) * n/p – 1
if (i == 0)  {

for j = 1 to p-1 {
sr= j * n / p; er = (j+1) * n/p – 1
send A[sr:er][0:n-1], B[0:n-1][0:n-1] to process j

}
else

receive A[startrow:endrow][0:n-1], B[0:n-1][0:n-1] from 0



Parallel Matrix Multiplication---
Distributed-Memory Version

for i = startrow to endrow
for j = 0 to n-1 {
double sum = 0.0
for k = 0 to n-1
sum += A[i][k] * B[k][j]

C[i][j] = sum
}

// here, need to send my piece back to master
// how do we do this?

}  // end of process statement



Adaptive Quadrature: 
Recursive Sequential Program

double f() {
....

}
double area(a, b)
c := (a+b)/2
compute area of each half and area of whole
if (close)
return area of whole

else
return area(a,c) + area (c,b)



Adaptive Quadrature: 
Recursive Parallel Program

double f() {
....

}
double area(a, b)
c := (a+b)/2
compute area of each half and area of whole
if (close)

return area of whole
else

co leftArea = area(a,c)  // rightArea = area (c,b) oc
return leftArea + rightArea



Challenge with Adaptive 
Quadrature

• For efficiency, must control granularity (step 2)
– Without such control, granularity will be too fine
– Can stop thread creation after “enough” threads 

created
• Hard in general, as do not want cores idle either

– Thread implementation can perform work stealing
• Idle cores take a thread and execute that thread, but care 

must be taken to avoid synchronization problems and/or 
efficiency problems



Steps to parallelization
• Fifth: assign processors to tasks (only if using 

task and data parallelism)
– Must also know dependencies between tasks
– Usually task parallelism used if limits of data 

parallelism are reached



Steps to parallelization
• Sixth: parallelism-specific optimizations 

– Examples: message aggregation, overlapping 
communication with computation



Steps to parallelization
• Seventh: acceleration

– Find parts of code that can run on GPU/Xeon 
Phi/etc., and optimize those parts

– Difficult and time consuming
• But may be quite worth it


