
Parallelizing Programs

• Goal: speed up programs using multiple
processors/cores

(Sequential) Matrix Multiplication

double A[n][n], B[n][n], C[n][n] // assume n x n
for i = 0 to n-1

for j = 0 to n-1
double sum = 0.0
for k = 0 to n-1

sum += A[i][k] * B[k][j]
C[i][j] = sum

Question: how can this program be parallelized?

Steps to parallelization

• First: find parallelism
– Concerned about what can legally execute in

parallel
– At this stage, expose as much parallelism as

possible
– Partitioning can be based on data structures or

by function

Note: other steps are architecture dependent

Finding Parallelism in Matrix
Multiplication

• Can we parallelize the inner loop?

Finding Parallelism in Matrix
Multiplication

• Can we parallelize the inner loop?
– No, because sum would be written concurrently

Finding Parallelism in Matrix
Multiplication

• Can we parallelize the inner loop?
– No, because sum would be written concurrently

• Can we parallelize the outer loops?

Finding Parallelism in Matrix
Multiplication

• Can we parallelize the inner loop?
– No, because sum would be written concurrently

• Can we parallelize the outer loops?
– Yes, because the read and write sets are

independent for each iteration (i,j)
• Read set for process (i,j) is sum, A[i][k=0:n-1],

B[k=0:n-1][j]
• Write set for process (i,j) is sum, C[i][j]

– Note: we have the option to parallelize just one
of these loops

Terminology
• co statement: creates parallelism

co i := 0 to n-1
Body

oc
• Meaning: n instances of body are created

and executed concurrently until the end of
the co (i.e., at the oc)

• Implementation: fork n threads, join them at
the oc

Need to understand what processes/threads are!

Processes

• History: OS had to coordinate many
activities
– Example: deal with multiple users (each

running multiple programs), incoming network
data, I/O interrupts

• Solution: Define a model that makes
complexity easier to manage
– Process (thread) model

What’s a process?

• Informally: program in execution
• Process encapsulates a physical processor

– everything needed to run a program
• code (“text”)
• registers (PC, SP, general purpose)
• stack
• data (global variables or dynamically allocated)
• files

• NOTE: a process is sequential

Examples of Processes

• Shell: creates a process to execute
command
lectura:> ls foo
(shell creates process that executes “ls”)
lectura:> ls foo & cat bar & more
(shell creates three processes, one per command)

• OS: creates a process to manage printer
– process executes code such as:

wait for data to come into system buffer
move data to printer buffer

Creating a Process

• Must somehow specify code, data, files, stack,
registers

• Ex: UNIX
– Use the fork() system call to create a process
– Makes an exact duplicate of the current process

• (returns 0 to indicate child process)

– Typically exec() is run on the child

We will not be doing this (systems programming)

Example of Three Processes

code for ‘ls’
data

files

stack
registers

code for ‘cat’
data

files

code for more
data

files

Process 0 Process 1 Process 2

OS switches between the three processes (“multiprogramming”)

stack
registers

stack
registers

Review: Run-time Stack
A(int x) {

int y = x;
if (x == 0) return;
else return A(y-1) + 1;

}
B() {

int z;
A(1);

} z

y (1)
x (1)

y (0)
x (0)

Decomposing a Process

• Process: everything needed to run a
program

• Consists of:
– Thread(s)
– Address space

Thread

• Sequential stream of execution
• More concretely:

– program counter (PC)
– register set
– stack

• Sometimes called lightweight process

Address Space

• Consists of:
– code
– data
– open files

• Address space can have > 1 thread
– threads share code, data, files
– threads have separate stacks, register set

One Thread, One Address Space

code
data

files

address space

main thread
(stack,
registers)

Many Threads, One Address
Space

code
data

files

thread 0
thread 1
thread 2
thread 3
thread 4
thread 5

address space

each thread:
stack, regs

main thread

Thread States

• Ready
– eligible to run, but another thread is running

• Running
– using CPU

• Blocked
– waiting for something to happen

Thread State Graph

Ready

Blocked

Running

Scheduled

Pre-empted (timer)

I/O event or wait for thread
I/O complete
or thread we
were waiting
for is done

Scheduler

• Decides which thread to run
– (from ready list only)

• Chooses from some algorithm
• From our point of view, the scheduler is

something we cannot control
– We have no idea which thread will be run, and

our programs must not depend on execution
order of two ready threads

Context Switching

• Switching between 2 threads
– change PC to current instruction of new thread

• might need to restart old thread in the future
– must save exact state of first thread

• What must be saved?
– registers (including PC and SP)
– what about stack itself?

Multiple Threads, One Machine
(Single Core)

Machine

PC
SP
R1
R2

Address Space

Code Data Files

Thread 1 Thread 2

PC, SP, R1, R2

Stack Stack

PC, SP, R1, R2

Initial State
(nothing running)

Multiple Threads, One Machine
(Single Core)

Machine

PC
SP
R1
R2

Address Space

Code Data Files

Thread 1 Thread 2

PC, SP, R1, R2

Stack Stack

PC, SP, R1, R2

Start Thread 1

Multiple Threads, One Machine
(Single Core)

Machine

PC
SP
R1
R2

Address Space

Code Data Files

Thread 1 Thread 2

PC, SP, R1, R2

Stack Stack

PC, SP, R1, R2

Context Switch to
Thread 2, Step 1

Multiple Threads, One Machine
(Single Core)

Machine

PC
SP
R1
R2

Address Space

Code Data Files

Thread 1 Thread 2

PC, SP, R1, R2

Stack Stack

PC, SP, R1, R2

Context Switch to
Thread 2, Step 2

Why Save Registers?

• code for Thread 0
foo()

x := x+1
x := x*2

Assembly code:
R1 := R1 + 1 /* !! */
R1 := R1 * 2

Suppose context switch
occurs after line “!!”

• code for Thread 1
bar()

y := y+2
y := y-3

Assembly code:
R1 := R1 + 2
R1 := R1 - 3

Matrix Multiplication, n2 threads

double A[n][n], B[n][n], C[n][n] // assume n x n
co i = 0 to n-1 {

co j = 0 to n-1 {
double sum = 0.0
for k = 0 to n-1

sum += A[i][k] * B[k][j]
C[i][j] = sum

}
}

We already argued the two outer
“for” loops were parallelizable

Steps to parallelization

• Second: control granularity
– Must trade off advantages/disadvantages of

fine-granularity
• Advantages: better load balancing, better scalability
• Disadvantages: process/thread overhead and

communication
– Combine small processes into larger ones to

coarsen granularity
• Try to keep the load balanced

Matrix Multiplication, n threads

double A[n][n], B[n][n], C[n][n] // assume n x n
co i = 0 to n-1 {

for j = 0 to n-1 {
double sum = 0.0
for k = 0 to n-1

sum += A[i][k] * B[k][j]
C[i][j] = sum

}
}

This is plenty of parallelization
if the number of cores is <= n

Matrix Multiplication, p threads
double A[n][n], B[n][n], C[n][n] // assume n x n
co t = 0 to p-1 {

startrow = t * n / p; endrow = (t+1) * n/p - 1

for i = startrow to endrow
for j = 0 to n-1 {
double sum = 0.0
for k = 0 to n-1
sum += A[i][k] * B[k][j]

C[i][j] = sum
}

}

Steps to parallelization

• Third: distribute computation and data
– Assign which processor does which

computation
• The co statement does not do this

– If memory is distributed, decide which
processor stores which data (why is this?)

• Data can be replicated also
– Goals: minimize communication and balance

the computational workload
• Often conflicting goals

Steps to parallelization
• Fourth: synchronize and/or communicate

– If shared-memory machine, synchronize
• Both mutual exclusion and sequence control
• Locks, semaphores, condition variables, barriers,

reductions

– If distributed-memory machine, communicate
• Message passing
• Usually communication involves implicit

synchronization

Parallel Matrix Multiplication---
Distributed-Memory Version

process worker [i = 0 to p-1] {
double A[n][n], B[n][n], C[n][n] // wasting space!
startrow = i * n / p; endrow = (i+1) * n/p – 1
if (i == 0) {

for j = 1 to p-1 {
sr= j * n / p; er = (j+1) * n/p – 1
send A[sr:er][0:n-1], B[0:n-1][0:n-1] to process j

}
else

receive A[startrow:endrow][0:n-1], B[0:n-1][0:n-1] from 0

Parallel Matrix Multiplication---
Distributed-Memory Version

for i = startrow to endrow
for j = 0 to n-1 {
double sum = 0.0
for k = 0 to n-1
sum += A[i][k] * B[k][j]

C[i][j] = sum
}

// here, need to send my piece back to master
// how do we do this?

} // end of process statement

Adaptive Quadrature:
Recursive Sequential Program

double f() {
....

}
double area(a, b)
c := (a+b)/2
compute area of each half and area of whole
if (close)
return area of whole

else
return area(a,c) + area (c,b)

Adaptive Quadrature:
Recursive Parallel Program

double f() {
....

}
double area(a, b)
c := (a+b)/2
compute area of each half and area of whole
if (close)

return area of whole
else

co leftArea = area(a,c) // rightArea = area (c,b) oc
return leftArea + rightArea

Challenge with Adaptive
Quadrature

• For efficiency, must control granularity (step 2)
– Without such control, granularity will be too fine
– Can stop thread creation after “enough” threads

created
• Hard in general, as do not want cores idle either

– Thread implementation can perform work stealing
• Idle cores take a thread and execute that thread, but care

must be taken to avoid synchronization problems and/or
efficiency problems

Steps to parallelization
• Fifth: assign processors to tasks (only if using

task and data parallelism)
– Must also know dependencies between tasks
– Usually task parallelism used if limits of data

parallelism are reached

Steps to parallelization
• Sixth: parallelism-specific optimizations

– Examples: message aggregation, overlapping
communication with computation

Steps to parallelization
• Seventh: acceleration

– Find parts of code that can run on GPU/Xeon
Phi/etc., and optimize those parts

– Difficult and time consuming
• But may be quite worth it

