Nonblocking Synchronization

 Idea: avoid problems with blocking
synchronization mechanisms (e.g., locks)

by.....
— Not blocking

* Also want to allow multiple threads to make
progress concurrently

Problems with locks

Error prone

— Deadlock possible, for example, 1f locks acquired
in wrong order

* Locks aren’t composable; for example all modules
must adhere to the same convention for multiple locks

Overhead 1n case where contention 1s
unlikely

Vulnerable to failures and faults
— E.g., thread holding lock infinite loops

Pre-emption while holding lock

Problems with locks

* Deadlock that 1s not programmer induced

— Consider following case: medium priority thread
running, and low priority thread owns lock that
high priority thread 1s waiting for

* This 1s priority inversion, even if the lock has a
blocking-based implementation

— Lock convoys

« [f there 1s contention for a lock, threads may do little
work before blocking (too much context switching
time)

[Load-linked with Store conditional

» Used together (but note they are two separate
instructions)
— LL returns value at a shared memory location

— SC stores new value there if previous value has
not changed

» Returns true if stored, false 1f not stored

Concurrent Counter with LL/SC

int ConcurrentAdd(ref int x, int value) {
repeat
old = LL(x)
until
SC(x, old+value)

return old // return previous value

j

Critical Section Solution with LL/SC

Init: s=0

Entry: while (1) {
while (LL(s)==1) ;
it (SC(s, 1))

return // success; go into critical section

Exit: s=10

Concurrent Stack

structure pointer_t {ptr: pointer to node.x, count: unsigned integer}
structure node 1 {value: data type, next: pointer_t}
structure stack {Top: pointer.t}

INITIALIZE(S: pointer to stack.t)
S—Top.ptr = NULL

PUSH(S: pointer to stack 1, value: data type)
node = new.node()
node—value = value
node~next.ptr = NULL
repeat
top = S—Top
node—nextptr = top.ptr
until CAS(&S— Top. top, [node, top.count+1])

POR(S: pointer to stack_i. pvaluc: pointer to data type): boolean

repeat

top =S—Top

if topprr == NULL

return FALSE

endil
until CAS(&S—Top, top, [lop.pr—next.pty, top.count+i |)
*pvalue = top.ptr—value
free(top.pir)
return TRUE

Empry stack. Top points to NULL

¥ Allecate a new node from the free list
¥ Copy stacked value into node

Set next pointer of node to NULL

Keep trying until Push 1s done

Read Top.pir and Top.count together
Link new node to head of list

Try 1o swing Top to new node

Keep trying until Pop is done

Read Top

Is the stack empty?

The stack was empty, couldn’t pop

it Try w swing Top to the next node

% Pop 1s done. Read value

It is safe now to free the old node

The stack was not empty, pop succeeded

FIG. 1. Structure and operation of Treiber’s nonblocking concurrent stack algorithm [38].

Alternate Concurrent Stack (pushes/pops pointers)
Source: Wikipedia
(https://en.wikipedia.org/wiki/ABA problem)

Stack just points to stack top

Obj 1s structure of interest;
push and pop pointers to

Ob;j
Push(Stack *S, Obj *p) Obj *Pop()

while (1) { while (1) {
Obj *top = S Obj *ret = S;
p—next = top if (!ret) return NULL
if CAS(S, top, p) next = ret—next

return if CAS(S, ret, next)
} return ret

Why 1s there a counter as part of
the stack pointer?

» Example sequence of events (Wikipedia version):

1.

A S IS U i

)
—_ O

State at a given point: Top > A > B —> C

Threads 1 and 2 both invoke Pop

Thread 1 starts running Pop, and sets ret to A and next to B

Before Thread 1 can execute CAS, context switch to Thread 2
Thread 2 starts running Pop and sets ret’ to A and next’ to B

Thread 2 successfully executes CAS, so now stack 1s Top > B — C
Thread 2 starts running Pop again and sets ret’ to B and next’ to C
Thread 2 successfully executes CAS, so now stack is Top — C
Thread 2 deallocates B

Thread 2 invokes Push(A) and succeeds, so now stack is Top > A — C

. Thread 1 resumes, and Top and ret are both A, so CAS succeeds and Top

now points to B, which has been deallocated. To say the least, this is bad.

Why 1s there a counter as part of
the stack pointer?

* ABA problem

— Means that value 1s changed and changed back,
but from A to B to A---so Compare and Swap
does not detect the change!

— Count up, so that this can’t happen

 Well, it could if there 1s overflow, but...

— Requires doubleword Compare and Swap

* So that we can store a pointer and a counter

— If have LL/SC, can avoid the ABA problem
* But not all architectures have LL/SC

Concurrent Queue

structure pointer.d {ptr: pointer to node 1, count. unsigned integer }
structure node.1 {value: data type, next. pointer}
structure queue I {Head: pointer_t, Tail: pointer_1}

INITIALIZE(Q: pointer to queue.t)

node = new_node{)
node—next.ptr = NULL
Q-+Head ptr = Q— Tail ptr = node

ENQUEUE(Q: pointer to queue.r, value: data type)

El:
E2:
E3:
E4:
ES:
E6:
ET:
ES:
EY:

ElD:
Ell:
El12:
El3:
El4:
ElS:
El6:
EIT:

node = new_node{)
node—value = value
node—nextptr = NULL
loop
tatl = Q-+ Tail
next = tail ptr—next
if tail == Q—Tail
if nextptr == NULL
if CAS{&al ptr—next, next, [node, next.count+|])
break
endif
else
CAS(&Q— Tail, tail, [nextptr, tail.count+1])
endifl
endif
endloop
CAS{&Q—Tail, tail, [node, tail.count+1])

Allocate a free node
Make it the only node in the linked list
Both Head and Tail point 1o it

Allocate a new node from the free list

Copy enqueued valuc into node

Set next pointer of node to NULL

Keep trying until Enqueue is done

Read Tailptr and Tatlcount wogether

Read next ptr and count fields together

Are tail and next consistent”

Was Tail pointing to the last node?

Try to link node at the end of the linked list
¥ Enqueve 1s done. Exit loop

Tail was not pointing to the last node
Try to swing Tail to the next node

Try to swing Tail to the inserted node

Concurrent Queue

DEQUEUE(Q: pointer to queue.l, pvalue: pointer to data type). boolean

D1
D2:
D3:
D4:
D5:
D6:
D7
DS:
D9:
D10:
DI1I:

D12
D13
D14

D15
DI6:
DI7:

DI
D19
D20

loop # Keep trying until Dequeue is done
head = Q—Head # Read Head
tail = Q—Tail # Read Tail
next = head.ptr—+next # Read Head ptr—next
if head == Q—Head ¥ Are head, tail, and next consistent?
if head ptr == tail.ptr ¥ Is quewe empty or Tail falling behind?
i nextpr == NULL # Is queue empty?
return FALSE # Queue is empty, couldn’t degucue
endif
CAS(&Q-=Tail, tail, [nextptr, tail.count+ 1)) # Taul is falling behind. Try 10 advance it
else # No need 10 deal with Tail
Read valuc before CAS, otherwise another dequeue might free the next node
*pvilue = next.pir—value
if CAS(&Q—Hcad, head, [next.ptr, head.count+1]) # Try to swing Head to the next node
break # Dequeue is done. Exit loop
endif
endif
endif
endloop
free(head.ptr) £ It is safe now to free the old dummy node
return TRUE # Queue was not empty, dequeuc succeaded

FIG. 3. Structure and operation of a nonblocking concurrent queuc.

