
Nonblocking Synchronization

• Idea: avoid problems with blocking
synchronization mechanisms (e.g., locks)
by…..
– Not blocking

• Also want to allow multiple threads to make
progress concurrently

Problems with locks
• Error prone

– Deadlock possible, for example, if locks acquired
in wrong order

• Locks aren’t composable; for example all modules
must adhere to the same convention for multiple locks

• Overhead in case where contention is
unlikely

• Vulnerable to failures and faults
– E.g., thread holding lock infinite loops

• Pre-emption while holding lock

Problems with locks
• Deadlock that is not programmer induced

– Consider following case: medium priority thread
running, and low priority thread owns lock that
high priority thread is waiting for

• This is priority inversion, even if the lock has a
blocking-based implementation

– Lock convoys
• If there is contention for a lock, threads may do little

work before blocking (too much context switching
time)

Load-linked with Store conditional
• Used together (but note they are two separate

instructions)
– LL returns value at a shared memory location
– SC stores new value there if previous value has

not changed
• Returns true if stored, false if not stored

Concurrent Counter with LL/SC

int ConcurrentAdd(ref int x, int value) {
 repeat
 old = LL(x)
 until
 SC(x, old+value)
 return old // return previous value
}

Critical Section Solution with LL/SC

Init: s = 0

Entry: while (1) {
 while (LL(s) == 1) ;
 if (SC(s, 1))
 return // success; go into critical section

 }

Exit: s = 0

Concurrent Stack

Alternate Concurrent Stack (pushes/pops pointers)
Source: Wikipedia

(https://en.wikipedia.org/wiki/ABA_problem)
Stack just points to stack top
Obj is structure of interest;

push and pop pointers to
Obj

Push(Stack *S, Obj *p)
while (1) {
 Obj *top = S
 p→next = top
 if CAS(S, top, p)
 return
 }

Obj *Pop()
 while (1) {
 Obj *ret = S;
 if (!ret) return NULL
 next = ret→next
 if CAS(S, ret, next)
 return ret
 }

Why is there a counter as part of
the stack pointer?

• Example sequence of events (Wikipedia version):
1. State at a given point: Top ® A ® B ® C
2. Threads 1 and 2 both invoke Pop
3. Thread 1 starts running Pop, and sets ret to A and next to B
4. Before Thread 1 can execute CAS, context switch to Thread 2
5. Thread 2 starts running Pop and sets ret’ to A and next’ to B
6. Thread 2 successfully executes CAS, so now stack is Top ® B ® C
7. Thread 2 starts running Pop again and sets ret’ to B and next’ to C
8. Thread 2 successfully executes CAS, so now stack is Top ® C
9. Thread 2 deallocates B
10. Thread 2 invokes Push(A) and succeeds, so now stack is Top ® A ® C
11. Thread 1 resumes, and Top and ret are both A, so CAS succeeds and Top

now points to B, which has been deallocated. To say the least, this is bad.

Why is there a counter as part of
the stack pointer?

• ABA problem
– Means that value is changed and changed back,

but from A to B to A---so Compare and Swap
does not detect the change!

– Count up, so that this can’t happen
• Well, it could if there is overflow, but…

– Requires doubleword Compare and Swap
• So that we can store a pointer and a counter

– If have LL/SC, can avoid the ABA problem
• But not all architectures have LL/SC

Concurrent Queue

Concurrent Queue

