
Impact of Noise on Parallel Programs

• Noise interrupts a core from working on a
parallel program

• Major problem when working at large scales,
e.g., peta- and exa-flop

• Questions:
– What is the impact of noise?
– How can we prevent noise?

Why does noise occur?

• Some reasons:
– Another application can be executing
– System activities may need to occur

Noise due to other applications

• This occurs, for example, when:
– You and your classmate both try to execute a

program on the 930 cluster on the same set of
nodes

• The node is multiprogrammed
– Generally we’d expect each program to take X

times longer, if there are X users running jobs
• But can be worse because of uncoordinated nodes

Uncoordinated Scheduling

Courtesy of Andrea Arpaci-Dusseau’s Ph.D thesis (1999)

Noise due to other applications
• One “solution” is: define it away

– On large-scale systems such as national lab
machines, the nodes are space shared

• Means that a group of nodes is assigned solely to a
user for a given amount of time

• Scheduling these groups is done based on priority,
number requested, and time requested

– Note that space sharing has overhead---namely,
potentially low utilization when application is
inefficient

• Plus wait times if the machine is busy

Batch queue waiting time example

Taken from “Thunder” cluster
at LLNL in 2006

Significant wait
time increase at
large node counts

Noise due to other applications
• Another solution is gang scheduling

– Basic idea: a time slice is global, across the entire
machine

• Do not pre-empt for I/O
• Guarantees that there will not be overhead due to, say,

another job running on at least one node

– Disadvantages:
• Complex
• Cannot utilize blocking processor if within a time slice
• May force nodes to be completely idle (!!)

Gang Scheduling

Taken from Andrea Arpaci-Dusseau’s Ph.D thesis (1999)

Noise due to other applications
• Final solution is co-scheduling (Arpaci-

Dusseau ’96)
– Basic idea: local scheduler per machine, but

scheduling based on communication
• When a processor sends a message, do not context

switch for a threshold time (intuition: reply is coming
shortly)

• If beyond that threshold, then context switch
– Disadvantages:

• No guarantees
• Can “game” the scheduler by communicating frequently

System Noise
• Caused by OS daemons performing system

tasks
• These tasks cannot always be put off

– Example: if the network daemon fails to take
packets out of the network buffer, deadlock can
occur

• Even if nodes are space shared, OS daemons
are likely to be uncoordinated

System Noise
• May become a huge problem at large scales
• Analogous to the resilience problem: the more

nodes you have, the worse the problem is
• Entire HPC OS kernels have been built to

lessen the effects of noise
– “Lightweight kernels”

• Simple scheduler and memory management
• Minimum number of daemons

• Also have been efforts to “sync up” daemons
across nodes…but this is tricky

System Noise
• Might seem like a small problem in that:

– If nodes have similar noise profiles, can’t we just
assume that it’s extra load and is “load balanced”

• Not that simple because there are dependencies
between nodes---can be complex

Time Scale of Events
I.e., how long is a process interrupted?

• Cache miss, TLB miss: ~100 ns
• Hardware interrupt, PTE miss, timer update:

~1 us
• Page fault, swap in, pre-emption: ~10 ms

Noise: items from the above list that user cannot
control even with careful programming (boldfaced)

(Events and times from Beckman 2008)

Noise Propogation

Block

X

Y
Z

W

Block

X + a

Y
Z + b

W

a and b are noise and are added to execution time
Total time with noise is X+a+Y+Z+b

Noise Absorption

Block

X

Y
Z

W

Block

X

Y

W + a

a is noise yet it’s absorbed---does not affect execution time
Total time with noise is X+Y+Z

Z

Influential Paper: Petrini et al., “The Case of the
Missing Supercomputer Performance”

(Supercomputing 2003, best paper)

• Ran a large-scale application called SAGE on
8192 processors (a lot in 2003)

• Improved performance by a factor of 2 by
removing selected daemons

Note: all following pictures from the Petrini 2003
paper

SAGE performance (weak scaling)

Weak scaling:
time should
stay constant
as #processors
increases

SAGE performance

Note: improving Allreduce performance (51% of total time) did not help

Want to use all
cores on the
node, but
performance is
terrible

Noise Pattern on ASCI Q
(groups of 32 nodes)

Daemons on: node 0 (filesystem), node 1 (cluster manager),
node 31 (resource manager)

Uncoordinated Noise

Black bars are barriers; yellow bars are computation, blue bars are noise
Takeaway message:

without coordination, fine-grain synchronization can be devastating

Co-scheduled Noise

All noise occurs in same timestep---much better than uncoordinated
Unfortunately, it’s not possible to do this in general in the OS

SAGE performance, part 2

Much improved
performance in
May

Summary of Missing
Supercomputer Performance

• Fine-grain synchronizing applications will be
affected by high frequency, low duration
noise
– But not as much by low frequency, high duration

noise
• Coarse-grain synchronizing applications will

be relatively unaffected by high frequency,
low duration noise (will [naturally] approach
the co-scheduled picture)

Paper: Characterizing the Influence of System
Noise on Large-Scale Applications by

Simulation, by Hoefler et al.
• Main idea

– use a LogGPS (variant of LogP) simulator to estimate
program completion time under a variety of different
hardware assumptions

Note: all following pictures from the Hoefler paper

Measured Noise Patterns on
Modern Supercomputer Nodes

All systems (other than BlueGene with CNK [not shown]) show noise
Noise in ZeptoOS is well-balanced, however

Blocking Communication Diagram

Blocking can occur on sender or receiver
---will almost surely occur on one, unless “perfectly timed” arrivals
---this picture shows “late sender”, in terminology of the paper

Nonblocking Communication Diagram

Blocking can again occur on sender or receiver
---but less likely on receiver because receive is posted earlier
---this picture shows “waited for too early”, in terminology of the paper

Here, the Wait at receiver
takes the place of the Receive

Absorption

In this figure the noise is absorbed
--note that absorption can happen on sender also if receive is invoked

late enough

Modeling Broadcast is complicated

And this is just one possible implementation of Broadcast

1. Multiple critical paths here (end at 8, 11, 13, 14)
2. A delay on any of these critical paths will delay Broadcast
3. If all ranks post Broadcast at same time, noise may be absorbed
4. But different amounts at different points in the tree

Modeling Barrier is complicated

Cannot treat a collective call as a black box

1. Dissemination barrier assumed
A. Simpler, inferior implementations would be easier to analyze

2. The delay in rank 4 eventually resulted in largest delay on rank 3

Basic idea of paper

• As modeling is complicated, use a LogGPS
simulator to study the effect of noise
– The noise patterns from the real machines are fed

in and used to inject noise in the experiments

Effect of noise on collectives

Very interesting figure: shows that the noise causes “convergence”
---but the convergence is awful (note this is a log scale on the y-axis)

Effect of noise on collectives, ZeptoOS

ZeptoOS balances noise well across nodes

Co-scheduling (Synchronizing) Noise

Noise has a small effect; min time ~= median time ~= max time
However, outliers still exist

Effect of 10x and 0.1x network
performance

Faster network (left) is worse when it comes to noise
Performance at large number of processes is similar

So, why pay money for a faster network?
--called this the “noise bottleneck”

Note also: large messages reduce noise (larger transmission time)

Effect of noise on Sweep3d

Virtually no effect

Effect of noise on POP

Can be large, depending on machine; and it’s growing

Effect of network speed on applications

Similar effect to what is seen in the microbenchmarks

