
Problems with Semaphores

• Used for 2 independent purposes
– Mutual exclusion
– Condition synchronization

• Hard to get right
– Small mistake easily leads to deadlock

May want to separate mutual exclusion, 
condition synchronization



Monitors (Hoare) 
• Abstract Data Type

– consists of vars and procedures, like C++ class
– 3 key differences from a regular class:

• only one thread in monitor at a time (mutual 
exclusion is automatic)

• special type of variable allowed, called “condition 
variable”

– 4 special ops allowed only on condition 
variables: wait, signal, broadcast, notempty

• no public data allowed (must call methods to 
effect any change)



Wait, Signal, Broadcast

• Given a condition variable “cond”
– Wait(): 

• thread is put on queue for “cond”, goes to sleep

– Signal(): 
• if queue for “cond” not empty, wake up one thread

– Broadcast():
• wake up all threads waiting on queue for “cond”



Semantics of Signal

• Signal and Wait (Hoare)
– signaler immediately gives up control
– thread that was waiting executes

• Signal and Continue (Java)
– will be used in this class
– signaler continues executing
– thread that was waiting put on ready queue
– when thread actually gets to run:

• state may have changed! use “while”, not “if”



Monitor Solution to Critical 
Section

• Just make the critical section a monitor routine!



Readers/Writers Solution using 
Monitors

• Similar idea to semaphore solution
– simpler, because don’t worry about mutex 

• When can’t get into database, wait on 
appropriate condition variable

• When done with database, signal others

Note: can’t just put code for “reading 
database” and code for “writing database” 
in the monitor (couldn’t have >1 reader)



Differences between Monitors 
and Semaphores

• Monitors enforce mutual exclusion
• P( ) vs Wait

– P blocks if value is 0, Wait always blocks

• V( ) vs Signal
– V either wakes up a thread or increments value
– Signal only has effect if a thread waiting

• Semaphores have “memory”



First Attempt: Implementing 
Monitors using Semaphores 

Shared vars: 
sem mutex := 1 (one per monitor)
sem c := 0; int nc := 0 (one per condition var)

Monitor entry: P(mutex)
Wait(mutex): 

nc++; V(mutex); P(c); P( mutex)

Signal(mutex):
if (nc > 0) then {nc--; V(c);}

Monitor exit: V(mutex)



Correct Implementation of Monitors using Semaphores
(Assume that “tid” is the id of a thread) 

Shared vars: 
sem mutex := 1; (one per monitor) 
int nc := 0; List delayQ (one per condition var)
sem c[NumThreads] := 0; (one entry per thread; one 

entry per thread per condition works also)
Monitor entry: P(mutex)

Wait(mutex):
nc++; delayQ->Append(tid); V(mutex);  P(c[tid]); P(mutex)

Signal(mutex):
if (nc > 0) then {nc--; id = delayQ->Remove( ); V(c[id]);}

Monitor exit: V(mutex);



In-Class Exercise

• Implement a barrier using monitors
– Hint: use the notempty function


