Data Distribution 1n Practice:
A Case for User-Level Page Migration

e Targets NUMA machines
— SGI Origin
— To find a data element:
 First, look 1n local cache

e Then, look in local main memory
 Finally, locate data and fetch remotely

— Ratio 1:3:5 common

Why do I care?

* “The Origin was 15 years ago!”

— True, but with the explosion of core counts, the
only way to scale on multicore machines 1s to
provide a NUMA programming model

— A

, Intel build NUMA multicore nodes

* Opteron: three different memory access times: local

memory, one hop away, two hops away (memory
modules are not fully connected)

Key Question 1n this Paper

* Can we program NUMA machines without
regard to locality, and still obtain efficiency

* Many people believe the answer 1s no

Problem Statement

* (G1ven a program, consider a single data
element

— Suppose that this data element 1s accessed by
core i a number of times equal to C;

— The goal 1s to place this data element 1n the
memory module that will minimize the number
of remote references; 1.€., choose i such that C; 1s
largest

* Note: page migration might be allowed, which means
that elements can move between cores

Dynamic Page Migration

» Basic 1dea:
— Keep a reference counter per virtual page

— Move page when it 1s being referenced more
remotely than locally

 Either via iterrupts or sampling

— Interrupts notifies when counters are “interesting”’; sampling
takes measurements every X time units

* Not based on program semantics

* Ends up with lots of heuristics (read: hacks):
damping thresholds, freezing thresholds, unfreezing

thresholds

In general: kernel has 1ssues with effectiveness,
timeliness, and flexibility

Paper by Nikolopoulos et al.

» Basic 1dea:
— Combine compiler and run-time system
— Compiler 1dentifies “hot spots”
— Run-time system monitors reference counts
— Migrate only at end of phase

Hot memory areas

for t =1 to timesteps { Decisions made here only
#pragma omp parallel for

fori=1ton
Al1]=B[1+1]+ C[1] A, B considered “hot areas”
#pragma omp parallel for

fori=1ton
B[1] = AJ1]

Competitive Criterion

* Should a page be migrated?

* Quantities we care about include:
— Total latency of remote accesses from each node
— Total latency of local access

— Ratio of remote access latency to local access
latency

— Cost of migrating

ralept (i, h) > (ru (3, R)/1y) - lalior + mi {1)

(This 1s done for each node i; home node [current location] 1s /)

Problems with this? (Think: migration latency)

Competitive Criterion, continued

ralipt (2, h) > (ru (3,) /1) - lalior + ml {1)

How do we obtain these quantities?

Obtain memory access time from chip spec
— Add 1n contention;

Obtain number of accesses from page counters
Obtain migration latency from
microbenchmarks

Problems with this? (Think: contention)

Predictive Criterion

* OS might migrate threads to different cores
(that have different local memory modules)

* Goal: eagerly move pages to threads

 Idea: migration results in (assuming the page
1s properly placed) an inversion in
local/remote accesses between iterations

3¢, racc(i, t) > racc(i,t — 1) Alace(t) < lace(t —1) (3)

Ping-Pong and other Hacks

* Ping-pong occurs if a page bounces back and
forth between nodes

* Detect and freeze pages

» Also can mark pages as cold

Note: this 1s moving towards general dynamic
page migration!

Problems with this? (Think: slippery slope)

Overall Algorithm

(1) for each hot memory area {

(2) identify candidate pages for migraxzon with either the competitive
(3) or the predictive criterion;

(4) if the predictive criterion is used {

55; s apply ping~pong prevention algorithm;

6

(7) for each candidate page {

(8) if the page must not be frozen and is not likely to ping-pong {
(9) migrate it;

(10) update page bookkeeping data;

(11) }

(12) }

(13) estimate the maximum memory latency due to remote accesses in this area;
(14) if this latency increases compared to previous imvocations {

(15) tune the selectiveness of the migration algorithm;

(18) }

(17) if the area had no candidate pages for migration {

(182 if the area bad no candidates in several previous imvocations <{
(19) matk the area as ¢old;

(202 }

(21) }

(22}

Figure 1: Pseudocode for the page migration algorithm.

Problems with this? (Think: relationship to specified algorithm?)

Implementation

* Get reference counters through “/proc”
filesystem

» Use mmeci to migrate pages

» Use schedcntl to figure out on which
processors threads are executing

Important: does not require OS modification

Sample Results

100 o

B
=
¥
¥
b

sxecution time
8

|3 feumlg et R

Problems with this? (Think: what is “good™?)

Implications

» Can the user program without regard to
locality?
— Sort of (in some cases)

* Recent operating systems allow explicit
control of memory

— numactl allows memory to be allocated from any
given memory module

— Without this, some Linux versions allocate
arbitrarily

— Doesn’t handle the problem of thread migration

 But user calls also allow binding of threads

Broader Issues
(with this line of work/thinking)

* Overemphasis on placing pages where
fewest remote accesses occur
— While important, this paper 1gnores the
possibility of a per-phase optimal distribution, as
well as choosing suboptimal distributions in
cach phase

* See the data distribution slide deck for reference

