
Data Distribution in Practice:
A Case for User-Level Page Migration

• Targets NUMA machines
– SGI Origin
– To find a data element:

• First, look in local cache
• Then, look in local main memory
• Finally, locate data and fetch remotely

– Ratio 1:3:5 common

Why do I care?

• “The Origin was 15 years ago!”
– True, but with the explosion of core counts, the

only way to scale on multicore machines is to
provide a NUMA programming model

– AMD, Intel build NUMA multicore nodes
• Opteron: three different memory access times: local

memory, one hop away, two hops away (memory
modules are not fully connected)

Key Question in this Paper

• Can we program NUMA machines without
regard to locality, and still obtain efficiency

• Many people believe the answer is no

Problem Statement

• Given a program, consider a single data
element
– Suppose that this data element is accessed by

core i a number of times equal to Ci
– The goal is to place this data element in the

memory module that will minimize the number
of remote references; i.e., choose i such that Ci is
largest

• Note: page migration might be allowed, which means
that elements can move between cores

Dynamic Page Migration
• Basic idea:

– Keep a reference counter per virtual page
– Move page when it is being referenced more

remotely than locally
• Either via interrupts or sampling

– Interrupts notifies when counters are “interesting”; sampling
takes measurements every X time units

• Not based on program semantics
• Ends up with lots of heuristics (read: hacks):

damping thresholds, freezing thresholds, unfreezing
thresholds

In general: kernel has issues with effectiveness,
timeliness, and flexibility

Paper by Nikolopoulos et al.

• Basic idea:
– Combine compiler and run-time system
– Compiler identifies “hot spots”
– Run-time system monitors reference counts
– Migrate only at end of phase

Hot memory areas

for t = 1 to timesteps {
#pragma omp parallel for

for i = 1 to n
A[i] = B[i+1] + C[i]

#pragma omp parallel for
for i = 1 to n
B[i] = A[i]

}

A, B considered “hot areas”

Decisions made here only

Competitive Criterion
• Should a page be migrated?
• Quantities we care about include:

– Total latency of remote accesses from each node
– Total latency of local access
– Ratio of remote access latency to local access

latency
– Cost of migrating

Problems with this? (Think: migration latency)
(This is done for each node i; home node [current location] is h)

Competitive Criterion, continued

• How do we obtain these quantities?
• Obtain memory access time from chip spec

– Add in contention;

• Obtain number of accesses from page counters
• Obtain migration latency from

microbenchmarks

Problems with this? (Think: contention)

Predictive Criterion

• OS might migrate threads to different cores
(that have different local memory modules)

• Goal: eagerly move pages to threads
• Idea: migration results in (assuming the page

is properly placed) an inversion in
local/remote accesses between iterations

Ping-Pong and other Hacks

• Ping-pong occurs if a page bounces back and
forth between nodes

• Detect and freeze pages
• Also can mark pages as cold

Note: this is moving towards general dynamic
page migration!

Problems with this? (Think: slippery slope)

Overall Algorithm

Problems with this? (Think: relationship to specified algorithm?)

Implementation

• Get reference counters through “/proc”
filesystem

• Use mmci to migrate pages
• Use schedcntl to figure out on which

processors threads are executing

Important: does not require OS modification

Sample Results

Problems with this? (Think: what is “good”?)

Implications
• Can the user program without regard to

locality?
– Sort of (in some cases)

• Recent operating systems allow explicit
control of memory
– numactl allows memory to be allocated from any

given memory module
– Without this, some Linux versions allocate

arbitrarily
– Doesn’t handle the problem of thread migration

• But user calls also allow binding of threads

Broader Issues
(with this line of work/thinking)

• Overemphasis on placing pages where
fewest remote accesses occur
– While important, this paper ignores the

possibility of a per-phase optimal distribution, as
well as choosing suboptimal distributions in
each phase

• See the data distribution slide deck for reference

