
Message Passing

• No shared memory
– Can’t use simple semaphores, condition variables
– Can’t use shared buffers, producer/consumer

• Communication based on message passing
– Process A on machine 1 sends message to

process B on machine 2 (over the network)
– How does it get there? [we will ignore this]

Physical Reality of Networks

• Networks are unreliable
– Messages are divided into packets
– Packets can get lost
– Packets can arrive out of order
– Receiver can get overloaded

Define a new abstraction

• Analogous to abstractions in operating systems
– Process -- abstraction of a processor
– Virtual memory -- abstraction of unlimited memory
– Files -- abstraction of disk

• Want to abstract communication network
– Don’t want to worry about lost messages, wrong

ordering, overflow, etc.
– Channel -- abstraction of point to point, reliable

communication link

Send and Receive
• Send(channel, exprs);

– exprs can be any expression (i.e., an r-val)
• Receive(channel, args);

– args must be an l-val
• Notes:

– Channel handles reliability
• must be implemented by network protocols

– Message may have to be buffered
• depends on semantics of send/receive

– Requires synchronization
– Send, Receive can be OS kernel primitives or

can be library primitives (e.g., MPI)

Send and Receive
• Notes, continued:

– Special case: both exprs and args are the empty
set and on single machine; in this case:

• Send is equivalent to V(s)
• Receive is equivalent to P(s)
• Number of pending messages is equivalent to the

value of s

Semantics of Send and Receive

• Can be blocking or nonblocking
– Also called “synchronous” and “asynchronous”
– Remember:

• procedure call is blocking
• thread creation is non-blocking

– Send, Receive both have blocking and non-
blocking implementations

Picture of Blocking Send,
Blocking Receive

P1 P2

send

receive

(blocked)

(blocked)

proceed

data

“proceed”

consume message

Picture of Non-Blocking Send,
Blocking Receive

P1 P2

send

receive
(blocked)

(proceed)
data

overwrite

consume message

Picture of Blocking Send, Non-
Blocking Receive

P1 P2

send

Post receive

(blocked)

(keep working)

proceed

consume message

blocked (need data)
data

“proceed”

Picture of Blocking Send, Non-
Blocking Receive

P1 P2

send

Post receive

(blocked)

(keep working)

proceed

consume message

need data
(no blocking)

data

“proceed”

Picture of Non-Blocking Send,
Non-Blocking Receive

P1 P2

send

Post receive

(proceed)

(keep working)

overwrite
consume message

blocked (need data)
data

Picture of Non-Blocking Send,
Non-Blocking Receive

P1

send
(proceed)

overwrite

data

P2
Post receive

(keep working)

consume message

need data
(no blocking)

Possible Implementation of Non-Blocking
Send, Blocking Receive

• Library must keep track of all channels
– one queue and one semaphore (initialized to

zero) per channel on the receiver
• On Send(channel, message)

– copy message into send buffer (will end up on
network if receiver on remote machine)

• On Receive(channel, message)
– P(thisQueue); copy proper data into message

• On incoming message (specifies channel)
– buffer it in the queue; V(thisQueue)

Possible Implementation of Blocking Send,
Blocking Receive

• Library must keep track of all channels
– one queue and one semaphore (initialized to zero) per

channel on both ends
• On Send(channel, message)

– copy message into send buffer (will end up on network if
receiver on remote machine); P(ack)

• On incoming ack (specifies channel)
– V(ack)

• On Receive(channel, message)
– P(thisQueue); copy proper data into message; send ack

to sender
• On incoming message (specifies channel)

– buffer it in queue; V(thisQueue)

Tradeoffs in Message Passing
• Advantages of blocking send

– won’t overwrite message; less buffering; cannot
overwhelm receiver

• Advantages of non-blocking send
– can continue after send (can do other work);

deadlock less likely
• Advantages of blocking receive

– know message is received, simpler app. code
• Advantages of non-blocking receive

– can result in fewer copies (buffer posted in
advance); can allow blocking sender to resume
earlier

Realizing Message Passing in MPI
• Blocking/non-blocking operations

– Send, Ssend, Isend, Recv, Irecv
– Send and Recv are not analogous (confusing)

• Send may block; Recv will block
• Ssend and Recv require matching in all cases

• Collective operations
– Barrier, Scatter, Gather, Alltoall
– Why use these as opposed to several point-to-point

messages?
• Convenience
• Efficiency

– Implementation can optimize when it knows what’s coming
– Can be used over a subset of processes (not shown yet)

Programming Client/Server
Applications

Outline of Client code
while (1) {
build request
send (request, server)
receive (reply)
do something

}

Outline of Server code
while (1) {
receive (request)
switch (request)
case type1:

send (client, reply1)
case type2:

send (client, reply2)
etc.

}

Duality of Monitors/Message Passing
(Lauer, H.C., Needham, R.M., “On

the Duality of Operating Systems Structures”, 1978)

Monitors
Monitor variables
Entry (implicit mutex)
Procedures in monitor
Procedure call

Procedure return

Wait
Signal

Message Passing
Local vars on server
Blocking recv on server
Arms of switch stmt
Client sends request

to server; may block
awaiting reply

Server sends result to
appropriate client

Insert request on server queue
Remove & process request

from server queue

Duality Example:
Resource Allocation with Monitors
monitor ResourceAllocator
int free = true; cond c
acquire(): if (free) free = false

else wait(c)
release(): if (empty(c)) free = true

else signal(c)
end ResourceAllocator

Resource Allocation with Message Passing

Client (i) {
send request (i, ACQUIRE)
receive reply[i]()
send request (i, RELEASE)

}

Resource Allocation with Message Passing

enum reqType {ACQUIRE, RELEASE)
chan request(int clientId, reqType which)
chan reply[n]() // one entry per client
Allocator { // runs on server

queue pending; # initially empty
int clientId; bool free := true
enum which {ACQUIRE, RELEASE};

// (continued on next slide)

Resource Allocation with Message Passing
while (1) {

receive request(clientId, which)
switch(which) {
ACQUIRE:

if (free)
free := false; send reply[clientId]

else
pending.insert(clientId)

RELEASE:
if notempty(pending)

send reply[pending.remove()]
else

free := true
}

}
} // end of Allocator

