Ticket lock: A fair lock

number =next=0 // all threads share
Acquire( ) {
int ticket = FetchAndAdd(number, 1)
while (ticket != next)

b

j

Release( ) 4

next++ Simple algorithm, but causes significant
network traffic because of polling of
} common location



Array-based queuing lock code
L: shared ptr to a record w/ array and index
Array element values either “wait” or “go”

Acquire (L, ref place) { Release(L, place)
place = f&i1(L—nextslot) /overflow? |  next = (place+1) mod P;

place = place mod P L—slots[next] = go;
while (L—slots[place] == wait) | }

b

L—slots[place] := wait;

Disadvantage: Linear space



MCS lock code
[: ptr to a node with boolean and next ptr

L: shared ptr to tail of list

Acquire (L, I) { Release(L, I) {
[—>next = null if (I—>next ==null) {
pred = f&s(L, I) if c&s(L, I, null)
if (pred !=null) { return
[—>locked = true while (I — next == null)
pred—next =1 :
while (I—>locked) }
: [—>next—locked = false;
h h




Algorithms for Scalable Synchronization on Shared — Memory Multiprocessors . 31

(a) ® [ [ ]\
)
©
(g)
(@
(©)
()
@)

Fig. 6. Pictorial example of MCS locking protocol in the presence of competition.



What if there 1s no Compare-and-Swap?

» Makes release code much more complicated

— Essentially, without C&S, inspection and update
of the tail pointer cannot occur atomically

— Can have situation in which we believe the last
thread 1s releasing, only after that is determined,
Acquires are performed

* Leads to L being set to NULL, but extra nodes on list;
this leads to the potentially disastrous situation that a

new Acquire jumps ahead of the previous Acquires
along with the previous Acquires being “lost”

* So, we need to grab the old end of list, and grab the
next element after releaser, and make the list consistent



Sense-reversing centralized barrier

shared count = P, sense = true
Barrier( )
static localSense = true
localSense = not localSense
if FetchAndAdd(count, -1) == 1/ returns old value
count = P
sense = localSense
else
while (sense != localSense)

5



Sense-reversing centralized barrier

* Problem: spinning on a global flag (sense)

— On a multicore machine without broadcast-
based cache coherence, significant network
traffic

* Many-core machines may not have a broadcast

— Contention at atomic instruction?



Combining tree barrier

type node = record

k : integer // fan-in of this node

count : 1ntager // imitialized to K

locksense : Boolean // inatially false

parent : “node // pointer to parent node; nil if root

shared nodes : array [0..P-1] of node

// each element of nodes allocated in a different memory module or cache line
processor private sense : Boolean := true
processor private mynode : "node // my group’s leaf in the combining tree

procedure combining barrier
combining_barrier_aux (mynode) // join the barrier
sense :® not sense // for mext barrier

procedure combining barrier_aux (nodepointer: “node)
with nodepointer” do

if fetch_and _decrement (&count) = i // last one to reach this ncde
if parent != nil
combining barrier_aux (parent)
count := k // prepare for next barrier
locksense := not locksense // release waiting processors

repeat until locksense = sense

Fig. 9. A software combining tree barrier with optimized wakeup.



Tournament (tree) barrier

» Advantages: know ahead of time who
partner 1s, no atomic instructions

— Similar to dissemination barrier
— Form tree, where number of leaves 1s P

— Assign winners and losers all the way up the
tree

 Loser exits and spins on global flag waiting for root
of tree to set the flag

* E.g., at leaves, all even numbered threads “win”; at
next level up, all threads divisible by 4 “win”, etc.

 Uses extra storage (one array row per round), but
could use “count up” trick from symmetric barrier



Performance

100

a——& anderson
90
o« o test & set, exp. backoff
80 -1 &0 ticket, prop. backoff

/ —— INCS

Time

(us)

10 —
0 T T T T T ] T I
0 10 20 30 40 50 60 70 80
Processors

Fig. 16. Performance of selected spin locks on the Butterfly (empty critical section)



Time

(ps)

Performance

¢ o counter

-
-

counter, exp. backoff

D
[

counter, prop. hackoff

o
o

combining tree
s— counter w/ tree wakeup

o—=o bidirectional tournament

A tree

——s dissemination a .

10 20 30 40 50 60 70 80
Processors

.19 Performance of barriers on the Butterfly.



Performance

120 ~1—— —
+—= dissemination
S {ree
100 —
+» - -+ tournament (flag wakeup)
A& & arrival tree
80 -1 @—9 counter
Time .«
(pe8) GO
40 —
20 —
0 1 | 1 7 | T i
0 2 4 6 8 10 12 14 16 8
Processors

Fig. 21. Performance of barriers on the Symmetry



