Ticket lock: A fair lock

number =next=0 // all threads share
Acquire( ) {
int ticket = FetchAndAdd(number, 1)
while (ticket != next)

b

j

Release( ) 4

next++ Simple algorithm, but causes significant
network traffic because of polling of
} common location



Array-based queuing lock code
L: shared ptr to a record w/ array and index
Array element values either “wait” or “go”

Acquire (L, ref place) { Release(L, place)
place = f&i1(L—nextslot) /overflow? |  next = (place+1) mod P;

place = place mod P L—slots[next] = go;
while (L—slots[place] == wait) | }

b

L—slots[place] := wait;

Disadvantage: Linear space



MCS lock code
[: ptr to a node with boolean and next ptr

L: shared ptr to tail of list

Acquire (L, I) { Release(L, I) {
[—>next = null if (I—>next ==null) {
pred = f&s(L, I) if c&s(L, I, null)
if (pred !=null) { return
[—>locked = true while (I — next == null)
pred—next =1 :
while (I—>locked) }
: [—>next—locked = false;
h h
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Fig. 6. Pictorial example of MCS locking protocol in the presence of competition.



What if there 1s no Compare-and-Swap?

» Makes release code much more complicated

— Essentially, without C&S, inspection and update
of the tail pointer cannot occur atomically

— Can have situation in which we believe the last
thread 1s releasing, only after that is determined,
Acquires are performed

* Leads to L being set to NULL, but extra nodes on list;
this leads to the potentially disastrous situation that a

new Acquire jumps ahead of the previous Acquires
along with the previous Acquires being “lost”

* So, we need to grab the old end of list, and grab the
next element after releaser, and make the list consistent



Sense-reversing centralized barrier

shared count = P, sense = true
Barrier( )
static localSense = true
localSense = not localSense
if FetchAndAdd(count, -1) == 1/ returns old value
count = P
sense = localSense
else
while (sense != localSense)

5



Sense-reversing centralized barrier

* Problem: spinning on a global flag (sense)

— On a multicore machine without broadcast-
based cache coherence, significant network
traffic

* Many-core machines may not have a broadcast

— Contention at atomic instruction?



Combining tree barrier

type node = record

k : integer // fan-in of this node

count : 1ntager // imitialized to K

locksense : Boolean // inatially false

parent : “node // pointer to parent node; nil if root

shared nodes : array [0..P-1] of node

// each element of nodes allocated in a different memory module or cache line
processor private sense : Boolean := true
processor private mynode : "node // my group’s leaf in the combining tree

procedure combining barrier
combining_barrier_aux (mynode) // join the barrier
sense :® not sense // for mext barrier

procedure combining barrier_aux (nodepointer: “node)
with nodepointer” do

if fetch_and _decrement (&count) = i // last one to reach this ncde
if parent != nil
combining barrier_aux (parent)
count := k // prepare for next barrier
locksense := not locksense // release waiting processors

repeat until locksense = sense

Fig. 9. A software combining tree barrier with optimized wakeup.



Tournament (tree) barrier

» Advantages: know ahead of time who
partner 1s, no atomic instructions

— Similar to dissemination barrier
— Form tree, where number of leaves 1s P

— Assign winners and losers all the way up the
tree

 Loser exits and spins on global flag waiting for root
of tree to set the flag

* E.g., at leaves, all even numbered threads “win”; at
next level up, all threads divisible by 4 “win”, etc.

 Uses extra storage (one array row per round), but
could use “count up” trick from symmetric barrier
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Fig. 16. Performance of selected spin locks on the Butterfly (empty critical section)
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Fig. 21. Performance of barriers on the Symmetry



