
Ticket lock: A fair lock
number = next = 0 // all threads share
Acquire() {

int ticket = FetchAndAdd(number, 1)
while (ticket != next)

;
}
Release() {

next++
}

Simple algorithm, but causes significant
network traffic because of polling of
common location

Array-based queuing lock code
L: shared ptr to a record w/ array and index
Array element values either “wait” or “go”

Acquire (L, ref place) {
place = f&i(L®nextslot) //overflow?

place = place mod P
while (L®slots[place] == wait)

;
L®slots[place] := wait;

}

Release(L, place) {
next = (place+1) mod P;
L®slots[next] = go;

}

Disadvantage: Linear space

MCS lock code
I: ptr to a node with boolean and next ptr

L: shared ptr to tail of list
Acquire (L, I) {
I®next = null
pred = f&s(L, I)
if (pred != null) {
I®locked = true
pred®next = I
while (I®locked)

;
}

}

Release(L, I) {
if (I®next == null) {

if c&s(L, I, null)
return

while (I ® next == null)
;

}
I®next®locked = false;

}

What if there is no Compare-and-Swap?

• Makes release code much more complicated
– Essentially, without C&S, inspection and update

of the tail pointer cannot occur atomically
– Can have situation in which we believe the last

thread is releasing, only after that is determined,
Acquires are performed

• Leads to L being set to NULL, but extra nodes on list;
this leads to the potentially disastrous situation that a
new Acquire jumps ahead of the previous Acquires
along with the previous Acquires being “lost”

• So, we need to grab the old end of list, and grab the
next element after releaser, and make the list consistent

Sense-reversing centralized barrier
shared count = P, sense = true
Barrier()
static localSense = true
localSense = not localSense
if FetchAndAdd(count, -1) == 1 // returns old value

count = P
sense = localSense

else
while (sense != localSense)

;

Sense-reversing centralized barrier
• Problem: spinning on a global flag (sense)

– On a multicore machine without broadcast-
based cache coherence, significant network
traffic

• Many-core machines may not have a broadcast
– Contention at atomic instruction?

Combining tree barrier

Tournament (tree) barrier
• Advantages: know ahead of time who

partner is, no atomic instructions
– Similar to dissemination barrier
– Form tree, where number of leaves is P
– Assign winners and losers all the way up the

tree
• Loser exits and spins on global flag waiting for root

of tree to set the flag
• E.g., at leaves, all even numbered threads “win”; at

next level up, all threads divisible by 4 “win”, etc.
• Uses extra storage (one array row per round), but

could use “count up” trick from symmetric barrier

Performance

Performance

Performance

