
Modeling of Parallel Programs

• Goal: produce better parallel algorithms and
ultimately parallel programs by creating
abstract models of (parallel) computation
– Note: many models for sequential computing,

e.g., random access machine (RAM)

RAM Model for Sequential
Computing

• Some features:
– Unbounded number of local memory cells
– Each memory cell can hold an integer
– Instruction set allows register-register operations

and also memory-memory operations via
indirect addressing

– Also includes branching
– All operations take unit time, regardless of how

complicated the operation seems

Early Parallel Models: PRAM
and its cousins

• Parallel random access machine (PRAM)
was first major model for parallelism
– Basic ideas:

• Natural extension of RAM model
• P processors and a single shared memory; MIMD
• all instructions take unit time

– PRAM is unrealistic
• Because: (1) unit-time access to memory and (2)

inter-processor synchronization and communication
is assumed to be free

• Would be ok if it still led to efficient parallel
programs, but it doesn’t

EREW PRAM
• One example of a follow-on model

– Goal: more realism than PRAM
– Idea: cannot be more than one access to a single

memory location at any point in time
• Still unrealistic, because memory actually exists at

the granularity of modules, not individual locations
• Also does not deal with the unrealistic unlimited

communication assumption of PRAM

LogP Model: adds some realism

• LogP developed by a group of theoreticians
and practitioners

• Famous model; several researchers have
added to LogP

• LogP assumes a cluster, though it can also be
used for a multicore machine

LogP Model

• Four parameters in LogP:
– L – latency: the upper bound on the delay

incurred in sending a small message from one
node to another

– o – overhead: the time to send/receive message
in terms of system overhead

• i.e., receive is time from reception at network device
until the time application can continue

LogP Model
• Four parameters in LogP:

– g – gap: minimum time between consecutive
message transmissions/receptions at a node.

• 1/g is the bandwidth, because the bandwidth is
defined as amount of data per unit time that can be
sent. (Intuitively, if g were 0, applications could
constantly send and would have infinite bandwidth.)

– P -- # processors
• Local operations take unit time

Coming Back to LogP vs PRAM
• The unit time for any instruction assumption

in PRAM implies that
– g = L = o = 0
– Therefore, PRAM does not discourage

algorithms with arbitrarily large amounts of
communication

LogP Model
• Constraints in LogP

– At most ceil(L/g) messages can be in transit
to/from any processor, because the network has
finite capacity.

• It takes L time units to get a message from A to B,
and A can't send more than every g time units.

– Messages are of small size

LogP Model
• Sometimes parameters can be ignored or

simplified
– If messages sent in long streams from source to

destination, then L may be disregarded.
• Intuitively, imagine a 500 MB download; does it

really matter whether it takes 100 ms or 200 ms to
receive the first byte?

• Formally, g is the dominant factor in this situation.

– If o >= g, g can be ignored
• It is impossible to send two messages with less than g

time between them anyways

– If a machine has a network co-processor, o may
be zero (if the CPU can do other work)

LogP Broadcast Example
P = 8, L = 6, g = 4, o = 2

Class Exercises:
(1) what’s the optimal broadcast tree if L is 0?
(2) what’s the optimal broadcast tree if g is 0?

LogP FFT Example

Analyzing FFT Parallel
Algorithm Alternatives

• With a Cyclic distribution
– Processor 0 is assigned points 0, 2, 4, and 6
– Take point 0, for example:

• It needs points 4, 2, and then 1, on the three steps
• It will need to communicate with Processor 1 on the
third step

Analyzing FFT Parallel
Algorithm Alternatives

• With a Block distribution
– Processor 0 is assigned points 0, 1, 2, and 3
– Take point 0, for example:

• It needs points 4, 2, and then 1, on the three steps
• It will need to communicate with Processor 1 on the
first step

Analyzing FFT Parallel
Algorithm Alternatives

• Cyclic and Block distributions have the exact
same computation and communication
requirements
– Assume that n is the number of points, and p is

the number of processors
– Compute time: log n * n/p, because there are log

n steps and in each one, a processor has to
compute n/p points (each one takes unit time, per
the LogP model)

Analyzing FFT Parallel
Algorithm Alternatives

• Cyclic and Block distributions have the exact
same computation and communication
requirements
– Communication time: log p * (g * n/p + L),

because there are log p communication steps,
and in each one, there are n/p points
communicated, and the last of those points is
sent at time g * n/p, and then that last point
reaches the destination after a L time

Analyzing FFT Parallel
Algorithm Alternatives

• Can redistribute the data (from Cyclic to
Block) in between step 2 and 3
– Computation time is unchanged
– Communication time: (g * n/p – g * n/p2 + L),

because all points must be redistributed, except
for ones that a processor owns in both Cyclic
and Block distributions

• Overall, communication time is lower by a factor of
log p

• In general, the number of points that need not be
redistributed is n/p2

– Can be important if n is large

Scheduling All-to-All
• Could have every node send to node 0; then,

every node send to node 1, etc.
– Creates bottleneck at node 0, then node 1, etc.
– Means that only L/g messages can be in transit at

a time (this is again the capacity constraint)

• Better: node i sends what it needs to i+1,
then i+2, etc. (with wraparound)

Scheduling All-to-All

• More broadly, this has implications for message-
passing implementations (e.g., MPI) to schedule
messages for collectives
• This is also a good reason to invoke collectives instead

of manually implementing a collective (via
Send/Receive)

LogP Extensions
• Are many:

– LogGP: adds support for long messages (LogP
assumes essentially one byte messages)

• Basically, allows one message and charges a per-byte
cost (eliminates o and g per [small] message)

– LogGPS: adds support for synchronization cost
incurred to to rendezvous when large messages
are sent (e.g., MPI_Send when the message is
sufficiently large---the matching MPI_Recv must
be invoked before MPI_Send can complete)

– LognP: adds support for cost of middleware (e.g.,
marshalling a column into a vector)

