HPC Interconnects

e Interconnects allow communication between
nodes

* Important attributes of interconnects
— Bandwidth

 How much data can be moved per second

— Latency

* Time to move one byte between nodes
— Cost

* How many ports and network links?

— Power

» Can be significant in terms of overall system power
 Won’t discuss 1n this slide deck

Diameter

* Motivation
— Would prefer that all nodes are fully connected

* Obviously, this 1s cost prohibitive and 1s impractical

 Settle for “few hops™, but would also prefer that the
number of hops 1s a constant

— Or at least a slow-growing function of the number of nodes

* To compute diameter:

— Just compute the maximum hop distance between
two nodes

Bisection Bandwidth

e Motivation

— All-to-all communication stresses the network, and
can depend on moving data “far across” the network

— Takes 1nto account “bottleneck bandwidth”
* To compute bisection bandwidth:

— 1. Cut network such that the number of nodes is
equal, and

— 2. Ensure the cut minimizes the bandwidth between
the partitions

— Can do this easily by simply counting the number of links i1t
takes to bisect the network 1nto two partitions

* Means that maximum bisection bandwidth given N nodes is (N/2)?

Linear Array

* Not realistic (just for illustration)
* If N nodes, then:

— Diameter 1s N-1 (remember, worst case)
— Bisection bandwidth 1s 1 (cut shown)

— Cost:
 N-1 network links

Source for image: Wikipedia

Ring

* Also not realistic (and just for illustration)

* If N nodes, then:
— Diameter 1s N/2
— Bisection bandwidth 1s 2 (two paths through the cut)

— Cost:

* 3 I/O ports per switch, N switches
— (one I/O port 1s to the node)

N network links

Source for image: Wikipedia

Fully Connected

* Also not realistic (and just for comparison)
* If N nodes, then:

— Diameter 1s 1
— Bisection bandwidth is (N/2)?

 Have to cut half of the links from a node to disconnect
— Cost (yikes):
e N ports/switch, N switches

— Completely unrealistic; no switch has, say, thousands of ports

* N*(N-1)/2 network links

2D Mesh

* People have actually used meshes in HPC systems

— A decade or two ago

* If N nodes, then:
— Diameter is 2 * (v/N-1) T
— Bisection bandwidth is VN e ““ e
— Cost:

5 ports per switch, N switches
e VN * (v/N-1) * 2 network links

Source for image: Wikipedia

2D Torus

* People have actually used 2D torii in HPC systems
— Not that long ago, though now they’re 3D

* If N nodes, then: :
_ Diameter is VN g
_ Bisection bandwidth is 2 * VN R 1

« Have to cut the wraparound links also g s | g ‘
— (In addition to the links as for the 2D Mesh) '

— Cost:
« Same as 2D mesh, except an additional 2 * /N wrap links

Source for image: Wikipedia

» The wraparound links really do help

Hypercube

* People have actually used hypercubes in HPC
systems

— Couple decades ago

 If N nodes (N = 2%), then:

S AN
e i ——" N\

P > N \\
— Diameter is 1 =k TN [N
.a e.te S og(N) . S5 ﬁ S
— Bisection bandwidth is N/2 = 2k e 17_1 >
* Must cut all links between cubes _____:‘};
— COSt Source for 1ma.ge: Wikipedia

* k+1 ports/switch (k-dimensional cube), N switches

* O(N) network links
16 nodes — 32 links; 32 nodes — 80 links; 256 nodes — 1024 links

Tree

* People have actually used trees in HPC systems
— Today!

* If N nodes and direct connection from node to leaf
switch, then:

— Diameter 1s log(N) s

— Bisection bandwidth 1s 1
— Cost:

3 ports per switch, N switches
e O(N) network links

Source for image: Wikipedia

* How can this possibly be a good 1dea, given that
the bisection bandwidth is the same as a bus?

Fat Tree

» Same as a tree, except extra links going up tree:
— Bandwidth increases (usually doubles) as you move up

— Still have a single logical link across the bisection cut:
* But given that the bandwidth doubles, this 1sn’t a problem

— Diameter 1s still O(log(N))
* Constant in big-O 1s dependent on number of levels of tree

— Bisection bandwidth depends on number of links

* N nodes and bandwidth doubling results 1n bisection

bandwidth of N/2 %IIIIIK

7N 7\

/ \ / \ / '\ / \

Source for image: cluster-design.org

Dragontly

* Dragonfly exists in current HPC systems
e If N nodes, then:

— Diameter 1s 5 (note: independent of N)

* This assumes static routing

— Bisection bandwidth 1s complicated

* Depends on the number of nodes 1n a group, number of
groups, number of links between groups

* Definitely lower than fat tree

Aries Router A Group with 96 routers Two-level Dragonfly
Network Tiles oooceeeo0o0
@ Green link port EOQQ.'.'.
Q Biacklink port 0oco0eee0oO
© Blue link port ;000.....
Processor Tiles ;o coceeeoo

© Aries NIC port

l Inter-group (Blue) links
(not all groups/links are shown)

LMo
Mo
e
e

Column All-to-all (Black) links Row All-to-all (Green) links
Compute Nodes Link bandwidth - 5.25 GB/s/ Link bandwidth - 5.25 GB/s/ Link bandwidth - 4.7 GB/s/
direction direction

(113
£o0.
gao
£ao;
200
Ran

direction

Routing

* Two extremes
— Shortest path
— Fully adaptive
» Take traffic into account and “route around it”, like the Internet
* Many points in between the two extremes

— Example: Dragonfly has adaptive routing with “minimal
path bias” levels.

* As message gets closer to destination, increase bias for taking
shortest path by some amount

* Must worry about deadlock

— Fully adaptive routing could fail to deliver message

