
HPC Interconnects
• Interconnects allow communication between

nodes
• Important attributes of interconnects

– Bandwidth
• How much data can be moved per second

– Latency
• Time to move one byte between nodes

– Cost
• How many ports and network links?

– Power
• Can be significant in terms of overall system power
• Won’t discuss in this slide deck

Diameter

• Motivation
– Would prefer that all nodes are fully connected

• Obviously, this is cost prohibitive and is impractical
• Settle for “few hops”, but would also prefer that the

number of hops is a constant
– Or at least a slow-growing function of the number of nodes

• To compute diameter:
– Just compute the maximum hop distance between

two nodes

Bisection Bandwidth
• Motivation

– All-to-all communication stresses the network, and
can depend on moving data “far across” the network

– Takes into account “bottleneck bandwidth”
• To compute bisection bandwidth:

– 1. Cut network such that the number of nodes is
equal, and

– 2. Ensure the cut minimizes the bandwidth between
the partitions

– Can do this easily by simply counting the number of links it
takes to bisect the network into two partitions

• Means that maximum bisection bandwidth given N nodes is (N/2)2

Linear Array

• Not realistic (just for illustration)
• If N nodes, then:

– Diameter is N-1 (remember, worst case)
– Bisection bandwidth is 1 (cut shown)
– Cost:

• N-1 network links

Source for image: Wikipedia

Ring

• Also not realistic (and just for illustration)
• If N nodes, then:

– Diameter is N/2
– Bisection bandwidth is 2 (two paths through the cut)
– Cost:

• 3 I/O ports per switch, N switches
– (one I/O port is to the node)

• N network links

Source for image: Wikipedia

Fully Connected

• Also not realistic (and just for comparison)
• If N nodes, then:

– Diameter is 1
– Bisection bandwidth is (N/2)2

• Have to cut half of the links from a node to disconnect

– Cost (yikes):
• N ports/switch, N switches

– Completely unrealistic; no switch has, say, thousands of ports

• N*(N-1)/2 network links

2D Mesh

• People have actually used meshes in HPC systems
– A decade or two ago

• If N nodes, then:
– Diameter is 2 * (!-1)

– Bisection bandwidth is !
– Cost:

• 5 ports per switch, N switches
• ! * (!-1) * 2 network links

Source for image: Wikipedia

2D Torus
• People have actually used 2D torii in HPC systems

– Not that long ago, though now they’re 3D

• If N nodes, then:
– Diameter is !
– Bisection bandwidth is 2 * !

• Have to cut the wraparound links also
– (In addition to the links as for the 2D Mesh)

– Cost:
• Same as 2D mesh, except an additional 2 * ! wrap links

• The wraparound links really do help

Source for image: Wikipedia

Hypercube

• People have actually used hypercubes in HPC
systems
– Couple decades ago

• If N nodes (N = 2k), then:
– Diameter is log(N) = k
– Bisection bandwidth is N/2 = 2k-1

• Must cut all links between cubes
– Cost:

• k+1 ports/switch (k-dimensional cube), N switches
• O(N) network links

16 nodes → 32 links; 32 nodes → 80 links; 256 nodes → 1024 links

Source for image: Wikipedia

Tree
• People have actually used trees in HPC systems

– Today!
• If N nodes and direct connection from node to leaf

switch, then:
– Diameter is log(N)
– Bisection bandwidth is 1
– Cost:

• 3 ports per switch, N switches
• O(N) network links

• How can this possibly be a good idea, given that
the bisection bandwidth is the same as a bus?

Source for image: Wikipedia

Fat Tree
• Same as a tree, except extra links going up tree:

– Bandwidth increases (usually doubles) as you move up
– Still have a single logical link across the bisection cut:

• But given that the bandwidth doubles, this isn’t a problem
– Diameter is still O(log(N))

• Constant in big-O is dependent on number of levels of tree

– Bisection bandwidth depends on number of links
• N nodes and bandwidth doubling results in bisection

bandwidth of N/2

Source for image: cluster-design.org

Dragonfly
• Dragonfly exists in current HPC systems
• If N nodes, then:

– Diameter is 5 (note: independent of N)
• This assumes static routing

– Bisection bandwidth is complicated
• Depends on the number of nodes in a group, number of

groups, number of links between groups
• Definitely lower than fat tree

Routing
• Two extremes

– Shortest path
– Fully adaptive

• Take traffic into account and “route around it”, like the Internet

• Many points in between the two extremes
– Example: Dragonfly has adaptive routing with “minimal

path bias” levels.
• As message gets closer to destination, increase bias for taking

shortest path by some amount

• Must worry about deadlock
– Fully adaptive routing could fail to deliver message

