HPC Interconnects

- Interconnects allow communication between nodes
- Important attributes of interconnects
 - Bandwidth
 - How much data can be moved per second
 - Latency
 - Time to move one byte between nodes
 - Cost
 - How many ports and network links?
 - Power
 - Can be significant in terms of overall system power
 - Won't discuss in this slide deck

Diameter

- Motivation
 - Would prefer that all nodes are fully connected
 - Obviously, this is cost prohibitive and is impractical
 - Settle for "few hops", but would also prefer that the number of hops is a constant
 - Or at least a slow-growing function of the number of nodes
- To compute diameter:
 - Just compute the maximum hop distance between two nodes

Bisection Bandwidth

- Motivation
 - All-to-all communication stresses the network, and can depend on moving data "far across" the network
 Takes into account "bottleneck bandwidth"
- To compute bisection bandwidth:
 - 1. Cut network such that the number of nodes is equal, and
 - 2. Ensure the cut minimizes the bandwidth between the partitions
 - Can do this easily by simply counting the number of links it takes to bisect the network into two partitions
 - Means that maximum bisection bandwidth given N nodes is $(N/2)^2$

Linear Array

- Not realistic (just for illustration)
- If N nodes, then:
 - Diameter is N-1 (remember, worst case)
 - Bisection bandwidth is 1 (cut shown)
 - Cost:
 - N-1 network links

Source for image: Wikipedia

Ring

- Also not realistic (and just for illustration)
- If N nodes, then:
 - Diameter is N/2
 - Bisection bandwidth is 2 (two paths through the cut)
 - Cost:
 - 3 I/O ports per switch, N switches
 - (one I/O port is to the node)
 - N network links

Source for image: Wikipedia

Fully Connected

- Also not realistic (and just for comparison)
- If N nodes, then:
 - Diameter is 1
 - Bisection bandwidth is $(N/2)^2$
 - Have to cut half of the links from a node to disconnect
 - Cost (yikes):
 - N ports/switch, N switches
 - Completely unrealistic; no switch has, say, thousands of ports
 - N*(N-1)/2 network links

2D Mesh

- People have actually used meshes in HPC systems
 A decade or two ago
- If N nodes, then:
 - Diameter is $2 * (\sqrt{N}-1)$
 - Bisection bandwidth is \sqrt{N}
 - Cost:
 - 5 ports per switch, N switches
 - \sqrt{N} * $(\sqrt{N}-1)$ * 2 network links

Source for image: Wikipedia

2D Torus

- People have actually used 2D torii in HPC systems
 Not that long ago, though now they're 3D
- If N nodes, then:
 - Diameter is \sqrt{N}
 - Bisection bandwidth is $2 * \sqrt{N}$
 - Have to cut the wraparound links also
 - (In addition to the links as for the 2D Mesh)

Source for image: Wikipedia

- Cost:
 - Same as 2D mesh, except an additional $2 * \sqrt{N}$ wrap links
- The wraparound links really do help

Hypercube

- People have actually used hypercubes in HPC systems
 - Couple decades ago
- If N nodes $(N = 2^k)$, then:
 - Diameter is log(N) = k
 - Bisection bandwidth is $N/2 = 2^{k-1}$
 - Must cut all links between cubes
 - Cost:

Source for image: Wikipedia

- k+1 ports/switch (k-dimensional cube), N switches
- O(N) network links

16 nodes \rightarrow 32 links; 32 nodes \rightarrow 80 links; 256 nodes \rightarrow 1024 links

Tree

- People have actually used trees in HPC systems

 Today!
- If N nodes and direct connection from node to leaf switch, then:
 - Diameter is log(N)
 - Bisection bandwidth is 1
 - Cost:
 - 3 ports per switch, N switches
 - O(N) network links
- How can this possibly be a good idea, given that the bisection bandwidth is the same as a bus?

Source for image: Wikipedia

Fat Tree

- Same as a tree, except extra links going up tree:
 - Bandwidth increases (usually doubles) as you move up
 - Still have a single logical link across the bisection cut:
 - But given that the bandwidth doubles, this isn't a problem
 - Diameter is still O(log(N))
 - Constant in big-O is dependent on number of levels of tree
 - Bisection bandwidth depends on number of links
 - N nodes and bandwidth doubling results in bisection bandwidth of N/2

Source for image: cluster-design.org

Dragonfly

- Dragonfly exists in current HPC systems
- If N nodes, then:
 - Diameter is 5 (note: independent of N)
 - This assumes static routing
 - Bisection bandwidth is complicated
 - Depends on the number of nodes in a group, number of groups, number of links between groups
 - Definitely lower than fat tree

Routing

- Two extremes
 - Shortest path
 - Fully adaptive
 - Take traffic into account and "route around it", like the Internet
- Many points in between the two extremes
 - Example: Dragonfly has adaptive routing with "minimal path bias" levels.
 - As message gets closer to destination, increase bias for taking shortest path by some amount
- Must worry about deadlock
 - Fully adaptive routing could fail to deliver message