
Eraser
• Problem: race conditions exist in many

(industrial-strength) programs
– Important: programs can crash, end up in

inconsistent states

• Goal: execute program and find race
conditions after the fact
– i.e., a debugging tool

• Solution:
– Dynamically determine race condition using a

lock model
– Report problem locations in code

Overview
• Supports lock-based multithreaded

programs
– Only consider Acquire and Release operations

• Lock is always either free or busy, and if busy there
is exactly one “owner” thread

• Eraser does not allow general semaphores

• Race condition definition:
– Multiple threads access a shared variable,

outside of synchronization, and at least one
thread writes

• Same definition from class

Overview, cont.
• What is the universe of possible ways to

find data races?
– Monitors (doesn’t find, but potentially

eliminates all possibility of races)
• Why not?

– Static analysis
• What’s the problem here? The benefit?

– Dynamic analysis
• Eraser
• Happens-before

Monitors
• Good: statically eliminates races
• Bad: dynamic data structures

– Can argue about this one

Happens-Before
• Definition of happens-before relation

– Partial ordering of executions of different threads,
subject to these rules:

• Within a thread, all statements are ordered by happens before
by their sequential ordering.

• Between threads, if thread A accesses a synchronization object
(in this paper, a lock), and then thread B does, A’s access
happens before B’s access

• Happens-before is transitive
• Any non-ordered events are called concurrent

• Happens-before finds races that could occur

Happens-Before Example

Thread 0 code
x = x + 1
Lock(L)
y = y + 1
Unlock(L)

Thread 1 code
Lock(L)
y = y + 1
Unlock(L)
x = x + 1

Happens-Before Example---
Race Detected

Thread 0 code

x = x + 1
Lock(L)
y = y + 1
Unlock(L)

Thread 1 code
Lock(L)
y = y + 1
Unlock(L)
x = x + 1

Happens-Before Example---
No Race Detected

Thread 0 code
x = x + 1
Lock(L)
y = y + 1
Unlock(L)

Thread 1 code

Lock(L)
y = y + 1
Unlock(L)
x = x + 1

Static Analysis

• Analyze code, looking for race conditions
– Good: may find race conditions that might not

manifest in a particular program execution
• Also, may be able to find (narrow down) potential race

regions, then use dynamic analysis

– Bad: Very hard or very conservative. Does not
generally work well with pointers.

Static Analysis: Race Detected

Thread 0 code
x = x + 1
Lock(L)
y = y + 1
Unlock(L)

Thread 1 code

Lock(L)
y = y + 1
Unlock(L)
x = x + 1

Static Analysis: Race Almost
Surely not Detected

Thread 0 code
*p = *p + 1
Lock(L)
y = y + 1
Unlock(L)

Thread 1 code

Lock(L)
y = y + 1
Unlock(L)
*q = *q + 1What if p and q both point to x?

Sample code for Eraser

Thread 0 code
Lock(mu1)
v = v + 1
Unlock(mu1)

Thread 1 code

Lock(mu2)
v = v + 1
Unlock(mu2)

Eraser: Basic Algorithm
Each shared variable has a candidate lockset

• Program Locks Held C(v)
• (init) nothing mu1, mu2
• T1:Lock(mu1) mu1 mu1, mu2
• T1:v = v + 1 mu1 mu1
• T1:Unlock(mu1) nothing mu1
• T2:Lock(mu2) mu2 mu1
• T2:v = v + 1 mu2 empty (!!)

Problems with simple algorithm

• Initialization (single thread)
main() {

x = 4; x = x+1; // Simple alg. flags an error
thread_create();

}

• Read sharing
– Two or more threads accessing a variable, all

reading
• Eraser basic algorithm is on access (read or write)
• Without changing this, read sharing would be disallowed

Initialization and Read Sharing
• Always start in init state (on first access)
• Proceed to exclusive state on a write
• From exclusive:

– Same thread accesses: stay in exclusive
– New thread reads: go to shared
– New thread writes: go to shared-modified

• From shared:
– New thread writes: go to shared-modified

Exclusive: don’t run Eraser alg
-- possible problem here---why?

Shared: run algorithm but do not flag errors
Shared-Modified: run algorithm and flag errors

Eraser State Machine
courtesy of paper by Savage et al.

Problem here---can expose
shared variable before
finished initializing

Implementation

• Use a binary translation system
– Instrument every load and store of a non-stack

variable
– Not clear how they determine current thread

• Could be done by a call to the thread’s getMyId

– Each memory location is associated with an
index into a hash table of different candidate
lock sets

• Shadow word per memory word (2x overhead)

Performance

• It’s terrible.

Annotations

• When the Eraser algorithm fails, allow user
to annotate
– Memory re-use

• User manages own memory; Eraser doesn’t know
about malloc/free

– Private locks
• User rolls their own locks; Eraser has no idea

– Benign races
• Race conditions that are “ok”.

More on Benign Races

Acquire(L)
if (localmax > globalmax) {
globalmax = localmax

}
Release(L)

if (localmax > globalmax) {
Acquire(L)
if (localmax > globalmax)
globalmax = localmax

Release(L)
}

Relatively common
code pattern

Legal rewrite, but technically
a race condition

Case Studies

• Found bugs in production software
• Found benign races also

