
Data Distribution

• Goal: distribute each array in a program so
that completion time is minimized

• Minimizing completion time has two
components
– Minimize communication
– Balance the computational workload

By “distribute” we mean finding a function
that maps each array element to a node

Owner Computes Rule
• Each data element has an owner

– Owner is responsible for all writes to that
element

– All other nodes can only reference the element

• Owner computes rule is most common
strategy used
– Exception: applications with irregular access

patterns---not always possible to use this rule
• E.g., indirection arrays---may not know what

elements are being written until run time

Modeling Completion Time
Assume f(i) makes no array accesses, and n+1 elements in A, B

for i = 1 to n
A[i] = B[i+1] + f(i)

Transformed to a parallel loop as follows:

for i = start to end by step
A[i] = B[i+1] + f(i)

Modeling completion time, cont.
for i = start to end by step

A[i] = B[i+1] + f(i)

• Time for iteration i:
– Time to compute f(i) + time to load B[i+1] +

time for an addition + time to store A[i] + time
for communication, if any

• Given a data distribution, we can determine
what communication is needed

Modeling completion time, cont.
// Suppose A, B distributed as {BLOCK}
for i = start to end

A[i] = B[i+1] + f(i)

A

B

P0 P1 P2 P3

Modeling completion time, cont.
// Suppose A, B distributed as {BLOCK}
for i = start to end

A[i] = B[i+1] + f(i)

• Communication will occur at the boundaries
• Communication time for iteration i is zero,

except if i is equal to start or end
– In the boundary case, an element of B must be sent

to the previous node
– So, i == start implies start; i == end implies receive

• Unless process is the first or last

Modeling completion time, cont.

• What options do we have to determine the
time for f(i), the load, addition, and store?
– Statically analyze with a cost model
– Execute and profile
– Accept input from the programmer
– Maybe it doesn’t even matter

• If computation is uniform across nodes
• But this isn’t always the case; f(i) might be non-

uniform, i.e., dependent on i

Modeling completion time
(in general)

• Each node’s completion time is the sum of
the times for all iterations that it performs

• Overall completion time is then the
maximum completion time over the nodes

Group Exercise

• In groups: how do we express the optimal
data distribution, given:
– P is the number of nodes
– D is the set of possible distributions
– I(p,d) is the set of iterations on a given timestep

performed by node p when using distribution d
– C(i) is the completion time of iteration i

Group Exercise

• In groups: how do we express the optimal
data distribution, given:
– P is the number of nodes
– D is the set of possible distributions
– I(p,d) is the set of iterations on a given timestep

performed by node p when using distribution d
– C(i) is the completion time of iteration i

Optimal Data Distribution

• Defined as the data distribution that leads to
the smallest overall completion time

• Min-max problem
• NP-complete

– Intuitively, there are “quite a few” ways to
partition the work and the data

Good News

• In practice, there is often an efficient data
distribution that can be easily found
– f(i) may be independent of i, and communication

restricted to the boundaries
• For example, in your Jacobi program, f(i) is

essentially computing the average, and there was
communication only at the top/bottom rows

– Maybe there is even no communication
• For example, on matrix multiplication, there is no

communication after the initial distribution

Possibly Bad News

• In practice, programs may have multiple
phases; each phase may have a different
optimal distribution
– Need to consider data redistribution in such

cases

Example

for t = 1 to timesteps {
for i = 1 to n
A[i] = B[i+1] + f(i) // f(i) accesses no arrays

for i = 1 to n
B[i] = A[i] + g(i) // g(i) accesses no arrays

}

Example (parallelized)
for t = 1 to timesteps {
for i = start to end by step

A[i] = B[i+1] + f(i) // f(i) accesses no arrays
if (distribution needs to change)

Redistribute()
for i = start’ to end’ by step’

B[i] = A[i] + g(i) // g(i) accesses no arrays
if (distribution needs to change)

Redistribute()
}

Assume that BLOCK is optimal
for the first phase (loop)

A

B

P0 P1 P2 P3

Assume that this “IRREGULAR
BLOCK” is optimal for the

second phase (loop)

A

B

P0 P1 P2 P3

How do we decide distributions
per phase?

• First, we can model completion time for each loop in exactly
the same way as before

• We have choices:
– Optimal distribution per phase, with redistribution

• In our example, BLOCK in first phase and
IRREGULAR BLOCK in second phase

– One (identical) distribution for both phases, and that
distribution is optimal in one of the phases

• In our example, either BLOCK or IRREGULAR
BLOCK used in both phases

– Suboptimal (identical) distribution for each phase
• In our example, a different IRREGULAR BLOCK

than the one shown on the previous slide

Group Exercise

• How do we decide between the options listed
on previous slide? To recap, the options are:
– Optimal distribution per phase, with

redistribution
– One (identical) distribution for both phases,

which is optimal in one of the phases
– Suboptimal (identical) distribution for each

phase

How do we decide distributions
per phase?

• Depends on several factors
– Communication latency and bandwidth

• Faster network makes redistribution more efficient

– Computation speed
• Faster processor makes the redistribution relatively

more expensive

– Amount of data that needs to be communicated
• More data makes redistribution more expensive

– How much computation is implied by the code
(i.e., computation-to-communication ratio)

• Higher ratio means balancing load is more important

