
Data Distribution

• Goal: distribute each array in a program so 
that completion time is minimized

• Minimizing completion time has two 
components
– Minimize communication
– Balance the computational workload

By “distribute” we mean finding a function 
that maps each array element to a node



Owner Computes Rule
• Each data element has an owner

– Owner is responsible for all writes to that 
element

– All other nodes can only reference the element

• Owner computes rule is most common 
strategy used
– Exception: applications with irregular access 

patterns---not always possible to use this rule
• E.g., indirection arrays---may not know what 

elements are being written until run time



Modeling Completion Time
Assume f(i) makes no array accesses, and n+1 elements in A, B

for i = 1 to n
A[i] = B[i+1] + f(i)  

Transformed to a parallel loop as follows:

for i = start to end by step
A[i] = B[i+1] + f(i)  



Modeling completion time, cont.
for i = start to end by step

A[i] = B[i+1] + f(i)  

• Time for iteration i: 
– Time to compute f(i) + time to load B[i+1] + 

time for an addition + time to store A[i] + time 
for communication, if any

• Given a data distribution, we can determine 
what communication is needed



Modeling completion time, cont.
// Suppose A, B distributed as {BLOCK}
for i = start to end

A[i] = B[i+1] + f(i)  
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Modeling completion time, cont.
// Suppose A, B distributed as {BLOCK}
for i = start to end

A[i] = B[i+1] + f(i)  

• Communication will occur at the boundaries
• Communication time for iteration i is zero, 

except if i is equal to start or end 
– In the boundary case, an element of B must be sent 

to the previous node
– So, i == start implies start; i == end implies receive

• Unless process is the first or last



Modeling completion time, cont.

• What options do we have to determine the 
time for f(i), the load, addition, and store?
– Statically analyze with a cost model
– Execute and profile
– Accept input from the programmer
– Maybe it doesn’t even matter

• If computation is uniform across nodes
• But this isn’t always the case; f(i) might be non-

uniform, i.e., dependent on i



Modeling completion time
(in general)

• Each node’s completion time is the sum of 
the times for all iterations that it performs

• Overall completion time is then the 
maximum completion time over the nodes



Group Exercise

• In groups: how do we express the optimal 
data distribution, given:
– P is the number of nodes
– D is the set of possible distributions
– I(p,d) is the set of iterations on a given timestep

performed by node p when using distribution d
– C(i) is the completion time of iteration i



Group Exercise
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data distribution, given:
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– D is the set of possible distributions
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Optimal Data Distribution

• Defined as the data distribution that leads to 
the smallest overall completion time

• Min-max problem
• NP-complete 

– Intuitively, there are “quite a few” ways to 
partition the work and the data



Good News

• In practice, there is often an efficient data 
distribution that can be easily found
– f(i) may be independent of i, and communication 

restricted to the boundaries 
• For example, in your Jacobi program, f(i) is 

essentially computing the average, and there was 
communication only at the top/bottom rows

– Maybe there is even no communication
• For example, on matrix multiplication, there is no 

communication after the initial distribution



Possibly Bad News

• In practice, programs may have multiple 
phases; each phase may have a different 
optimal distribution
– Need to consider data redistribution in such 

cases



Example

for t = 1 to timesteps {
for i = 1 to n
A[i] = B[i+1] + f(i)  // f(i) accesses no arrays

for i = 1 to n
B[i] = A[i] + g(i)  // g(i) accesses no arrays

}



Example (parallelized)
for t = 1 to timesteps {
for i = start to end by step

A[i] = B[i+1] + f(i)  // f(i) accesses no arrays
if (distribution needs to change)

Redistribute( ) 
for i = start’ to end’ by step’

B[i] = A[i] + g(i)  // g(i) accesses no arrays
if (distribution needs to change)

Redistribute( ) 
}



Assume that BLOCK is optimal 
for the first phase (loop)
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Assume that this “IRREGULAR 
BLOCK” is optimal for the 

second phase (loop)
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How do we decide distributions 
per phase?

• First, we can model completion time for each loop in exactly 
the same way as before

• We have choices:
– Optimal distribution per phase, with redistribution

• In our example, BLOCK in first phase and 
IRREGULAR BLOCK in second phase

– One (identical) distribution for both phases, and that 
distribution is optimal in one of the phases

• In our example, either BLOCK or IRREGULAR 
BLOCK used in both phases

– Suboptimal  (identical) distribution for each phase
• In our example, a different IRREGULAR BLOCK 

than the one shown on the previous slide



Group Exercise

• How do we decide between the options listed 
on previous slide?  To recap, the options are:
– Optimal distribution per phase, with 

redistribution
– One (identical) distribution for both phases, 

which is optimal in one of the phases
– Suboptimal  (identical) distribution for each 

phase



How do we decide distributions 
per phase?

• Depends on several factors
– Communication latency and bandwidth

• Faster network makes redistribution more efficient

– Computation speed
• Faster processor makes the redistribution relatively 

more expensive

– Amount of data that needs to be communicated
• More data makes redistribution more expensive

– How much computation is implied by the code 
(i.e., computation-to-communication ratio)

• Higher ratio means balancing load is more important


