Barriers

- Points in program at which all threads have to arrive before any can proceed
- Provide sequence control

Centralized Barrier

Shared variable: count $=0$
Code for barrier for a given thread:
FetchAndAdd(count, 1)
while (count != numThreads) ;

Problem: ?

Centralized Barrier

Shared variable: count $=0$
Code for barrier for a given thread:
FetchAndAdd(count, 1)
while (count != numThreads) ;

Problem: reset

Centralized Barrier, Suggested by Past Students

Shared variable: count $=0$
Code for barrier for a given thread:
FetchAndAdd(count, 1)
while (count mod numThreads != 0) ;

Problem?

Centralized Barrier, Suggested by Past Students, Version 2.0

Shared variable: count $=0$
Code for barrier for a given thread:
if (FetchAndAdd(count, 1) mod numThreads $==0$) count $=0$
else
while (count != 0) ;

Problem?

Centralized Barrier (handles reset)

Shared variables: countEven $=$ countOdd $=\mathrm{nB}=0$
Code for barrier for a given thread:
if $(\mathrm{nB} \bmod 2==0)\{$
if (FetchAndAdd(countEven, 1$)==$ numThreads) $\{$ $\mathrm{nB}=\mathrm{nB}+1$ countEven $=0$
\}
else
while (countEven != 0) ;
else \{
// same code, but with countOdd

Symmetric Barrier, 2 threads (not quite correct) $\operatorname{arrive}[0]==\operatorname{arrive}[1]==0$ initially

Thread 0's code
arrive[0] = 1
while (arrive[1] != 1)
;
arrive[1] $=0$

Thread 1's code
arrive[1] = 1
while (arrive[0] ! = 1)
,
arrive[0] $=0$

Symmetric Barrier, 2 threads (correct)

$$
\operatorname{arrive}[0]==\operatorname{arrive}[1]==0 \text { initially }
$$

Thread 0's code
while (arrive[0] ! = 0) ;
arrive[0] = 1
while (arrive[1] != 1)
arrive[1] $=0$

Thread 1's code
while (arrive[1] != 0)
arrive[1] = 1
while (arrive[0] != 1)

$$
\begin{gathered}
; \\
\operatorname{arrive}[0]=0
\end{gathered}
$$

Symmetric Barrier, 2^{p} threads

- Conceptually, just glue multiple two-thread barriers together
- Problem: flags meant for one thread might be seen by another thread

Dissemination Barrier

int arrive $[0: \mathrm{P}-1]=\{0,0, \ldots, 0\}$

Thread i's code:
for $\mathrm{j}=1$ to ceiling $(\log (\mathrm{P}))\{$
while (arrive[i] !=0) ;
arrive $[i]=j$
$\operatorname{lookAt}=\left(i+2^{\mathrm{j}-1}\right) \bmod \mathrm{P}$
while (arrive[lookAt] != j) ;
arrive[lookAt] $=0$

