
Barriers

• Points in program at which all threads have
to arrive before any can proceed

• Provide sequence control

Centralized Barrier
Shared variable: count = 0
Code for barrier for a given thread:

FetchAndAdd(count, 1)
while (count != numThreads) ;

Problem: ?

Centralized Barrier
Shared variable: count = 0
Code for barrier for a given thread:

FetchAndAdd(count, 1)
while (count != numThreads) ;

Problem: reset

Centralized Barrier, Suggested by
Past Students

Shared variable: count = 0
Code for barrier for a given thread:

FetchAndAdd(count, 1)
while (count mod numThreads != 0) ;

Problem?

Centralized Barrier, Suggested by
Past Students, Version 2.0

Shared variable: count = 0
Code for barrier for a given thread:

if (FetchAndAdd(count, 1) mod numThreads == 0)
count = 0

else
while (count != 0) ;

Problem?

Centralized Barrier (handles reset)
Shared variables: countEven = countOdd = nB = 0
Code for barrier for a given thread:

if (nB mod 2 == 0) {
if (FetchAndAdd(countEven, 1) == numThreads) {

nB = nB + 1
countEven = 0

}
else

while (countEven != 0) ;
else {

// same code, but with countOdd
}

Symmetric Barrier, 2 threads
(not quite correct)

Thread 0’s code

arrive[0] = 1
while (arrive[1] != 1)

;
arrive[1] = 0

Thread 1’s code

arrive[1] = 1
while (arrive[0] != 1)

;
arrive[0] = 0

arrive[0] == arrive[1] == 0 initially

Symmetric Barrier, 2 threads
(correct)

Thread 0’s code

while (arrive[0] != 0)
;

arrive[0] = 1
while (arrive[1] != 1)

;
arrive[1] = 0

Thread 1’s code

while (arrive[1] != 0)
;

arrive[1] = 1
while (arrive[0] != 1)

;
arrive[0] = 0

arrive[0] == arrive[1] == 0 initially

Symmetric Barrier, 2p threads
• Conceptually, just glue multiple two-thread

barriers together
– Problem: flags meant for one thread might be seen by

another thread

Dissemination Barrier
int arrive[0:P-1] = {0, 0, …, 0}

Thread i’s code:
for j = 1 to ceiling(log(P)) {

while (arrive[i] != 0) ;
arrive[i] = j
lookAt = (i + 2j-1) mod P
while (arrive[lookAt] != j) ;
arrive[lookAt] = 0

}

