
CSc 522: Parallel and Distributed
Computing

• Instructor: David Lowenthal

Parallel Architecture

Why parallelism?

1. Finish applications sooner
– Search engine
– High-res graphics
– Weather prediction
– Nuclear reactions
– Bioinformatics

2. Because CPUs aren’t getting faster
3. Obtain more resources

– E.g., More memory, disk

Why distributed computing?

• Reliability
• Load sharing
• Availability

Parallelization issues

• How many CPUs?
• How to synchronize?
• How to communicate?
• How to determine granularity?
• General purpose vs special purpose?
• What is the programmer’s view of the

machine?

SIMD machine (e.g., Connection Machine)

Instructions broadcast to all; implicit synchronization betw. instructions

Data Bus

(Tiny) CPU (Tiny) CPU

(Tiny) CPU(Tiny) CPU(Tiny) CPU

(Tiny) CPU

Master
Control Bus

Shared-Memory Multiprocessor
(“Multicore”)

Cache

CPU

Memory Memory Memory

Cache

CPU

Cache

CPU

Memory is shared; Cache coherence is an issue
MIMD machine; each core can execute independent instruction stream

Bus

Typical Layout of a Socket

Multiple Sockets on a Chip
(picture courtesy of Intel)

Distributed Memory Multicomputer

Cache

Interconnection Network

CPU

Local Memory

Cache

Local Memory

Cache

Local Memory

Memory is not shared
Also a MIMD machine

CPU CPU

All Machines are Multicore
(this is still a multicomputer)

Interconnection Network

Memory is not shared between machines

Multicore
Machine

Multicore
Machine

Multicore
Machine

Key Advantage/Disadvantage:
Shared-Memory Multiprocessors
• Advantage:

– Can write sequential program, profile it, and
then parallelize the expensive part(s)

• No other modification necessary

• Disadvantage:
– Does not scale to large core counts

• Bus saturation, hardware complexity

Key Advantage/Disadvantage:
Distributed-Memory Multicomputers
• Advantage:

– Can scale to large numbers of nodes
• Disadvantage:

– Harder to program
• Must modify entire program even if only a small part

needs to be parallelized

Hybrid machines

• NUMA shared memory machines
– NUMA: Non-Uniform Memory Access time
– Physically distributed memory in the hardware,

but user sees a shared-memory model
• Hardware satisfies any remote memory request

– Most multicore machines are actually NUMA
(e.g., AMD Opterons)

– Even if programmer can use shared-memory
programming model, must pay attention to
locality for maximum performance

Typical Layout of a Socket

Significant NUMA effects

The Cloud

• Cloud computing is generally thought to be
aimed at distributed computing, but this is
not really true any more
– Example: Amazon EC2 rents HPC cluster nodes.
– Recently fast networking has become available

• Used to be 10Gb Ethernet was fastest
• EC2 now has a 100Gb instance, and Microsoft Azure

has Infiniband

High-End Architectures

• BlueGene/L (Lawrence Livermore National Lab)
– #1 in world from 2004--2007
– Up to over 100K cores
– Disruptive design

• In a sense, was similar to the rise of multicore machines---
instead of a smaller number of fast machines, a (much)
larger number of slow machines

High-End Architectures

• Jaguar (Oak Ridge National Lab)
– Petaflop machine; #1 in world in 2009
– 224,000 Opteron cores total

• 18,688 compute nodes; each is a dual-socket six-core
node

– Infiniband network
• Provides low latency (can be < 1 microsecond) and

high bandwidth (think several GB/s)

– Consumes 7 MW of power
• A lot of power for 1.75 petaflops (why is this relevant?)

– Flop is a floating point operation per second

High-End Architectures

• Tianhe-1A (China)
– Overtook Jaguar in 2010 (4 petaflops peak)
– 14K Xeons plus 7K GPUs
– Custom network; twice as good as Infiniband
– Consumes only 4 MW of power

• Xeons more power efficient (also a later chip); plus,
GPUs are extremely power efficient

• However, how easy is it to reach peak performance?

High-End Architectures

• K computer (Japan)
– 8 petaflops (took #1 ranking in 2011)
– 88K Sparcs at 8 cores each
– Custom network called Tofu (3-d torus

interconnect)
– Consumes 10-13MW of power

High-End Architectures

• Sequoia [BG/Q] (IBM/Lawrence Livermore)
– 16 petaflops (took #1 ranking in 2012)
– 98K Power nodes at 16 cores each
– Consumes 8 MW of power

High-End Architectures: Tianhe-2

• 54.9 Petaflops
• 32,000 Ivy Bridge Xeon sockets

– Each has 12 cores
• 48,000 Xeon Phi accelerators

– Each has 57 cores
• Total: 3.1M cores
• Custom interconnect (fat tree); low latency

(9 microsecs) and high bandwidth (6 GB/s)
• Consumes 17.6 MW of power

Tianhe-2 Compute Node

• 2 Ivy Bridge sockets; 3 Xeon Phi boards
• 64 GB RAM
• Xeon Phi acts as coprocessor

– Each of the 57 cores has 4 hardware threads
(“hyperthreads”) and runs at 1.1 GHz (low clock
speed, but many cores)

Tianhe-2 Power Consumption

• 17.6 MW peak power
• Additionally, 7 MW for cooling using chilled

water
• Well over DOE’s “limit”, assuming that limit

is total power
• Performance 2x that of Titan (ORNL), but

power consumption also 2x

Tianhe-2 Software

• Uses variant of Linux
• Provides common libraries for high-

performance computing
– Plus a mechanism for expressing codes for the

Phi

High-End Architectures

• Summit (IBM/Oak Ridge)
– 148 Petaflops
– 4,608 nodes
– 44 cores/node (22 cores/socket, 2 sockets/node)
– 4 hyperthreads/core
– 27,648 GPUs (six/node)
– Consumes 10 MW of power
– Can we program it to get near peak performance?

Summit and Sierra

• Summit (ORNL) and Sierra (LLNL) are the
two fastest supercomputers in the world

• Both use “fat nodes”
– Dual sockets
– Many GPUs
– More memory

• With fat nodes, there are fewer nodes
– Better for reducing number of messages
– Lower runtime variability

• Adaptive routing

Power Issues
• Current HPC goal is to hit an exaflop

– 1 exaflop is 1000 petaflops
• DOE (i.e., the government/customer)

originally allocated 20 MW of power to hit
an exaflop
– Current target is 40 MW for the first exaflop

machine
– Will we be able to get near an exaflop for

anything other than the “race car” applications?

Interconnects
• How are the nodes of a system connected?
• Critical question for efficiency, as HPC

applications communicate
– Potentially a lot of data sent/received, and

frequently
• Will cover this in detail later in the semester

BlueGene/L Torus Network
(picture courtesy of cluster-design.org)

• Each node has six neighbors
• If dimensions are NxNxN, worst case

number of hops is 3N/2.
– This is because in each direction, the worst case

is hopping half the size of that dimension

BlueGene/Q 5-d Torus Network
(picture courtesy of LLNL)

• Each node has ten neighbors
• If dimensions are NxNxNxNxN, worst case

number of hops is 5N/2.
– N will decrease in size as dimensionality of

Torus increases, assuming a fixed node count

Dragonfly Network
(picture courtesy of paper by Bhatele et al.)

• All-to-all connectivity in row and column of
each group
– Can get to any node in group in two hops
– Implies ability to get to any node in any group in

no more than five hops
– Will do adaptive routing if there is congestion

Fat Tree Interconnects
(picture courtesy of cluster-design.org)

• Nodes are at bottom of tree; switches at
interior nodes
– Bandwidth increases higher in the tree

• Handles collective communication

