
CSc 522: Parallel and Distributed 
Computing

• Instructor: David Lowenthal



Parallel Architecture



Why parallelism?

1. Finish applications sooner
– Search engine
– High-res graphics
– Weather prediction
– Nuclear reactions
– Bioinformatics

2. Because CPUs aren’t getting faster
3. Obtain more resources

– E.g., More memory, disk



Why distributed computing?

• Reliability
• Load sharing
• Availability



Parallelization issues

• How many CPUs?
• How to synchronize?
• How to communicate?
• How to determine granularity?
• General purpose vs special purpose?
• What is the programmer’s view of the 

machine?



SIMD machine (e.g., Connection Machine)
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Shared-Memory Multiprocessor
(“Multicore”)

Cache

CPU

Memory Memory Memory

Cache

CPU

Cache

CPU

Memory is shared; Cache coherence is an issue
MIMD machine; each core can execute independent instruction stream
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Typical Layout of a Socket



Multiple Sockets on a Chip
(picture courtesy of Intel)



Distributed Memory Multicomputer
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All Machines are Multicore
(this is still a multicomputer)
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Key Advantage/Disadvantage: 
Shared-Memory Multiprocessors
• Advantage: 

– Can write sequential program, profile it, and 
then parallelize the expensive part(s)

• No other modification necessary

• Disadvantage:
– Does not scale to large core counts

• Bus saturation, hardware complexity



Key Advantage/Disadvantage: 
Distributed-Memory Multicomputers
• Advantage: 

– Can scale to large numbers of nodes
• Disadvantage:

– Harder to program
• Must modify entire program even if only a small part 

needs to be parallelized



Hybrid machines

• NUMA shared memory machines
– NUMA: Non-Uniform Memory Access time
– Physically distributed memory in the hardware, 

but user sees a shared-memory model
• Hardware satisfies any remote memory request

– Most multicore machines are actually NUMA 
(e.g., AMD Opterons)

– Even if programmer can use shared-memory 
programming model, must pay attention to 
locality for maximum performance



Typical Layout of a Socket

Significant NUMA effects



The Cloud

• Cloud computing is generally thought to be 
aimed at distributed computing, but this is 
not really true any more
– Example: Amazon EC2 rents HPC cluster nodes.
– Recently fast networking has become available

• Used to be 10Gb Ethernet was fastest
• EC2 now has a 100Gb instance, and Microsoft Azure 

has Infiniband



High-End Architectures

• BlueGene/L (Lawrence Livermore National Lab)
– #1 in world from 2004--2007
– Up to over 100K cores
– Disruptive design

• In a sense, was similar to the rise of multicore machines---
instead of a smaller number of fast machines, a (much) 
larger number of slow machines



High-End Architectures

• Jaguar (Oak Ridge National Lab)
– Petaflop machine; #1 in world in 2009
– 224,000 Opteron cores total

• 18,688 compute nodes; each is a dual-socket six-core 
node

– Infiniband network
• Provides low latency (can be < 1 microsecond) and 

high bandwidth (think several GB/s)

– Consumes 7 MW of power
• A lot of power for 1.75 petaflops (why is this relevant?)

– Flop is a floating point operation per second



High-End Architectures

• Tianhe-1A (China)
– Overtook Jaguar in 2010 (4 petaflops peak)
– 14K Xeons plus 7K GPUs
– Custom network; twice as good as Infiniband
– Consumes only 4 MW of power

• Xeons more power efficient (also a later chip); plus, 
GPUs are extremely power efficient

• However, how easy is it to reach peak performance?  



High-End Architectures

• K computer (Japan)
– 8 petaflops (took #1 ranking in 2011)
– 88K Sparcs at 8 cores each
– Custom network called Tofu (3-d torus 

interconnect)
– Consumes 10-13MW of power



High-End Architectures

• Sequoia [BG/Q] (IBM/Lawrence Livermore)
– 16 petaflops (took #1 ranking in 2012)
– 98K Power nodes at 16 cores each
– Consumes 8 MW of power



High-End Architectures: Tianhe-2

• 54.9 Petaflops
• 32,000 Ivy Bridge Xeon sockets

– Each has 12 cores
• 48,000 Xeon Phi accelerators

– Each has 57 cores
• Total: 3.1M cores
• Custom interconnect (fat tree); low latency 

(9 microsecs) and high bandwidth (6 GB/s)
• Consumes 17.6 MW of power



Tianhe-2 Compute Node

• 2 Ivy Bridge sockets; 3 Xeon Phi boards
• 64 GB RAM
• Xeon Phi acts as coprocessor

– Each of the 57 cores has 4 hardware threads 
(“hyperthreads”) and runs at 1.1 GHz (low clock 
speed, but many cores)



Tianhe-2 Power Consumption

• 17.6 MW peak power
• Additionally, 7 MW for cooling using chilled 

water
• Well over DOE’s “limit”, assuming that limit 

is total power
• Performance 2x that of Titan (ORNL), but 

power consumption also 2x



Tianhe-2 Software

• Uses variant of Linux
• Provides common libraries for high-

performance computing
– Plus a mechanism for expressing codes for the 

Phi



High-End Architectures

• Summit (IBM/Oak Ridge)
– 148 Petaflops
– 4,608 nodes
– 44 cores/node (22 cores/socket, 2 sockets/node)
– 4 hyperthreads/core
– 27,648 GPUs (six/node)
– Consumes 10 MW of power
– Can we program it to get near peak performance?



Summit and Sierra

• Summit (ORNL) and Sierra (LLNL) are the 
two fastest supercomputers in the world

• Both use “fat nodes”
– Dual sockets
– Many GPUs
– More memory

• With fat nodes, there are fewer nodes
– Better for reducing number of messages
– Lower runtime variability

• Adaptive routing



Power Issues
• Current HPC goal is to hit an exaflop

– 1 exaflop is 1000 petaflops
• DOE (i.e., the government/customer) 

originally allocated 20 MW of power to hit 
an exaflop
– Current target is 40 MW for the first exaflop 

machine
– Will we be able to get near an exaflop for 

anything other than the “race car” applications?



Interconnects
• How are the nodes of a system connected?
• Critical question for efficiency, as HPC 

applications communicate
– Potentially a lot of data sent/received, and 

frequently
• Will cover this in detail later in the semester



BlueGene/L Torus Network
(picture courtesy of cluster-design.org)

• Each node has six neighbors
• If dimensions are NxNxN, worst case 

number of hops is 3N/2.
– This is because in each direction, the worst case 

is hopping half the size of that dimension



BlueGene/Q 5-d Torus Network
(picture courtesy of LLNL)

• Each node has ten neighbors
• If dimensions are NxNxNxNxN, worst case 

number of hops is 5N/2.
– N will decrease in size as dimensionality of 

Torus increases, assuming a fixed node count



Dragonfly Network 
(picture courtesy of paper by Bhatele et al.)

• All-to-all connectivity in row and column of 
each group
– Can get to any node in group in two hops
– Implies ability to get to any node in any group in 

no more than five hops
– Will do adaptive routing if there is congestion



Fat Tree Interconnects
(picture courtesy of cluster-design.org)

• Nodes are at bottom of tree; switches at 
interior nodes
– Bandwidth increases higher in the tree

• Handles collective communication


