CSc 522, Fall 2019, Program #3: Redundant MPI

Due date: Wednesday, December 11th, at 8am. No late assignments will be accepted.

In this assignment you will build a redundant MPI implementation. Specifically, you will implement,
using PMPI, a scheme by which an MPI program runs redundantly such that if one MPI process fails, the
program will continue with the replica process. In other words, you will be able to survive certain types of
failures.

Assignment details are given below.

Requirements
The following are required.

e You are to implement the parallel protocol as described in the Ferreira SC11 paper.

o If the user wishes to execute an MPI program on n processes, we assume the user desires, additionally,
an n process replica—so full replication of the user’s n processes. To do this, the program will be
executed with 2n processes, i.e., mpirun -np 2n <rest of params>. You will interpret
this as follows: the first n processes in the MPI_COMM_WORLD communicator will be the primary, and
the second n processes will be the replica.

e You will only support (and therefore intercept) the following communication routines: MPI_Send,
MPI_Recv, and MPI Barrier. You will intercept MPI_Send and MPI_Recv and implement the
redundancy protocol. For MPI_Barrier, “dissolve” it into MPI_Send and MPI_Recv calls (you
can do this by intercepting MPI_Barrier and making calls to MPI_Send and MPI_Recv instead
of invoking PMPI _Barrier). Note that within MPT_Barrier, you must invoke MPI_Send and
MPI_Recv (not PMPI_Send and PMPI_Recv), because you need redundancy there also.

e To support these communication functions, you will need to also need to intercept other MPI func-
tions.

— First, you must intercept MPI_Comm_rank and MPI_Comm_size. Specifically, you need to
make sure that MPT_Comm_rank maps any processes in the range n to 2n — 1toOton — 1.
Also, MPT_Comm_size must return n, not 2n.

— Second, you will almost certatinly want to intercept MPI_Init (as you will be setting things up
there).

— Third, you will be intercepting MPI _Pcontrol (see below). This function provides a common
interface for profiling—it does not actually do anything, but instead exists so that the program-
mer can inform the profiling layer of application-specific items. In our case, the programmer
(i.e., me) is informing the profiling layer (i.e., you) of which process is killed.

e You must support MPT_ANY_SOURCE on an MPI_Recv.

e You must not send messages over MP I_COMM_WORLD. You need to create three communicators within
your interception code: one for messages that are sent within the primary group, one for messages



that are sent within the replica group, and one for sending messages between the groups. A couple of
helpful functions are MPI_Comm_split and MPI_Comm_dup.

e As mentioned above, a process will be “killed” (by my test programs) explicitly, via user program
calls to MPI_Pcontrol. The single parameter to MPI_Pcontrol will indicate the process to be
killed; note that if a replica is to be killed, the id will be in the range n to 2n — 1. Note that the
process will not actually be killed, but you are not to use it for the rest of the program. The “killing”
of a process takes effect at the MPI _Barrier following the call to MPI_Pcontrol (which will be
invoked on all processes); any process killed must call MPT _Finalize rather than returning from
the barrier; this will ensure that no further MPI calls occur. User programs (i.e., my test cases) will
not invoke any MPI calls (other than another MPI_Pcontrol) between an MPI _Pcontrol and
the next barrier. You also need to have the now-dead process invoke exit (0) immediately after
invoking MPI Finalize.

e It will never be the case that, for a particular process, a primary and replica will both be killed.
Therefore, you do not need to do any checkpointing. However, you need to be able to survive multiple
failures (for example, primary process zero and replica process one can both fail). This means that
when a process fails, the surviving partner process must take over the role of the failing partner for the
rest of the program. For example, if A and B are primaries and A’ and B’ are replicas, then if A fails,
A’ now has two processes to which it must communicate: B and B’. Note that you have the option to
simply suppress a send from B to A’ as long as B’ is still alive (because in such a case, B’ will send to
A’, and A’ doesn’t actually need the second message).

e Note that it is possible for the entire primary set (or the entire replica set) to be killed.

e Moreover, in any program in which an MPT_ANY_SOURCE is used, any processes killed will only be
ones that solely receive; and, only one process in the entire program will be killed.

e The total number of MPI processes in the primary (and therefore also in replica) will be at least two.
e You may not send messages within your implementation that are do not have a matching receive.
e My test programs will only ever use MP I_COMM_WORLD.

e My test programs will not send and receive across a barrier, i.e., there will not be a barrier between
the invocation of the send and the receive.

Implementation Issues

Here are some suggestions.
e You will want to create the new communicators within MPI_Init.

e You must ensure that the primary group of processes and the replica group of processes does not get
too far out of phase. In other words, if the primary has a process fail, the replica process that is used in
its place needs to be “in sync” with the primary processes. If, for example, the replica process is two
global synchronization points behind the primary process it is replacing, there is no way to bring it up
to date. You may address this any way you like, but the easiest way I can see is to have the senders do
a message exchange.



Note: ignoring the Kkilling of a process will be considered academic dishonesty. If you do not
implement something, you must disclose it to me.

Experiments

Use your redundant MPI system on 4 (total) processes to make sure it is functioning correctly (two primary,
two replicas).

To turn the assignment, create a tar file named prog3.tar with your profiling code along with a
Makefile that will build a target of app given app.c. Note: if you do not name your file prog3.tar,
you will lose points. The turnin directory is csc522-£f19-prog3. I will be executing your program on
lectura.



