
CSc 522, Fall 2019, Program #2: MPI critical-path profiler

Due date: Tuesday, November 12th, at 8am. No late assignments will be accepted.

In this assignment you will build an MPI critical-path profiler . Broadly speaking, the user will execute
a program, and you will produce a directed graph called an MPI task graph with the critical path annotated.
Because this assignment uses MPI, you must use C or C++ to intercept MPI calls (which is a very small part
of the assignment). You may use any language you wish to complete the rest of the assignment.

Details are given below.

Creating a Profiler

The way you create the profiler is by using the PMPI layer. Essentially, MPI is designed in such a way that
each MPI function is defined as a weak symbol. That means that all MPI functions have an implementation
within the MPI library. However, if you, the programmer, override that implementation by creating your
own version of the MPI function, your version will instead be invoked. The existing MPI library version of
the calls simply invokes a function by the same name except there is a “P” before it. For example, if the
user invokes MPI Barrier(MPI COMM WORLD), the MPI library implementation of this function looks
as follows:

MPI_Barrier(MPI_COMM_WORLD) {
PMPI_Barrier(MPI_COMM_WORLD);

}

All the “real” code that implements a barrier is within PMPI Barrier. This allows you to override
MPI Barrier as follows:

MPI_Barrier(MPI_COMM_WORLD) {
Pre_MPI() // do something before calling the "real" barrier
PMPI_Barrier(MPI_COMM_WORLD);
Post_MPI() // do something after calling the "real" barrier

}

For example, one thing one might do within your version of MPI Barrier is add one to a counter, so you
can keep the total number of barriers executed. Another might be to time the barrier.

To provide a generic wrapper that will intercept all functions, please use the MPI wrapper generator,
developed by Todd Gamblin of Lawrence Livermore National Laboratory. While I am not requiring this if
you really feel like you need to implement this yourself, I suggest spending the (short) time to learn it. See
https://github.com/tgamblin/wrap for details. The distribution comes with an example wrap
file, and you can use one of the examples in there to generate all your wrapper functions.

MPI Task Graph

During execution of the MPI program, you need to generate an MPI task graph. Below, we define terms
and explain how to do this. An MPI task graph is a directed, acyclic, weighted graph with the following
attributes:
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• Your task graph will support only the following operations: MPI Init, MPI Finalize, MPI Barrier,
MPI Alltoall, MPI Allreduce, MPI Send, MPI Isend, MPI Recv, MPI Irecv, and MPI Wait.
Note: do not put MPI Comm rank or MPI Comm size in your task graph.

• There is one vertex corresponding to each invoked MPI operation (if an MPI operation is invoked
n times, there will be n vertices for that MPI operation).

• There is an edge between every pair of consecutive vertices v and w on the same rank, and the edge
weight is the wallclock time that has elapsed from the end of the MPI operation corresponding to v
and the beginning of the MPI operation corresponding to w.

• If the MPI operation is an MPI Send or MPI Isend, then there is also an edge from vertex v (where
v corresponds to the MPI Send or MPI Isend) to a vertex z (where z corresponds to the matching
[remote] MPI Recv or MPI Wait call, with weight equal to the message latency. (The matching call
is MPI Wait when it is associated with an MPI Irecv call.) Assume all MPI Send operations do
not block, and assume that an MPI rank never sends to itself.

• You must support message tags. This means that if rank i sends two messages with tags T1 and T2 to
rank j, but rank j receives the message with tag T2 first, your MPI task graph should correctly reflect
this.

• To estimate the message latency, you are to run a series of benchmarks that will generate a function
that takes as input a message size (when necessary) and returns the associated message latency. To do
this, set up a program that takes as input a message size and then has rank 0 send to rank 1 a message
of that size and then receive a message (from rank 1) of that size. Rank 1 performs those actions in the
opposite order (first receive, then send). This “ping-pong” should be done a large number of times.
The message latency is then the total time divided by the number of repetitions, divided by 2 (since
we are estimating one-way latency). Perform this experiment for many different message sizes, e.g.,
4 bytes, 8 bytes, 16 bytes, . . ., 32K bytes. Take the series of (byte, time) pairs and perform a linear
regression to get the function you need. Software packages such as Excel, Google Spreadsheet, and R
can do the regression. The regression will produce a slope and a y-intercept. Write these two values
to a file called communicationCoefficients (in the current directory) and then read these two
values in when you intercept MPI Init. They should be double precision, and slope should be first,
and y-intercept second. The reason for this is that when I test your code I will possibly overwrite
communicationCoefficients with my own values.

• There must be a single vertex representing each of MPI Init and MPI Finalize, with appropriate
edges to the first operation on each rank (for MPI Init) and edges from the last operation on each
rank (for MPI Finalize).

• For collectives (specifically, MPI Barrier, MPI Alltoall, and MPI Allreduce), you should
have one vertex with a fan-in and fan-out (see Figure 2). You will assume that all collectives take zero
time. Also, assume that all messages, including collectives, use MPI COMM WORLD as the communi-
cator.

• Important: your algorithm to create the MPI task graph must run with complexity O(r×m), where
r is the number of ranks, and m is the number of messages. Note that this is a lower bound, as simply
processing all the messages takes time r ×m. Notably, you may not use an O(r ×m2) algorithm.
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Critical Path

After program execution (at MPI Finalize), you must run an algorithm to find the critical path. The MPI
task graph graph is directed and acylic, so there is a relatively simple linear time dynamic programming
algorithm to find the critical path. You can find the algorithm online (or perhaps in a library for the language
you are using1). (The critical path is the same thing as the longest path.)

To find the critical path via the algorithm above, you must first have a consistent, merged task graph that
represents the entire program over all nodes. The issue is that you need to collect the graph on each node
locally, and then you need to merge them into one graph after MPI Finalize is invoked.

During execution, I suggest that upon each MPI operation on each node, write a record to a local file.
Add any metadata along with that record that you need. Then, after execution, you can simply use the
per-node files (the filesystem is shared) to create one consistent MPI task graph.

You must save the critical path itself to a file in the following strict format: (1) each vertex must con-
tain the MPI function name with the exact capitalization and punctuation conventions used in MPI itself,
followed by one blank space and then the rank; (2) for each edge, (a) if it is a computation edge, only the
integer value in seconds (rounded to the nearest integer), or (b) if it is a latency edge, only the number
of total bytes in the message. You must use separate lines for vertices and edges; there should never be
two vertices, two edges, or a vertex and an edge on the same line. To compute the number of bytes, use
MPI Type size. You may assume that user programs only send messages of either one int or one
double. Separate all fields by one blank space. For MPI Init, MPI Finalize, and any collective, use
-1 for the rank. You must output this into the file critPath.out. Figure 2 has an example task graph and
corresponding output to be placed in critPath.out. Note that the send-receive edges have the number
of bytes in parentheses. Please understand that I will be using automated grading for critPath.out
files, so if you deviate from the rules above, my grading program will deem it incorrect. An example of the
critical path file, for the program in Figure 1 is shown in the left-hand side of Figure 2. (See the end of the
document for all figures.)

An important assumption for this assignment is that the critical path will be unique. Without this
assumption, I could not automate grading of the critical path output, as two correct programs could produce
two different critical paths. This means that any user program I will test against your profiler will have a
unique critical path.

In addition, we will generate a graphical version of the MPI task graph and its critical path on the screen.
For this, you must use the “DOT” tool (see: http://www.graphviz.org/. The graph should similar
to the right-hand side of Figure 2; the entire MPI task graph should be displayed. The edge weights are
mandatory (with number of bytes in parentheses for any message between different ranks), and the vertices
must be named with the rank and the MPI function they represent. If you use another tool, I cannot help you
with it. Your dot output file must be a representation the entire MPI task graph with the critical path colored
red, with all other edges colored black. Also, you must label the vertices with the MPI operation names.
Please use only three digits to the right of the decimal point.

The DOT graph must be output into the file dotOutput.gv. Do not display the graph on the screen.
I will not be using automated grading for your on-screen displays; that will be manual.

1If you are using the networkx library in python, be warned that the longest path algorithm does not work for the
MultiDiGraph class. You can see me for an explanation.

3



Suggestions

• You have several weeks to do this assignment, but there are a lot of parts that you need to get working.
As always, I suggest that you start early on the assignment.

• Your code to create the graph and find the critical path should be executed right after your MPI Finalize
wrapper calls PMPI Finalize. Note that PMPI Finalize implies a barrier synchronization, so
all MPI processes are done at this point. Make sure to call your code with only one MPI process.

• You will need a way to match up MPI Send/MPI Isendwith MPI Recv/MPI Wait. For example,
consider the case where rank i invokes two identical MPI Send operations, and the destination is rank
j for both, and two MPI Recv operations are invoked there. You need to make sure that you match
the first send with the first receive and the second send with the second receive. There are a couple of
ways this can be done: (1) piggyback a unique identifier along with the message, or (2) send an extra
message with the identifier, right after a send is invoked. I suggest the second solution2.

• Keep in mind that an MPI receive (or wait) operation matches an MPI send only when all of the
following match: sender/receiver, tag, and type. Denoting the tag and type as the signature, the
easiest way I know of to meet the time complexity constraints given above is to use a hash table
indexed by signature. The sending of a message would cause an entry to be added, and receiving
would then match in the hash table using the signature.

• While all ranks must participate in all collective operations (because of the assumption that the com-
municator always is MPI COMM WORLD), you cannot assume that all ranks do identical operations.
For example, all ranks could invoke a barrier, followed by some ranks invoking another barrier imme-
diately, but other ranks do point-to-point communication before invoking the second barrier.

Experiments

Use your critical path system on at least 4 nodes to make sure it is functioning correctly. However, there is
nothing to turn in here.

To turn in the assignment, create a tar file named prog2.tar with your profiling code along with a
Makefile that will build a target of app given app.c. Note that if app.c changes, you must re-build
app. Upon untarring prog2.tar, the files should all be in the directory prog2. Note: if you do not
name your file prog2.tar, you will lose points. In addition, if your makefile does not work, you will lose
points. The turnin directory is csc522-f19-prog2.

2The second solution has a subtle race condition when handling MPI calls we will not be supporting in this assignment, so it is
safe.
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  MPI_Init(&argc, &argc) 

 

  if (me == 0) { 

usleep(600000); 

MPI_Send(&x, 1, MPI_INT, 1, tag, MPI_COMM_WORLD); 

  } 

  else if (me != 3) { 

MPI_Recv (&y, 1, MPI_INT, me-1, tag, MPI_COMM_WORLD, &status); 

usleep(600000); 

MPI_Send(&x, 1, MPI_INT, me+1, tag, MPI_COMM_WORLD); 

  } 

  else { 

MPI_Recv (&y, 1, MPI_INT, 2, tag, MPI_COMM_WORLD, &status); 

usleep(600000); 

  } 

 

  MPI_Barrier(MPI_COMM_WORLD); 

 

  if (me == 0) { 

usleep(1600000); 

MPI_Send(&x, 1, MPI_INT, 1, tag, MPI_COMM_WORLD); 

  } 

  else if (me == 1) { 

MPI_Recv (&y, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &status); 

usleep(400000); 

  } 

 

  MPI_Finalize(); 

 

 Figure 1: Example MPI program. Unimportant parts of the program are deleted for simplicity.
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MPI_Init -1 
1 
MPI_Send 0 
4 
MPI_Recv 1 
1 
MPI_Send 1 
4 
MPI_Recv 2 
1 
MPI_Send 2 
4 
MPI_Recv 3 
1 
MPI_Barrier -1 
2 
MPI_Send 0 
4 
MPI_Recv 1 
0 
MPI_Finalize -1 
 
 

0: MPI_Init

0: MPI_Send

0.604

1: MPI_Recv

0.000

2: MPI_Recv

0.000

3: MPI_Recv

0.000

0: MPI_Barrier

0.000

0.300 (4)

0: MPI_Send

1.604

0: MPI_Finalize

0.000 0.000

1: MPI_Recv

0.000

0.000

0.300 (4)

1: MPI_Send

0.603

0.000

0.300 (4)

0.405

2: MPI_Send

0.602

0.000

0.300 (4)

0.604

Figure 2: Critical path output (left) for an example MPI task graph (right); both are for the program shown
in Figure 1 . The notation X (Y) on the send-receive edge means that the cost is X and the number of bytes
is Y.
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