
Bounded Buffer Problem
• Consider 2 threads:

– one producer, one consmer
– real OS example: ps | grep dkl

• shell forks a thread for “ps” and a thread for “grep
dkl”

– “ps” writes its output into a fixed size buffer; 
“grep” reads the buffer

– access to a specific buffer slot is a critical 
section, but not between slots:

• also may need to wait for buffer to be empty or full



Picture of Bounded Buffer



Bounded Buffer Cont.
• Have the following:

– buffer of size n (i. e., char buffer[n])
– one producer thread
– one consumer thread

• Locks are inappropriate here
– example: producer grabs lock, but must release 

it if buffer is full
– example: producer and consumer access 

distinct locations -- can be concurrent!
• Need something more general



Bounded Buffer, one slot buffer
(shared) buf = NULL initially

Thread 1: 
buf = data

Thread 2:
result = buf

We want the result in thread 2 to be equal to “data”, not NULL



Bounded Buffer, one slot buffer
(shared) buf = NULL initially

Thread 1: 
CSEnter( )
buf = data
CSExit( )

Thread 2:
CSEnter( )
result = buf
CSExit( )

This does not ensure result is “data”.  Why not?



Bounded Buffer, one slot buffer
(shared) buf = NULL initially

Thread 1: 
buf = data

Thread 2:
while (buf == NULL) ;
result = buf

This works (under certain assumptions outside of this course).
However, it is spin-based; plus works only for one slot buffers.



Semaphores (Dijkstra)
• Semaphore is an object

– contains a (private) value and 2 operations
• Semaphore value must be nonnegative
• P(s): <await (s > 0) s = s – 1>

– (implementation) if value is 0, block; else 
decrement value by 1

• V(s): <s = s + 1>
– (implementation) if thread blocked, wake up; 

else value++
• Semaphores are “resource counters”



Semaphore use #1: Critical Sections

sem mutex := 1
entry( )

– P(mutex)
exit( )

– V(mutex)

• Semaphores are at least as powerful than locks
• For mutual exclusion, initialize semaphore to 1



Semaphore use #2: Implementing 
Fork/Join

sem implJoin := 0
threadExit( )

– V(implJoin)
threadJoin( )

– P(implJoin)

• Semaphores are more powerful than locks
• Note here the semaphore is initialized to 0



Semaphore use #3: Bounded Buffer, 
(shared) buf = NULL

(shared) sem full = 0, empty = 1

Thread 1 (producer): 
while (1) {

P(empty)
buf = data
V(full)

}

Thread 2 (consumer):
while (1) {

P(full)
result = buf
V(empty)

}

This finally does what we want (though it’s only single slot)!



Notes on single slot bounded buffer

• Semaphores empty and full are binary 
semaphores
– Their values are restricted to {0,1}; general 

semaphores need only have a nonnegative 
value

• Note that we are ensuring that the values are 
restricted {0,1} (not the semaphore mechanism).

• Further, empty and full are split binary 
semaphores
– At most one of empty or full can have value 1



Split binary semaphores

• Important because:
– Split binary semaphores guarantee mutual 

exclusion if every execution path starts with a P 
on one of the semaphores and ends with a V on 
another

– Of course, one of them must have an initial 
value 1 or deadlock occurs

– We will talk more about this in the 
Readers/Writers problem (later in this unit)



Bounded Buffer, Multiple Slots
(1 producer, 1 consumer)

char buf[n], int front := 0, rear := 0 
sem empty := n, full := 0
Producer( ) Consumer( )

do forever... do forever...
produce message m P(full)
P(empty) m := buf[front]
buf[rear] := m; front := front “+” 1 
rear := rear “+” 1 V(empty)
V(full) consume m



Bounded Buffer (multiple slots, 
producers, and consumers)

char buf[n], int front := 0, rear := 0 
sem empty := n, full := 0, mutexC := 1, mutexP := 1
Producer( ) Consumer( )

do forever... do forever...
produce message m P(full); P(mutexC)
P(empty); P(mutexP) m := buf[front]
buf[rear] := m; front := front “+” 1 
rear := rear “+” 1 V(mutexC); V(empty)
V(mutexP); V(full) consume m

Only difference from single producer and consumer is mutexP and mutexC



Dining Philosophers Picture



Dining Philosophers (incorrect)
sem fork[0:4] = {1}
Philosopher(i): 

P(fork[i]); P(fork[(i+1)%5]
eat
V(fork[i]); V(fork[(i+1)%5]
think

• Can deadlock (if all philosophers grab right 
fork before any grabs left fork)



Dining Philosophers (correct)

sem fork[0:4]={1}
Philosopher(i=0 to 3): 

P(fork[i])
P(fork[(i+1)%5]
eat
V(fork[i])
V(fork[(i+1)%5]
think

Philosopher(4): 
P(fork[0])
P(fork[4])
eat
V(fork[0])
V(fork[4])
think



Readers/Writers 

• Given a database 
– can have multiple “readers” at a time

• don’t ever modify database
– can only have one “writer” at a time

• will modify database
• readers not allowed in while writer is

• Problem has many variations



Readers/Writers Picture



Readers/Writers: 
Overconstrained “Solution”

• Put database in a critical section
• Technically satisfies the constraint that 

readers and writers never are in the database 
at the same time
– Significant problem: readers cannot read 

concurrently!



Readers/Writers High-Level 
Solution, #1

sem rw = 1; int nr = 0
readEnter: <nr++; if (nr == 1) P(rw)>
readExit: <nr--; if (nr == 0) V(rw)>
writeEnter: <P(rw)>
writeExit: <V(rw)>



Readers/Writers Implementation #1

sem rw = 1, mutexR = 1; int nr = 0
readEnter:  P(mutexR); nr++; 

if (nr == 1) P(rw); 
V(mutexR)

readExit:  P(mutexR); nr--;
if (nr == 0) V(rw); 
V(mutexR)

writeEnter: P(rw)
writeExit: V(rw)



Readers/Writers Solution #2
(Passing the Baton)

• Need mutual exclusion in both entry and exit
– use mutex semaphore, initialized to one

• Keep state of database, enforce constraints
– number of delayed readers and writers
– number of readers and writers in database
– Example: prevent nr, nw simultaneously > 0

• One semaphore blocks readers, different 
semaphore blocks writers

• Readers going in can let other readers go in



Readers/Writers High-Level 
Solution, #2 (Passing the Baton)

int nr = 0, nw = 0
readEnter: <await (nw == 0) nr++>
readExit: < nr-->
writeEnter: <await (nr == 0 and nw == 0) nw++>
writeExit: <nw-->



Readers/Writers Solution #2
(Passing the Baton)

• See solution posted on class website



Resource Allocation: Basic Idea
request: <await (ok to satisfy request) take units>
release: <return units>

• For this, can use passing the baton
• But what if we want general resource allocation

– Where every thread can be in its own class



Shortest Job Next (SJN)
• Have N jobs and 1 processor
• Each job has an id and a (known) execution time
• Each job J executes:

Request(time, id)
Wait for both:

• Processor to be available
• J is the waiting job with the smallest execution time

Run to completion on processor
Release( )



Shortest Job Next (incorrect)
bool free = true
request(time, id): <await (free) free = false>
release( ): <free = true>

• This doesn’t work, because there is no notion of 
ordering



Shortest Job Next: 
Private Semaphores

bool free = true; sem e = 1, b[0:n-1] = {0}; List l
request(time, id) release( )

P(e) P(e)
if (!free) { free = true
l.SortedInsert(time, id) if (!empty(l)) {
V(e) int id = l.RemoveFront( )
P(b[id]) V(b[id])

} }
free = false else
V(e) V(e)

Assume SortedInsert sorts on time


