
Parallel Scientific Programming
• Definitions

– Speedup: Ts/Tp, where Ts is the sequential time 
and Tp is the time when using p cores

• “Perfect speedup” is p, which really should be called 
“linear speedup”

• Typically, speedup is less than p---but it can be 
larger because of memory hierarchy effects

– Efficiency: Speedup/p
• Intuition: how well am I using my p cores



“Superlinear” Speedup?
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Graphs of Speedup and Efficiency
(shown on board)



Parallel Scientific Programming
• Definitions, continued

– Amdahl’s law: if Ts is sequential time, then:
• Tp ≈ Ts * (1-f) + (Ts / p) * f, where f is the fraction 

of the program that is parallelizable, and p is the 
number of cores.

• Intuition: the non-parallelizable portion doesn’t 
speed up at all, and the parallelizable part scales 
linearly

• Of course, this isn’t true in general; one might, for 
example, have load imbalance in a parallelizable 
portion---also ignored is process/thread creation, 
communication, synchronization



Source: By Daniels220 at English Wikipedia, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=6678551



Example use of Amdahl’s Law
• Suppose program takes 50 seconds 

sequentially, but of that 50 seconds:
– 5 seconds is initialization that can’t be 

parallelized
– 5 seconds is finalization that also can’t be 

parallelized
• Then the maximum speedup possible is 5!

– Even if we have an arbitrarily large number of 
cores!

– Lesson: try to avoid sequential portions of code



Different parallel programming styles 
(end of Chapter 3)

• Iterative: SPMD (e.g., Jacobi iteration)
• Recursive: adaptive quadrature
• Task parallel: independent portions of 

programs
• Bag of tasks: implementation of recursive, 

generally, but also can be used for iterative



Data Parallel Algorithms
• Execute identical code on different parts of 

a data structure
– Usually we mean “SPMD algorithms”, which 

stands for Single Program Multiple Data
– Data Parallel implies barrier after every 

instruction (arose from programming SIMD 
architectures; recall SIMD is Single Instruction 
Multiple Data)

– SPMD allows barriers at arbitrary points (arose 
from MIMD architectures)

• It is a relaxation of SIMD



Picture: finding the sum of an 
array in parallel (SPMD program)



Finding the sum of an array in parallel
(SPMD program)

int sum[n], old[n], a[n]  // Array a initialized to arbitrary values
co i := 0 to n-1
int d = 1
sum[i] = a[i]
while (d < n) {

old[i] = sum[i]
barrier
if (i – d >= 0)

sum[i] = old[i-d] + sum[i]
barrier
d = d * 2

}
oc

Why?

Why?



Picture: Jacobi Iteration


