
Parallel Scientific Programming
• Definitions

– Speedup: Ts/Tp, where Ts is the sequential time
and Tp is the time when using p cores

• “Perfect speedup” is p, which really should be called
“linear speedup”

• Typically, speedup is less than p---but it can be
larger because of memory hierarchy effects

– Efficiency: Speedup/p
• Intuition: how well am I using my p cores

“Superlinear” Speedup?

Cache

CPU (core)

Memory Memory Memory

Cache

CPU (core)

Cache

CPU (core)

Strictly more cache when more cores are used
Can result in fewer cache misses when using more cores
Same argument can hold for any level of the memory hierarchy

Bus

Graphs of Speedup and Efficiency
(shown on board)

Parallel Scientific Programming
• Definitions, continued

– Amdahl’s law: if Ts is sequential time, then:
• Tp ≈ Ts * (1-f) + (Ts / p) * f, where f is the fraction

of the program that is parallelizable, and p is the
number of cores.

• Intuition: the non-parallelizable portion doesn’t
speed up at all, and the parallelizable part scales
linearly

• Of course, this isn’t true in general; one might, for
example, have load imbalance in a parallelizable
portion---also ignored is process/thread creation,
communication, synchronization

Source: By Daniels220 at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=6678551

Example use of Amdahl’s Law
• Suppose program takes 50 seconds

sequentially, but of that 50 seconds:
– 5 seconds is initialization that can’t be

parallelized
– 5 seconds is finalization that also can’t be

parallelized
• Then the maximum speedup possible is 5!

– Even if we have an arbitrarily large number of
cores!

– Lesson: try to avoid sequential portions of code

Different parallel programming styles
(end of Chapter 3)

• Iterative: SPMD (e.g., Jacobi iteration)
• Recursive: adaptive quadrature
• Task parallel: independent portions of

programs
• Bag of tasks: implementation of recursive,

generally, but also can be used for iterative

Data Parallel Algorithms
• Execute identical code on different parts of

a data structure
– Usually we mean “SPMD algorithms”, which

stands for Single Program Multiple Data
– Data Parallel implies barrier after every

instruction (arose from programming SIMD
architectures; recall SIMD is Single Instruction
Multiple Data)

– SPMD allows barriers at arbitrary points (arose
from MIMD architectures)

• It is a relaxation of SIMD

Picture: finding the sum of an
array in parallel (SPMD program)

Finding the sum of an array in parallel
(SPMD program)

int sum[n], old[n], a[n] // Array a initialized to arbitrary values
co i := 0 to n-1
int d = 1
sum[i] = a[i]
while (d < n) {

old[i] = sum[i]
barrier
if (i – d >= 0)

sum[i] = old[i-d] + sum[i]
barrier
d = d * 2

}
oc

Why?

Why?

Picture: Jacobi Iteration

