
MPI

• Library intended for distributed, high-
performance computing applications
– The de-facto standard for high-performance

computing (HPC)
– Some say MPI is essentially “high-level

sockets” (to be clear, that’s an insult)
– More importantly: MPI provides high-level

operations (in addition to typical point-to-point
operations) that appear in many HPC apps

• barrier, all-to-all, etc.

MPI, continued
• Library intended for distributed, high-

performance computing applications
– Programming model is SPMD (single program

multiple data), where each process:
• runs identical code image but operates on different data
• occasionally executes global sync operations

– Remember that the term SPMD is ill-defined
(each node could run the same code image, but
call a unique function)

– MPI programmer writes one program
• executed on N hosts, according to a user host file

– if no host file, all MPI processes execute on the same machine

MPI programs
• Must have four functions

– MPI_Init (note: implicit barrier)
– MPI_Finalize (we’re done; also implicit barrier)

• Practically, must have the following functions
– MPI_Comm_size (returns total number of MPI

processes)
– MPI_Comm_rank (returns caller’s process id)

• The actual computation is placed in between
MPI_Comm_rank/MPI_Comm_size and
MPI_Finalize

Sending and Receiving in MPI
• All four combinations of blocking/nonblocking

send/receive are possible
– MPI_Ssend (blocking send)
– MPI_Isend (nonblocking send)
– MPI_Recv (blocking receive)
– MPI_Irecv (nonblocking receive)
– MPI_Wait (paired with Isend or Irecv to make

sure operation has completed; i.e., it is
safe to overwrite [Send] or use
[Recv] the data)

MPI_Send: nonblocking if data is small

Sending and Receiving in MPI
• MPI_Send (MPI_Recv) takes as parameters:

– buffer, which is the data being sent or received
– number of elements in the buffer
– type of elements in the buffer
– destination (source)
– tag---must match other end for send/receive to match
– “communicator”; always MPI_COMM_WORLD in 422

• communicators can in general be used for non-global barriers

One extra parameter in MPI_Recv, which is the status (we
will never rely on this; use MPI_STATUS_IGNORE)

Example use of MPI_Isend
(with 2 MPI processes)

int A[10] = {…}, B[10];
MPI_Status status; MPI_Request request;

// initialization here (MPI_Init, MPI_Comm_rank, MPI_Comm_size)
if (myId == 0) {
MPI_Isend(A, 10, MPI_INT, 1, 17, MPI_COMM_WORLD, &request);
// do anything that doesn’t involve writing to A (if A is written here, it’s a race condition)
MPI_Wait(&request, &status);
// now can safely overwrite A

}
else {

MPI_Recv(B, 10, MPI_INT, 0, 17, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}

Example use of MPI_Irecv
(with 2 MPI processes)

int A[10] = {…}, B[10];
MPI_Status status; MPI_Request request;

// initialization here (MPI_Init, MPI_Comm_rank, MPI_Comm_size)
if (myId == 0) {
MPI_Irecv(B, 10, MPI_INT, 1, 17, MPI_COMM_WORLD, &request);
// do anything that doesn’t involve using B (if B is used here, it’s a race condition)
MPI_Wait(&request, &status);
// now can safely use B

}
else {

MPI_Send(A, 10, MPI_INT, 0, 17, MPI_COMM_WORLD);
}

Collective Communication in MPI
• Collective calls are ones that involve all

processes in a communicator (for this class, this
means all processes)
– MPI_Bcast (usual definition; one sends to many)
– MPI_Scatter (given array on root; send equal-size

subarray to each non-root process; awkward because
must each specify sendbuf/recvbuf)

– MPI_Gather (reverse of MPI_Scatter)
– MPI_Reduce (reduced value ends up at root)
– MPI_Allreduce (MPI_Reduce + dissemination to all)

Collective Communication in MPI
• Collectives aren’t strictly needed

– I.e., every collective can be implemented with
some sequence of sends and receives

• Collectives have advantages, though:
– Easier for the programmer
– MPI runtime knows about the operation ahead of

time, so it can implement it efficiently
• Example: MPI_Allreduce can use a tree of log(P) levels

or a tree of 1 level

Collective Communication in MPI

Running an MPI Program
• To compile, use mpicc

Example: mpicc –o mm mpi-mm.c

• To run, you must use mpirun. Use the –n
option to specify number of MPI processes

• Also, mpirun arguments come first, then
executable, then program command line args
Example: mpirun –n 4 ./mm 100

Args to mpirun
Args to mm program

Executable

Collective Communication in MPI
– MPI_Alltoall (every process sends a unique part of

its buffer to each other process)
– MPI_Alltoallv (generalized MPI_Alltoall; parts of

buffer can have variable size)

Collective Communication in MPI

