Problems with Semaphores

» Used for 2 independent purposes
— Mutual exclusion
— Condition synchronization

» Hard to get right

— Small mistake easily leads to deadlock

May want to separate mutual exclusion,
condition synchronization

Monitors (Hoare)

» Abstract Data Type

— a class (as are locks and semaphores)
— 3 key differences from a regular class:

* only one thread in monitor at a time (mutual
exclusion is automatic)

* special type of variable allowed, called “condition
variable”

— 4 special ops allowed only on condition
variables: wait, signal, broadcast, notempty

* no public data allowed (must call methods to
effect any change)

Wait, Signal, Broadcast

* (Given a condition variable ¢
— Wait(c):
* thread is put on queue for ¢, goes to sleep
e releases control of the monitor
— Signal(c):
* 1f queue for ¢ not empty, wake up one thread

* has no effect if no threads are waiting
— Broadcast(c):

« wake up all threads waiting on queue for ¢

The Multiple Semantics of Signal

» Signal and Urgent Wait (Hoare) (SU)
— signaler immediately gives up control
— thread that was waiting executes in monitor

— signaler executes before new threads

* Signal and Continue (Mesa, Java) (SC)
— will be used in this class unless otherwise stated
— signaler continues executing
— thread that was waiting put on ready queue
— when thread 1s scheduled:

 state may have changed! use “while”, not “if”

The Multiple Semantics of Signal

* Signal and Wait (SW)

— Same as Signal and Urgent Wait, except that
signaler has no priority over new threads trying
to enter

* Signal and Exit (SX)

— Signaler exits monitor

— Means that signal must be the last operation done
in each monitor function

SU and SW can cause programming difficulty:

Example: an alarm--cannot broadcast

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
T,| T»| T, Foo() 1{
OS Ready List Wait(C)

h

Monitor Entry Queue Bar() {

if (E)

Signal(C)
Monitor Wait Queue for C e

)

Initial state: T, T,, and T; all on ready list

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
T,| T, FOO(‘) { :
. e |
OS Ready List Wait(C)
h
Monitor Entry Queue Bar() {
if (E)
Signal(C)
Monitor Wait Queue for C e
)

T, selected to run and invokes M.Foo(); enters M

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
. T, | Foo() {
T,| T 2
! 1 . T, (left off here---still
OSW'[Wajt((j) occupies monitor)
)
Monitor Entry Queue Bar() {
if (E)
Signal(C)
Monitor Wait Queue for C e
h

Context switch to T,. invokes M.Foo(); goes to entry queue and blocks
because T, still occupies M. Note that the Entry Queue 1s outside M.

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
T,| T, Foo() { ; |
ce. 1 (left off here---still
OS Ready List Wait(C) occupies monitor)
T2 }
Monitor Entry Queue Bar() {
if (E)
Signal(C)
Monitor Wait Queue for C e
)

T, 1s both on ready list and occupying the monitor. Intuitively,
unlike the other queues, the ready list 1s not outside the monitor.

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
T, Foo() {
OS Ready List Wait(C) - T,
T2 / }
Monitor En ueue Bar() 1
- if (E)
Signal(C)
Monitor Wait Queue for C e
)

Context switch to Ty; invokes Wait(C); goes to wait queue and blocks

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
T, Foo() {
OS Ready List Wait(C)
T, !
Monitor Entry Queue Bar() {
if (E)
h Signal(C)
Monitor Wait Queue for C e
)

Note that the Wait Queue is outside M.

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
T, Foo() {
OS Ready List Wait(C)
h
Monitor Entry Queue Bar() {
if (E)
I Signal(C)
Monitor Wait Queue for C e
)

T, 1s now granted access to M, executes Foo, hits Wait(C) and blocks

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
Foo() {
OS Ready List Wait(C)
h
Monitor Entry Queue Bar() { .
.
if (E)
hj b Signal(C)
Monitor Wait Queue for C e
)

T, selected to run and invokes M.Bar(); enters M

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
T, Foo() {
OS Ready List Wait(C)
h
Monitor Entry Queue Bar() {
T if (E)
i Signal(C) - T,
Monitor Wait Queue for C e
)

T, invokes Signal(C), which moves T, to the ready list

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
T, Foo() {
OS Ready List Wait(C)
h
Monitor Entry Queue Bar() {
T if (E)
i Signal(C)
Monitor Wait Queue for C e « T,
)

T, retains control of M because of Signal and Continue semantics

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
Foo() {
OS Ready List Wait(C)

Tl }

Monitor Entry Queue Bar() {

T if (E)

i Signal(C)
Monitor Wait Queue for C e « T,

)

Context switch to T, but 1t cannot enter M; goes to entry queue and blocks

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
Foo() {
OS Ready List Wait(C)
Tl }
Monitor Entry Queue Bar() {
T if (E)
i Signal(C)
Monitor Wait Queue for C e
)
< T3

T; completes M.Bar(); exits monitor by virtue of completing function

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M
Foo() {
OS Ready List Wait(C)
T,

h

Monitor Entry Queue Bar() {

T if (E)

i Signal(C)
Monitor Wait Queue for C e

)

T, restarts in M.Bar() at statement after Wait(C)

Monitor Solution to Critical
Section

e Just make the critical section a monitor routine!

Differences between Monitors
and Semaphores

Monitors enforce mutual exclusion

P() vs Wait
— P blocks 1f value 1s 0, Wait always blocks

V() vs Signal

— V either wakes up a thread or increments value
— Signal only has effect if a thread waiting

Semaphores have “memory”

Readers/Writers Solution using
Monitors

* Similar 1dea to semaphore solution

— simpler, because don’t worry about mutex

 When can’t get into database, wait on
appropriate condition variable

 When done with database, signal others

Note: can’t just put code for “reading
database’ and code for “writing database’
in the monitor (couldn’t have >1 reader)

9

Implementing semaphores using
monitors---unfair (but correct) solution

monitor Semaphorelmplementation
int s = INIT VAL; cond ¢
P(): while (s == 0)
wait(c)
S--
V(): s++; signal(c)

end Semaphorelmplementation

Implementing semaphores using
monitors---fair solution

monitor Semaphorelmplementation
int s = INIT VAL; cond ¢
P(): 1f (s == 0) wait(c)
else s--
V(): if (empty(c)) s++
else signal(c)

end Semaphorelmplementation

Solution style known as passing the condition

Priority Wait

e An extension of traditional monitors

— Provides alternative version of Wait:

« Wait(c, value): inserts thread on wait queue ordered by
value (an integer)

e Minrank(c): returns value of first thread on queue (but
does not dequeue)

Shortest Job Next
(Using Priority Wait)

monitor SJN
int free = true; cond ¢
acquire(time): 1f (free) free = false
else wait(c, time)
release(): if (empty(c)) free = true
else signal(c)
end SIN

Interval Timer using broadcast
(tick() called every clock tick)

monitor Timer
int tod = 0; cond ¢
delay(interval): int wake = tod + interval
while (wake > tod)
wait(c)
tick(): tod++
broadcast(c)

end Timer

Interval Timer using priority wait

monitor Timer
int tod = 0; cond ¢
delay(interval): int wake = tod + interval
if (wake > tod) Rare case when while not necded
wait(c, wake)
tick(): tod++
while (!empty(c) and minrank(c) < tod)
signal(c)

end Timer

First Attempt: Implementing
Monitors using Semaphores

Shared vars:
sem mutex := 1 (one per monitor)
sem ¢ := 0; int nc := 0 (both ¢, nc are per condition var)

Monitor entry: P(mutex)
Wait(c, mutex):

nc++; V(mutex); P(c); P(mutex)
Signal(c, mutex):

if (nc > 0) then {nc--; V(¢);}

Monitor exit: V(mutex)

Correct Implementation of Monitors using Semaphores
(Assume that “tid” is the 1d of a thread)

Shared vars:
sem mutex := 1; (one per monitor)
int nc := 0; List delayQ (one per condition var)
sem ¢[NumThreads] := 0; (one entry per thread; one
entry per thread per condition works also)

Monitor entry: P(mutex)
Wait(c, mutex):
nc++; Append(delayQ, tid); V(mutex); P(c[tid]); P(mutex)

Signal(c, mutex):
if (nc > 0) then {nc--; id = Remove(delayQ); V(c[1d]);}

Monitor exit: V(mutex);

Semaphores and Monitors Have
Equal Power

* We just showed that monitors can be
implemented using semaphores

e Earlier 1n this slide deck, we showed that
semaphores can be implemented using
monitors

Java-style monitors

* Integrated into the class mechanism

— annotation “synchronized” can be applied to a
member function

* this function executes with implicit mutual exclusion
with respect to all other functions annotated with
“synchronized”

— “synchronized” can also refer to a block

— Wait and Signal are called Wait and Notify,
respectively

 Java’s Notify uses Signal and Continue semantics

Differences between traditional
monitors and Java-style monitors

Traditional « Java-style
— all functions synchronized — can mix and match
— no public data — public data allowed
— separate construct — Integrated with class
 simpler to implement (i.e. no * Interaction with rest of
inheritance) language, i.e. inheritance?
— safer — riskier
 e.g., can statically guarantee can circumvent the monitor
no race conditions, because idea by using and modifying
no public data public data

— less flexible — more flexible

Rendezvous (two-thread barrier) with

semaphores
sesma=0,b=0
Thread 1: Thread 2:
V(a) V(b)
P(b) P(a)

Can the V and P operations be inverted?

Rendezvous with monitors---Attempt

cond a, b
Thread 1: Thread 2:
Signal(a) Signal(b)
Wait(b) Wait(a)

(Assume the above code 1s in a monitor, and each thread
1s calling a unique function)

What’s wrong with this?

Rendezvous with monitors---correct

cond a, b
Thread 1: Thread 2:
if (lempty(a)) if (lempty(b))
Signal(a) Signal(b)
clse clse
Wait(b) Wait(a)

(Assume the above code 1s in a monitor, and each thread
1s calling a unique function)

Tricky---easier to program rendezvous with semaphores

Alternate rendezvous with monitors

cond a, b
intarl =0,ar2 =0
Thread 1: Thread 2:
arl =1 ar2 = 1
Signal(a) Signal(b)
while (!ar2) while (larl)
Wait(b) Wait(a)

ar2 =0 arl =0

(Assume the above code 1s in a monitor, and each thread
1s calling a unique function)

Even less intuitive than the previous slide’s solution

