
Problems with Semaphores

• Used for 2 independent purposes
– Mutual exclusion
– Condition synchronization

• Hard to get right
– Small mistake easily leads to deadlock

May want to separate mutual exclusion,
condition synchronization

Monitors (Hoare)
• Abstract Data Type

– a class (as are locks and semaphores)
– 3 key differences from a regular class:

• only one thread in monitor at a time (mutual
exclusion is automatic)

• special type of variable allowed, called “condition
variable”

– 4 special ops allowed only on condition
variables: wait, signal, broadcast, notempty

• no public data allowed (must call methods to
effect any change)

Wait, Signal, Broadcast

• Given a condition variable c
– Wait(c):

• thread is put on queue for c, goes to sleep
• releases control of the monitor

– Signal(c):
• if queue for c not empty, wake up one thread
• has no effect if no threads are waiting

– Broadcast(c):
• wake up all threads waiting on queue for c

The Multiple Semantics of Signal

• Signal and Urgent Wait (Hoare) (SU)
– signaler immediately gives up control
– thread that was waiting executes in monitor
– signaler executes before new threads

• Signal and Continue (Mesa, Java) (SC)
– will be used in this class unless otherwise stated
– signaler continues executing
– thread that was waiting put on ready queue
– when thread is scheduled:

• state may have changed! use “while”, not “if”

The Multiple Semantics of Signal
• Signal and Wait (SW)

– Same as Signal and Urgent Wait, except that
signaler has no priority over new threads trying
to enter

• Signal and Exit (SX)
– Signaler exits monitor
– Means that signal must be the last operation done

in each monitor function

SU and SW can cause programming difficulty:
Example: an alarm--cannot broadcast

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T1 T2 T3

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

Initial state: T1, T2, and T3 all on ready list

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T2 T3 T1

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

T1 selected to run and invokes M.Foo(); enters M

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T3
T2

T1 (left off here---still
occupies monitor)

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

Context switch to T2; invokes M.Foo(); goes to entry queue and blocks
because T1 still occupies M. Note that the Entry Queue is outside M.

T1

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T3

T2

T1 (left off here---still
occupies monitor)

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

T1 is both on ready list and occupying the monitor. Intuitively,
unlike the other queues, the ready list is not outside the monitor.

T1

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T3

T2

T1

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

Context switch to T1; invokes Wait(C); goes to wait queue and blocks

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T3

T2

T1

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

Note that the Wait Queue is outside M.

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T3

T2T1

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

T2 is now granted access to M, executes Foo, hits Wait(C) and blocks

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T2T1

T3
Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

T3 selected to run and invokes M.Bar(); enters M

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T2

T1

T3

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

T3 invokes Signal(C), which moves T1 to the ready list

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T2

T1

T3

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

T3 retains control of M because of Signal and Continue semantics

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T2

T1

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

Context switch to T1 but it cannot enter M; goes to entry queue and blocks

T3

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T2

T1

T3

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

T3 completes M.Bar(); exits monitor by virtue of completing function

Animation of Monitor Operation (Uses Signal and Continue)

Monitor M

T2

Monitor Entry Queue

Monitor Wait Queue for C

OS Ready List

Foo() {
…
Wait(C)
…

}
Bar() {

…
if (E)
Signal(C)

…
}

T1 restarts in M.Bar() at statement after Wait(C)

T1

Monitor Solution to Critical
Section

• Just make the critical section a monitor routine!

Differences between Monitors
and Semaphores

• Monitors enforce mutual exclusion
• P() vs Wait

– P blocks if value is 0, Wait always blocks
• V() vs Signal

– V either wakes up a thread or increments value
– Signal only has effect if a thread waiting

• Semaphores have “memory”

Readers/Writers Solution using
Monitors

• Similar idea to semaphore solution
– simpler, because don’t worry about mutex

• When can’t get into database, wait on
appropriate condition variable

• When done with database, signal others

Note: can’t just put code for “reading
database” and code for “writing database”
in the monitor (couldn’t have >1 reader)

Implementing semaphores using
monitors---unfair (but correct) solution

monitor SemaphoreImplementation
int s = INIT_VAL; cond c
P(): while (s == 0)

wait(c)
s--

V(): s++; signal(c)
end SemaphoreImplementation

Implementing semaphores using
monitors---fair solution

monitor SemaphoreImplementation
int s = INIT_VAL; cond c
P(): if (s == 0) wait(c)

else s--
V(): if (empty(c)) s++

else signal(c)
end SemaphoreImplementation

Solution style known as passing the condition

Priority Wait

• An extension of traditional monitors
– Provides alternative version of Wait:

• Wait(c, value): inserts thread on wait queue ordered by
value (an integer)

• Minrank(c): returns value of first thread on queue (but
does not dequeue)

Shortest Job Next
(Using Priority Wait)

monitor SJN
int free = true; cond c
acquire(time): if (free) free = false

else wait(c, time)
release(): if (empty(c)) free = true

else signal(c)
end SJN

Interval Timer using broadcast
(tick() called every clock tick)

monitor Timer
int tod = 0; cond c
delay(interval): int wake = tod + interval

while (wake > tod)
wait(c)

tick(): tod++
broadcast(c)

end Timer

Interval Timer using priority wait
monitor Timer
int tod = 0; cond c
delay(interval): int wake = tod + interval

if (wake > tod)
wait(c, wake)

tick(): tod++
while (!empty(c) and minrank(c) < tod)

signal(c)
end Timer

Rare case when while not needed

First Attempt: Implementing
Monitors using Semaphores

Shared vars:
sem mutex := 1 (one per monitor)
sem c := 0; int nc := 0 (both c, nc are per condition var)

Monitor entry: P(mutex)
Wait(c, mutex):

nc++; V(mutex); P(c); P(mutex)
Signal(c, mutex):

if (nc > 0) then {nc--; V(c);}
Monitor exit: V(mutex)

Correct Implementation of Monitors using Semaphores
(Assume that “tid” is the id of a thread)

Shared vars:
sem mutex := 1; (one per monitor)
int nc := 0; List delayQ (one per condition var)
sem c[NumThreads] := 0; (one entry per thread; one

entry per thread per condition works also)
Monitor entry: P(mutex)
Wait(c, mutex):

nc++; Append(delayQ, tid); V(mutex); P(c[tid]); P(mutex)

Signal(c, mutex):
if (nc > 0) then {nc--; id = Remove(delayQ); V(c[id]);}

Monitor exit: V(mutex);

Semaphores and Monitors Have
Equal Power

• We just showed that monitors can be
implemented using semaphores

• Earlier in this slide deck, we showed that
semaphores can be implemented using
monitors

Java-style monitors

• Integrated into the class mechanism
– annotation “synchronized” can be applied to a

member function
• this function executes with implicit mutual exclusion

with respect to all other functions annotated with
“synchronized”

– “synchronized” can also refer to a block
– Wait and Signal are called Wait and Notify,

respectively
• Java’s Notify uses Signal and Continue semantics

Differences between traditional
monitors and Java-style monitors

• Traditional
– all functions synchronized
– no public data
– separate construct

• simpler to implement (i.e. no
inheritance)

– safer
• e.g., can statically guarantee

no race conditions, because
no public data

– less flexible

• Java-style
– can mix and match
– public data allowed
– integrated with class

• interaction with rest of
language, i.e. inheritance?

– riskier
• can circumvent the monitor

idea by using and modifying
public data

– more flexible

Rendezvous (two-thread barrier) with
semaphores

sem a = 0, b = 0
Thread 1:

V(a)
P(b)

Thread 2:
V(b)
P(a)

Can the V and P operations be inverted?

Rendezvous with monitors---Attempt

cond a, b
Thread 1:

Signal(a)
Wait(b)

Thread 2:
Signal(b)
Wait(a)

(Assume the above code is in a monitor, and each thread
is calling a unique function)

What’s wrong with this?

Rendezvous with monitors---correct

cond a, b
Thread 1:

if (!empty(a))
Signal(a)

else
Wait(b)

Thread 2:
if (!empty(b))

Signal(b)
else

Wait(a)

(Assume the above code is in a monitor, and each thread
is calling a unique function)

Tricky---easier to program rendezvous with semaphores

Alternate rendezvous with monitors
cond a, b
int ar1 = 0, ar2 = 0

Thread 1:
ar1 = 1
Signal(a)
while (!ar2)

Wait(b)
ar2 = 0

Thread 2:
ar2 = 1
Signal(b)
while (!ar1)

Wait(a)
ar1 = 0

(Assume the above code is in a monitor, and each thread
is calling a unique function)

Even less intuitive than the previous slide’s solution

