
Message Passing

• Different from shared memory programming
– no shared memory
– can’t use simple semaphores, condition vars
– can’t use shared buffers, producer/consumer

• Communication based on message passing
– Process A on machine 1 sends message to

process B on machine 2 (over the network)
– How does it get there? [we will ignore this]

Physical Reality of Networks

• Networks are unreliable
– messages are divided into packets
– packets can get lost
– packets can arrive out of order
– receiver can get overloaded

• cannot handle rate of packet arrival

Define a new abstraction:
Channels

• Analogous to abstractions in OS’s
– process -- abstraction of a processor
– virtual memory -- abstraction of unlimited

memory
– files -- abstraction of disk

• Want to abstract communication network
– don’t want to worry about lost messages, wrong

ordering, overflow, etc.
– Channel -- abstraction of point to point,

reliable communication link

Send and Receive
• Send(channel, exprs)

– Send a message containing exprs on the
channel indicated

– The exprs can be r-vals
• Receive(channel, args)

– Receive a message from the channel indicated
into args

– Blocks until data is available on channel (can
be relaxed in real implementations)

– Args must be l-vals (must provide a storage
location)

Send and Receive
• Notes:

– Channel handles reliability
• Must be implemented by network protocols

– Access to channel is atomic
– Message has to be buffered if data arrives but

receiver has not yet invoked receive
• In fact, receiver’s view of channel is a FIFO queue

of pending messages

– Implementation requires synchronization
– Send, receive can be OS kernel primitives or

can be library primitives (e.g., MPI)

Send and Receive
• Notes, continued:

– Important special case: both exprs and args are
the empty set; in this case:

• Send is equivalent to V(s)
• Receive is equivalent to P(s)
• Number of pending messages is equivalent to the

value of s

• First observed by Lauer and Needham in 1978
– “On the Duality of Operating System Structures”
– Observed that a monitor program can be translated

mechanically into a message passing program

Duality of Monitors/Message Passing

Duality of Monitors/Message Passing
Monitors

Monitor variables
Entry (implicit mutex)
Procedures in monitor
Procedure call

Procedure return

Wait
Signal

Message Passing
Local vars on server
Blocking recv on server
Arms of switch stmt
Client sends request

to server; may block
awaiting reply

Server sends result to
appropriate client

Insert request on server Q
Remove & process request

from server queue

Resource Allocation with Monitors

monitor ResourceAllocator
int free = true; cond c
acquire(): if (free) free = false

else wait(c)
release(): if (empty(c)) free = true

else signal(c)
end ResourceAllocator

Client calls ResourceAllocator.acquire()/ResourceAllocator.release()

Picture of Resource Allocation
with Message Passing

Resource Allocation with Message Passing
Server-side code

enum reqType {ACQUIRE, RELEASE)
chan request(int clientId, reqType which)
chan reply[n]() // one entry per client
Allocator { // runs on server

queue pending; # initially empty
int clientId; bool free := true
reqType which {ACQUIRE, RELEASE);

Resource Allocation with Message Passing
Server-side code, continued

while (1) {
receive(request, clientId, which)
switch(which) {
ACQUIRE:

if (free)
free := false; send(reply[clientId])

else
pending.insert(clientId)

RELEASE:
if notempty(pending) send(reply[pending.remove()])
else free := true

}
}

Resource Allocation with Message Passing
Client-side code

Client (i) {
send request (i, ACQUIRE)
receive reply[i]() // blocks
send request (i, RELEASE) // no block here

}

Programming Client/Server Applications
(General Outline)

Outline of Client code
while (1) {
build request
send(request, server)
receive(reply)
do something

}

Outline of Server code
while (1) {
receive(request)
switch(request)
case type1:

send(client, reply1)
case type2:

send(client, reply2)
etc.

}

