
Background: Map function
• Take Python as an example

def mult2(number):
return number * 2

numbers = [0,1,2,3]
doubled = map(mult2, numbers)

• Output is [0,2,4,6]



Background: Reduce function
• Take Python as an example

import functools
L = [0,2,4,6]
sum = functools.reduce(lambda a, b: a+b, L)
// or sum = functools.reduce(operator.add, L)

• Output is 12



Background: Map and Reduce together

• Take Python as an example

import functools
import operator
def mult2(number):

return number * 2
numbers = [0,1,2,3]
sum = functools.reduce(operator.add, map(mult2, numbers))

• Output is 12



Parallelizing with MapReduce
• Google’s MapReduce involves:

– First, applying a map function to each logical record 
in the input

• Produces a set of intermediate key/value pairs

– Then, applying a reduce function to all values that 
have a common key

This is a functional model, so there are no side 
effects (will become quite important in the 
implementation)



(Silly) MapReduce Example:
Count Occurrences of Each Word

Map(String key, String value):
for each word w in value:

EmitIntermediate(w, “1”);

Reduce(String key2, Iterator values):
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

key: document name
value: document contents

key2: word
values: list of counts (1’s)

Note: key is different in Map and in Reduce



Picture of WordCount (on board)



Other MapReduce Examples
• URL Access Frequency (same as WordCount)

– Map outputs <URL, 1> for each URL
– Reduce adds for same URL 

• Reverse Web-Link Graph
– Map outputs <target, source> for each link to a 

target URL found in source
– Reduce concatenates source URLs for each target

• Inverted Index
– Map outputs <word, documentID>
– Reduce outputs <word, list(documentID)>



MapReduce Implementation

Taken from Dean et al., OSDI 2004



MapReduce Implementation
(Numbers do not correspond to figure)

• Basic idea (for clusters of commodity machines):
– 1. Use Administrator/Worker paradigm; one admin.
– 2. Split input files into M chunks; size chosen by user
– 3. Split reduce tasks into R pieces (hash on key and 

apply “mod R”, for example)
• Admin assigns the M map tasks and R reduce tasks to workers

– 4. Workers doing a map task write key/value lists into 
different files

• If hashing the key (and applying mod R) is equal to i, then 
write the key/value lists to file "i".   

• Pass back this file info to admin, who tells reduce tasks



MapReduce Implementation
– 5. Reduce worker grabs its data from all local disks via 

RPC (remote procedure call), sorts, and reduces.  
• Sorts because many keys may be assigned to each reduce 

task; this groups all occurrences of the same key
• Makes one call to user’s reduce function per unique key; 

parameter is list of all values for that key
• Appends output into final output file.

– 6. When everything is done, wake up MapReduce call. 



Fault Tolerance with MapReduce
• Critical to handle fault tolerance because there 

will be thousands of machines involved
– Probability that at least one fails is high

• Administrator keeps track of each map and 
reduce task
– Marks it as idle, in progress, or completed
– Administrator assumed to never fail



MapReduce Implementation

Taken from Dean et al., OSDI 2004
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Fault Tolerance with MapReduce
• For workers:

– Ping periodically; if no response, mark worker as 
“failed”;  mark worker’s task as idle

– If map worker fails, completed map tasks are re-
executed because the worker’s local disk is assumed 
inaccessible

– Notify reduce tasks if a map task changes hands, so 
reduce tasks know where to read from

– If reduce worker fails, assign new worker and re-
execute



MapReduce Implementation

Taken from Dean et al., OSDI 2004
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MapReduce Implementation

Taken from Dean et al., OSDI 2004
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MapReduce Implementation

Taken from Dean et al., OSDI 2004
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MapReduce Implementation

Taken from Dean et al., OSDI 2004
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Fault Tolerance with MapReduce
• Fault tolerance is simple because MapReduce is 

a functional model
– Can have duplicate tasks, for example---no side 

effects (and use “backup” tasks when nearly done)



MapReduce Performance

Taken from Dean et al., OSDI 2004


