
File Servers

• Basic idea is simple
– Clients open/read/write/close files indirectly, by

going through servers, who access the disk
– A client must be matched with a server
– Clients do not store (permanent) files; servers do
– Clients cache parts of (or whole) files

Basic Idea---Client
Note: numbers are for this and next slides
(1) send request to single global channel (open)
(4) receive reply on client specific channel

– reply contains a server id (openreply[clientId])
(5) thereafter, send requests to channel indexed by
server id (filerequest[serverId])
(9) receive results on a different client specific
channel (filereply[clientId])

– eventually send a close message
Note: could have one channel on which servers

send to clients (but extra argument marshalling)

Basic Idea---Server
while (TRUE) {
(2) receive client id on global channel (open)
(3) send server id to that client’s channel (openreply[clientId])
while close message not yet received {

(6) recv requests on server specific channel (filerequest[servId])
(7) process request
(8) send reply to channel indexed by client (filereply[clientId])

}
}

Picture of File Server, Many Channels

Open

Client 0

Client 1

Server 0

Server 1

Client 0 Openreply
Server 1 Filerequest

Client 0 FileReply

(1) Send Client id

Picture of File Server, Many Channels

Open

Client 0

Client 1

Server 0

Server 1

Client 0 Openreply
Server 1 Filerequest

Client 0 FileReply

(2) Recv Client id

Picture of File Server, Many Channels

Open

Client 0

Client 1

Server 0

Server 1

Client 0 Openreply
Server 1 Filerequest

Client 0 FileReply

(3) Send Server id

Picture of File Server, Many Channels

Open

Client 0

Client 1

Server 0

Client 0 Openreply
Server 1 Filerequest

Client 0 FileReply

(4) Recv Server id

Server 1

Picture of File Server, Many Channels

Open

Client 0

Client 1

Server 0

Server 1

Client 0 Openreply
Server 1 Filerequest

Client 0 FileReply

(5) Send request
to server 1

Picture of File Server, Many Channels

Open

Client 0

Client 1

Server 0

Server 1

Client 0 Openreply
Server 1 Filerequest

Client 0 FileReply

(6) Recv request

Picture of File Server, Many Channels

Open

Client 0

Client 1

Server 0

Server 1

Client 0 Openreply
Server 1 Filerequest

Client 0 FileReply

(7) Process request

Picture of File Server, Many Channels

Open

Client 0

Client 1

Server 0

Server 1

Client 0 Openreply
Server 1 Filerequest

Client 0 FileReply

Process request

(8) Send reply

Picture of File Server, Many Channels

Open

Client 0

Client 1

Server 0

Server 1

Client 0 Openreply
Server 1 Filerequest

Client 0 FileReply

(Process request)

(9) Receive reply

Notes on File Server

• Our solution used conversational continuity
– Client talks to same server throughout the

lifetime of the file
• Advantage: caching on server side

Interacting Peers Picture

0

1

2

3

4

Integer: 7 Integer: 1

Integer: 3

Integer: 16

Integer: 24

Interacting Peers
• Each process has an integer

– Goal: find max and min integers
• Approaches

– Centralized: use coordinator
– Symmetric: every process sends value to every other
– Ring: form a circle; send values around
– Tree: create a binary (in general, n-ary) tree

Interacting Peers
• Each process has an integer

– Goal: find max and min integers
• Approaches

– Centralized: use coordinator
• 2 * (P-1) messages and a bottleneck

– Symmetric: every process sends value to every other
• P * (P-1) messages (but easy to program)

– Ring: form a circle; send values around
• 2 * (P-1) messages; no bottleneck, but sequential

– Tree: create a binary (in general, n-ary) tree
• 2 * (P-1) messages; less bottleneck, but log(P) steps

Interacting Peers

• How to know which implementation to choose?
• Can use analytical models

– LogP model most widely used model
– L (latency), o (overhead), g (gap), P (number of cores)

• Allows mostly architecture-independent analysis of parallel
algorithms

LogP Model applied to broadcast
(Note: broadcast is half of a barrier.)

Broadcast completion time is L+6o

P0

P1 P2 P3 P4

Received at time: L+2o L+3o L+4o L+5o L+6o

P5

LogP Model applied to broadcast
(Note: broadcast is half of a barrier.)

P0

P1

P2

P4

P3

Received at time: 2L+4o 2L+5o

(L+3o)(L+2o)

P5

2L+5o

Broadcast completion time is 2L+5o (compared to L+6o on previous slide).
Which is better depends on the values of L and o.

Interacting Peers

• Generalizations
– Example: all-to-all

• Implementations are not at all clear here
• Must worry about contention
• May want intelligent scheduling

