Critical Sections:
Implementing Logical Atomicity

 Critical section of code 1s one that:

— must be executed by one thread at a time

» otherwise, there 1s a race condition

— Example: linked list from before

e Insert/Delete code forms a critical section
* What about just the Insert or Delete code?

— 1s that enough, or do both procedures belong in a single
critical section?



List Example

1 head > > Insert: head := elem;
_____________________ 4. head - -
Insert: elem—next := head; l > >
A
head clem T
2. — > > — > A
A
lem — | TET TS ms s s—ss-—-—--==-
] Remove: head := head—next;
_____________________ head
Remove: t := head; 5. — > >
A
3 head clem T
. —> > > > A
}
eleg) T Remove: return t;
t 2




Critical Section (CS) Problem

* Provide entry and exit routines:
— all threads must call entry before executing CS

— all threads must call exit after executing CS

— a thread must not leave entry routine until 1t’s safe

» CS solution properties (red: safety; black:
liveness)

— Mutual exclusion: at most one thread 1s executing CS

— Absence of deadlock: two or more threads trying to get
into CS, and no thread 1s in — at least one succeeds

— Absence of unnecessary delay: if only one thread tries
to get into CS, and no thread 1s 1n, 1t succeeds

— Eventual entry: thread eventually gets into CS

3



Picture of critical section



Structure of threads for Critical
Section problem

Threads do the following:
while (1) {
do “other stuff” (1.e., non-critical section)
call enter
execute CS
call exit

h



Critical Section Assumptions

 Threads must call enter and exit

* Threads must not die or quit inside a critical
section

 Threads can be context switched inside a

critical section

— this does not mean that another thread may
enter the critical section



High-Level Solution

inl = 1n2 = false

Thread 1: Thread 2:
while (1) { while (1) {
<await (!1n2) inl = true> <await (!inl) in2 = true>
CS CS
inl = false in2 = false
NCS NCS

j j



Satistying the solution properties

e Mutual exclusion: inl and 1n2 cannot both
be true simultaneously

* Deadlock free: for deadlock, in1 and 1n2
both must be true 1n the await---but T1 and
T2 enter the await when they are false

* Free of unnecessary delay: 1f T1 1s in NCS,
then 1n1 1is false (same holds for T2)

» Eventual entry not satisfied

Overall: if we had < ... >, we’d be done;
but we need to implement <...>



Picture of table of properties for
critical section solutions



Critical Section Solution Attempt #1
(2 thread version, with 1d’s 0 and 1)

Initially, turn ==
entry(id) {

while (turn !=1d) ;

h
exit(id) {

turn := 1-1d;

j
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Critical Section Solution Attempt #2
(2 thread version, with 1d’s 0 and 1)

flag[0] == false
flag[1] == false
entry(id) {

flag[1d] := true;
while (flag[1-id]) ;
j
exit(id) {
flag[1d] := false;

} 11



Critical Section Solution Attempt #3
flag[0] = false, turn ==

flag[1] = false
entry(1d) {

flag[id] := true;

turn := 1-1d;

while (flag[1-1d] and

turn == 1-1d) ;

h
exit(id) {

flag[id] := false;



Summary: Satisfying the 4 properties
(on Attempt #3)
* Mutual exclusion

— turn must be 0 or 1 => only one thread can be in CS

 Absence of deadlock

— turn must be 0 or 1 => one thread will be allowed 1n

* Absence of unnecessary delay
— only one thread trying to get into CS => flag[other] 1s
false => the thread will get into the CS
* Eventual Entry
— spinning thread will not modify turn

— thread trying to go back i will set turn equal to
spinning thread’s 1d 13



Next three slides are just for
reference (include comments)
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Critical Section Solution Attempt #1
(2 thread version, with 1d’s 0 and 1)

Initially, turn == 0 /* turn is shared */

entry(id) { /* note id local to each thread */

while (turn !=1d) ; /* if not my turn, spin */

h
exit(id) {

turn := 1-1d; /* other thread’s turn */

15



Critical Section Solution Attempt #2
(2 thread version, with 1d’s 0 and 1)

Initially, flag[0] == flag[ 1] == false
/* flag 1s a shared array */
entry(id) {
flag[id] := true; /* I want to go 1n */
while (flag[1-1d]) ; /*proceed 1f other not trying™*/
h
exit(1d) {
flag[id] := false; /* I'm out */
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Critical Section Solution Attempt #3
(2 thread version, with 1d’s 0 and 1)

Initially, flag[0] == flag[ 1] == false, turn ==
/* flag and turn are shared variables */
entry(id) {
flag[id] := true; /* I want to go 1n */
turn := 1-1d; /* 1n case other thread wants 1n */
while (flag[1-1d] and turn == 1-1d) ;
h
exit(id) {
flag[id] := false; /* I'm out */



Hardware Support for Critical
Sections

* All modern machines provide atomic
instructions

 All of these instructions are Read/Modify/Write

— atomically read value from memory, modify it in
some way, write 1t back to memory

» Use to develop simpler critical section solution
for any number of threads

18



Example: Test-and-Set

Some machines have i1t
function TS(bool &target)
bool b = target; /* return old value */
target := true;

return b;

Executes atomically

19



CS solution with Test-and-Set

Initially, s == false /* s is a shared variable */

entry() 1

bool spin; /* spin 1s local to each thread! */
spin = TS(s);
while (spin)

spin := TS(s);

j

Function TS(bool &target) returns bool

eXit( ) { bool b := target
target = true
s := false; return b



A few example atomic instructions

* Compare and Swap (x86)

* Load linked and conditional store (RISC)
* Fetch and Add

* Atomic Swap

e Atomic Increment

21



Basic Idea with Atomic Instructions

* One shared variable plus per-thread flag

» Use atomic instruction with flag, shared variable
— On a change, allow thread to go in
— Other threads will not see this change
— Should use “test and test and set” style (see next
slide)
 When done with CS, set shared variable back to
initial state

— Some advanced solutions spin on exit (not discussed
in 422) 22



CS using Test-and-Test-and-Set

Initially, s == false
entry( ) {
bool spin;
spin = TS(s);
while (spin) {

Whlle (S) ; < This line 1s the difference from “regular” Test-and-Set

spin := TS(s);

} Function TS(bool &target) returns bool
bool b := target
} target := true
: return b
exit( )

s := false; *



The (Fair) Ticket Algorithm--
High Level Solution

Init: number = next = 0

Entry: <ticket = number; number++>
<await (ticket == next)>

Exit: <next++>

24



Fair Ticket Algorithm--Implementation

number = next =0

entry( ) {
int ticket = FetchAndAdd(number, 1)

Wh]le (tlcket !: next) ; < No atomicity needed---why?

h
exit( )

next = next + ] ¢ No atomicity needed---why?

Works for any number of threads---and is fair (provides eventual entry)

Note: assumes FA(n, inc) increases n by inc and returns n (not n+inc)
25



N-Thread CS Solutions Without
Atomic Instructions

* Book discusses two examples
— Tie-breaker algorithm
— Bakery algorithm

* Both are quite complex

— You will not be responsible for these

26



Problems with busy-waiting CS solution

* Complicated
 Inefficient

— consumes CPU cycles while spinning
* Priority inversion problem

— low priority thread in CS, high priority thread
spinning can end up causing deadlock

— example: Mars Pathfinder problem

In some cases, want to block when waiting for CS



Locks

* Two operations:
— Acquire (get it, if can’t go to sleep)
— Release (give 1t up, possibly wake up a waiter)

» Acquire and Release are atomic

A thread can only release a previously
acquired lock

 entry( ) 1s then just Acquire(lock)
* exit( ) 1s just Release(lock)

Lock 1s shared among all threads



First Attempt at Lock
Implementation

Acquire(lock) disables interrupts
Release(lock) enables interrupts

Advantages:

— 1s a blocking solution; can be used inside OS 1n

some situations

Disadvantages:

— CS can be 1n user code [could infinite loop],
might need to access disk 1n middle of CS,
system clock could be more skewed than
typical, etc.

29



Correct (Blocking) Lock Implementation

lock class has queue, value
[nitially:
queue 1s empty

value 1s free

Acquire(lock) Release(lock)
Disable interrupts Disable interrupts
if (lock.value == busy) if notEmpty(lock.queue)
enQ(lock.queue,thread) thread := deQ(lock.queue)
go to sleep enQ(readyList, thread)
else else
lock.value := busy lock.value = free

Enable interrupts Enable interrupts 30



Can interrupts be enabled before sleep?

lock class has queue, value
[nitially:
queue 1s empty

value 1s free

Aquire(lock) Release(lock)

Disable interrupts Disable interrupts

if (lock.value == busy) if notEmpty(lock.queue)
Enable interrupts thread := deQ(lock.queue)
enQ(lock.queue,thread) enQ(readyList, thread)
go to sleep else

else lock.value = free
lock.value := busy Enable interrupts

Enable interrupts



Can interrupts be enabled before sleep?

lock class has queue, value
[nitially:
queue 1s empty

value 1s free

Aquire(lock) Release(lock)

Disable interrupts Disable interrupts

if (lock.value == busy) if notEmpty(lock.queue)
enQ(lock.queue,thread) thread := deQ(lock.queue)
Enable interrupts enQ(readyList, thread)
go to sleep else

else lock.value = free
lock.value := busy Enable interrupts

Enable interrupts



What about a “spin-lock™?
Items 1n red must be addressed

lock class has queue, value

[nitially:
queue 1s empty

value 1s free

Aquire(lock)
Disable interrupts
if (lock.value == busy)
enQ(lock.queue,thread)
go to sleep
else
lock.value := busy

Enable interrupts

Release(lock)

Disable interrupts

if notEmpty(lock.queue)
thread := deQ(lock.queue)

enQ(readyList, thread)
else
lock.value := free

Enable interrupts



Fair Ticket Lock, Revisited

number = next =0

Acquire( ) {
int ticket = FetchAndAdd(number, 1)
while (ticket != next) ;

h
Release( ) {

next = next + 1

j

This 1s known as a “spin-lock™.

34



Blocking Locks vs Spin Locks

* Blocking Locks

— Advantages: do not consume CPU cycles when
spinning

— Disadvantage: context switches to block and
unblock

* Spin Locks

— Advantages: faster when multiple cores and no
competing jobs

— Disadvantage: consumes CPU cycles when

spinning; priority inversion possible y



Problems with Locks (picture)
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Problems with Locks

* Not general
— only solve critical section problem
— can’t do any more general synchronization

— often must enforce strict orderings between
threads

* Condition synchronization
— need to wait until some condition 1s true
— example: bounded buffer (later)
— example: thread join

37



Barriers

* Points in program at which all threads have
to arrive before any can proceed

» Barriers provide sequence control

* In CSC 422, we will assume that all threads
must participate 1n a barrier

— It 1s possible to have “local” barriers, in which a
subset of threads participate

* In the message passing paradigm, we call these

subcommunicators (will not discuss 1n this class)
38



Centralized Barrier

Shared variable: count = 0; assume 7 threads
High-level code for barrier for a given thread:

<count++>
<await (count == n) ;>

Actual implementation for barrier for a given thread:
FetchAndAdd(count, 1)

while (count !=n) ;

Problem?

39



Centralized Barrier

Shared variable: count = 0; assume 7 threads
High-level code for barrier for a given thread:

<count++>
<await (count == n) ;>

Actual implementation for barrier for a given thread:
FetchAndAdd(count, 1)

while (count !=n) ;

Problem: reset

40



Centralized Barrier, Suggested by
Past Students

Shared variable: count = 0

Code for barrier for a given thread:

FetchAndAdd(count, 1)
while (count mod n !=0) ;

Problem?



Centralized Barrier, Suggested by
Past Students

Shared variable: count = 0

Code for barrier for a given thread:

FetchAndAdd(count, 1)
while (count mod n !=0) ;

Problem: threads do not see barrier exit
condition (count mod n == 0)



Centralized Barrier, Suggested by
Past Students, Version 2.0

Shared variable: count = 0

Code for barrier for a given thread:
if (FetchAndAdd(count, 1) ==n-1)

count =0
else

while (count !=0) ; FetchAndAdd returns the old value

Problem?



Centralized Barrier, Suggested by
Past Students, Version 2.0

Shared variable: count = 0

Code for barrier for a given thread:
if (FetchAndAdd(count, 1) ==n-1)

count =0
else

while (count !=0) ; FetchAndAdd returns the old value

Problem: same as previous attempt: a thread may not
see the barrier exit condition



Centralized Barrier (handles reset)

Shared variables: countEven = countOdd =nB =0
Code for barrier for a given thread (assume » threads):
1f (nB mod 2 ==0) {
if (FetchAndAdd(countEven, 1) ==n-1) {
nB=nB + 1 \
countEven =0
} FetchAndAdd returns the old value
clse
while (countEven !=0) ;

else {
// same code, but with countOdd 1nstead of countEven

} 45



Symmetric Barrier Picture

46



Symmetric Barrier, 2 threads
(not quite correct)
int arrive[2] = {0,0}
Thread 0’s code Thread 1’°s code

arrive[0] = 1 arrive[1] =1
while (arrive[l] !=1) while (arrive[0] 1= 1)

arrive[1]=10 arrive[0] =0

Flag synchronization principle: a thread resets flags on which the thread spins.

47



Symmetric Barrier, 2 threads

(correct)
int arrive[2] = {0,0}
Thread 0’s code Thread 1’s code

while (arrive[0] != 0) while (arrive[1] 1= 0)
arrive[0] = 1 arrive[1] =1
while (arrive[l] 1= 1) while (arrive[0] !=1)

arrive[1]=10 arrive[0] =0

48



Symmetric Barrier Picture, 2P threads
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Symmetric Barrier, 2P threads

* Conceptually, just glue multiple two-thread
barriers together

— Problem: flags meant for one thread might be seen by
another thread

— Solutions to this: use more storage (e.g., a two-
dimensional array of arrive flags, with the first index as
the round), or set the arrive array values to the round 1d

 Setting to the round 1d is generally preferable (simpler and
more space efficient)

50



Dissemination Barrier

* Similar to symmetric barrier in that 1t has a
logarithmic number of steps

 Different from symmetric barrier in that at
each round, a thread will signal one thread
and wait for a different thread’s signal

51



Dissemination Barrier Picture
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Dissemination Barrier

int arrive[0:P-1]= {0, 0, ..., 0} inC, need volatile

Thread 1’s code (local vars: j and waitFor):
for j =1 to ceiling(log,(P)) {
while (arrive[i] = 0) ;
arrive[i] =]
waitFor = (i + 2"'') mod P
while (arrive[waitFor] =) ;
arrive[waitFor] = 0

} 53



