
Critical Sections:
Implementing Logical Atomicity
• Critical section of code is one that:

– must be executed by one thread at a time 
• otherwise, there is a race condition

– Example: linked list from before
• Insert/Delete code forms a critical section
• What about just the Insert or Delete code?

– is that enough, or do both procedures belong in a single 
critical section?
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List Example

1. head

head2.

Insert: elem→next := head;

elem

head

Remove: t := head;

3.

elem
t

head

Insert: head := elem;

4.

elem
t

head

Remove: head := head→next;

5.

elem
t

Remove: return t;
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Critical Section (CS) Problem
• Provide entry and exit routines:

– all threads must call entry before executing CS
– all threads must call exit after executing CS
– a thread must not leave entry routine until it’s safe

• CS solution properties (red: safety; black: 
liveness)
– Mutual exclusion: at most one thread is executing CS
– Absence of deadlock: two or more threads trying to get 

into CS, and no thread is in → at least one succeeds
– Absence of unnecessary delay: if only one thread tries 

to get into CS, and no thread is in, it succeeds
– Eventual entry: thread eventually gets into CS 3



Picture of critical section
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Structure of threads for Critical 
Section problem

Threads do the following:
while (1) {

do “other stuff” (i.e., non-critical section)
call enter
execute CS
call exit

}
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Critical Section Assumptions

• Threads must call enter and exit
• Threads must not die or quit inside a critical 

section
• Threads can be context switched inside a 

critical section
– this does not mean that another thread may 

enter the critical section
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High-Level Solution

in1 = in2 = false
Thread 1: 
while (1) {

<await (!in2) in1 = true>
CS
in1 = false
NCS

}

Thread 2:
while (1) {

<await (!in1) in2 = true>
CS
in2 = false
NCS

}
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Satisfying the solution properties

• Mutual exclusion: in1 and in2 cannot both 
be true simultaneously

• Deadlock free: for deadlock, in1 and in2 
both must be true in the await---but T1 and 
T2 enter the await when they are false

• Free of unnecessary delay: if T1 is in NCS, 
then in1 is false (same holds for T2)

• Eventual entry not satisfied
Overall: if we had < … >, we’d be done;       

but we need to implement <…> 8



Picture of table of properties for 
critical section solutions
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Critical Section Solution Attempt #1 
(2 thread version, with id’s 0 and 1)

Initially, turn == 0
entry(id)  {  

while (turn != id) ;  
}
exit(id) {

turn := 1-id;  
}
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Critical Section Solution Attempt #2 
(2 thread version, with id’s 0 and 1)

flag[0] == false
flag[1] == false
entry(id)  {

flag[id] := true;  
while (flag[1-id]) ; 

}
exit(id) {

flag[id] := false;  
}
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Critical Section Solution Attempt #3
flag[0] = false, turn == 0
flag[1] = false
entry(id)  {

flag[id] := true;  
turn := 1-id;  
while (flag[1-id] and 

turn == 1-id) ; 
}
exit(id) {

flag[id] := false;  
} 12



Summary: Satisfying the 4 properties
(on Attempt #3)

• Mutual exclusion
– turn must be 0 or 1 => only one thread can be in CS

• Absence of deadlock
– turn must be 0 or 1 => one thread will be allowed in

• Absence of unnecessary delay
– only one thread trying to get into CS => flag[other] is     

false => the thread will get into the CS

• Eventual Entry
– spinning thread will not modify turn 
– thread trying to go back in will set turn equal to 

spinning thread’s id 13



Next three slides are just for 
reference (include comments)
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Critical Section Solution Attempt #1 
(2 thread version, with id’s 0 and 1)

Initially, turn == 0  /* turn is shared */
entry(id)  {  /* note id local to each thread */

while (turn != id) ;  /* if not my turn, spin */
}
exit(id) {

turn := 1-id;  /* other thread’s turn */
}
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Critical Section Solution Attempt #2 
(2 thread version, with id’s 0 and 1)

Initially, flag[0] == flag[1] == false 
/* flag is a shared array */
entry(id)  {

flag[id] := true;  /* I want to go in */
while (flag[1-id]) ; /*proceed if other not trying*/

}
exit(id) {

flag[id] := false;  /* I’m out */
}
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Critical Section Solution Attempt #3 
(2 thread version, with id’s 0 and 1)

Initially, flag[0] == flag[1] == false, turn == 0
/* flag and turn are shared variables */
entry(id)  {

flag[id] := true;  /* I want to go in */
turn := 1-id;  /* in case other thread wants in */
while (flag[1-id] and turn == 1-id) ; 

}
exit(id) {

flag[id] := false;  /* I’m out */
} 17



Hardware Support for Critical 
Sections

• All modern machines provide atomic 
instructions

• All of these instructions are Read/Modify/Write
– atomically read value from memory, modify it in 

some way, write it back to memory
• Use to develop simpler critical section solution 

for any number of threads
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Example: Test-and-Set

Some machines have it
function TS(bool &target)

bool b := target;  /* return old value */
target := true;
return b;

Executes atomically
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CS solution with Test-and-Set
Initially, s == false  /* s is a shared variable */
entry( )  {

bool spin;  /* spin is local to each thread! */
spin := TS(s);
while (spin) 

spin := TS(s);
}
exit( ) {

s := false;
}

Function TS(bool &target) returns bool
bool b := target
target := true
return b



A few example atomic instructions

• Compare and Swap (x86)
• Load linked and conditional store (RISC)
• Fetch and Add 
• Atomic Swap
• Atomic Increment
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Basic Idea with Atomic Instructions

• One shared variable plus per-thread flag
• Use atomic instruction with flag, shared variable

– On a change, allow thread to go in
– Other threads will not see this change
– Should use “test and test and set” style (see next 

slide)
• When done with CS, set shared variable back to 

initial state
– Some advanced solutions spin on exit (not discussed 

in 422) 22



CS using Test-and-Test-and-Set
Initially, s == false  
entry( )  {

bool spin;  
spin := TS(s);
while (spin) {

while (s) ;
spin := TS(s);

}
}
exit( ) 

s := false; 23

Function TS(bool &target) returns bool
bool b := target
target := true
return b

This line is the difference from “regular” Test-and-Set



The (Fair) Ticket Algorithm--
High Level Solution

Init: number = next = 0
Entry: <ticket = number; number++>

<await (ticket == next)>
Exit: <next++>
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Fair Ticket Algorithm--Implementation
number = next = 0
entry( )  {

int ticket = FetchAndAdd(number, 1)
while (ticket != next) ;

}
exit( ) 

next = next + 1

Works for any number of threads---and is fair (provides eventual entry)
Note: assumes FA(n, inc) increases n by inc and returns n (not n+inc)

25

No atomicity needed---why?

No atomicity needed---why?



N-Thread CS Solutions Without 
Atomic Instructions

• Book discusses two examples
– Tie-breaker algorithm
– Bakery algorithm

• Both are quite complex
– You will not be responsible for these
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Problems with busy-waiting CS solution
• Complicated
• Inefficient

– consumes CPU cycles while spinning
• Priority inversion problem

– low priority thread in CS, high priority thread 
spinning can end up causing deadlock

– example: Mars Pathfinder problem

In some cases, want to block when waiting for CS 27



Locks
• Two operations: 

– Acquire (get it, if can’t go to sleep)
– Release (give it up, possibly wake up a waiter)

• Acquire and Release are atomic
• A thread can only release a previously 

acquired lock
• entry( ) is then just Acquire(lock)
• exit( ) is just Release(lock)

Lock is shared among all threads



First Attempt at Lock 
Implementation

• Acquire(lock) disables interrupts
• Release(lock) enables interrupts
• Advantages:

– is a blocking solution; can be used inside OS in 
some situations

• Disadvantages:
– CS can be in user code [could infinite loop], 

might need to access disk in middle of CS, 
system clock could be more skewed than 
typical, etc. 29



Correct (Blocking) Lock Implementation

lock class has queue, value
Initially: 

queue is empty
value is free

Acquire(lock)
Disable interrupts
if (lock.value == busy)
enQ(lock.queue,thread)
go to sleep

else
lock.value := busy

Enable interrupts

Release(lock)
Disable interrupts
if notEmpty(lock.queue)
thread := deQ(lock.queue)
enQ(readyList, thread)

else
lock.value := free

Enable interrupts 30



Can interrupts be enabled before sleep?

lock class has queue, value
Initially: 

queue is empty
value is free

Aquire(lock)
Disable interrupts
if (lock.value == busy)

Enable interrupts
enQ(lock.queue,thread)
go to sleep

else
lock.value := busy

Enable interrupts

Release(lock)
Disable interrupts
if notEmpty(lock.queue)

thread := deQ(lock.queue)
enQ(readyList, thread)

else
lock.value := free

Enable interrupts



Can interrupts be enabled before sleep?

lock class has queue, value
Initially: 

queue is empty
value is free

Aquire(lock)
Disable interrupts
if (lock.value == busy)

enQ(lock.queue,thread)
Enable interrupts
go to sleep

else
lock.value := busy

Enable interrupts

Release(lock)
Disable interrupts
if notEmpty(lock.queue)

thread := deQ(lock.queue)
enQ(readyList, thread)

else
lock.value := free

Enable interrupts



What about a “spin-lock”?
Items in red must be addressed

lock class has queue, value
Initially: 

queue is empty
value is free

Aquire(lock)
Disable interrupts
if (lock.value == busy)

enQ(lock.queue,thread)
go to sleep

else
lock.value := busy

Enable interrupts

Release(lock)
Disable interrupts
if notEmpty(lock.queue)

thread := deQ(lock.queue)
enQ(readyList, thread)

else
lock.value := free

Enable interrupts



Fair Ticket Lock, Revisited
number = next = 0
Acquire( )  {

int ticket = FetchAndAdd(number, 1)
while (ticket != next) ;

}
Release( ) {

next = next + 1
}

This is known as a “spin-lock”.  
34



Blocking Locks vs Spin Locks

• Blocking Locks
– Advantages: do not consume CPU cycles when 

spinning
– Disadvantage: context switches to block and 

unblock
• Spin Locks

– Advantages: faster when multiple cores and no 
competing jobs

– Disadvantage: consumes CPU cycles when 
spinning; priority inversion possible

35



Problems with Locks (picture)
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Problems with Locks

• Not general
– only solve critical section problem
– can’t do any more general synchronization
– often must enforce strict orderings between 

threads
• Condition synchronization

– need to wait until some condition is true
– example: bounded buffer (later)
– example: thread join 37



Barriers

• Points in program at which all threads have 
to arrive before any can proceed

• Barriers provide sequence control
• In CSC 422, we will assume that all threads 

must participate in a barrier
– It is possible to have “local” barriers, in which a 

subset of threads participate
• In the message passing paradigm, we call these 

subcommunicators (will not discuss in this class)
38



Centralized Barrier
Shared variable: count = 0; assume n threads
High-level code for barrier for a given thread:

<count++>
<await (count == n) ;>

Actual implementation for barrier for a given thread:
FetchAndAdd(count, 1)
while (count != n) ;

Problem?
39



Centralized Barrier
Shared variable: count = 0; assume n threads
High-level code for barrier for a given thread:

<count++>
<await (count == n) ;>

Actual implementation for barrier for a given thread:
FetchAndAdd(count, 1)
while (count != n) ;

Problem: reset
40



Centralized Barrier, Suggested by 
Past Students

Shared variable: count = 0
Code for barrier for a given thread:

FetchAndAdd(count, 1)
while (count mod n != 0) ;

Problem?



Centralized Barrier, Suggested by 
Past Students

Shared variable: count = 0
Code for barrier for a given thread:

FetchAndAdd(count, 1)
while (count mod n != 0) ;

Problem: threads do not see barrier exit 
condition (count mod n == 0)



Centralized Barrier, Suggested by 
Past Students, Version 2.0

Shared variable: count = 0
Code for barrier for a given thread:

if  (FetchAndAdd(count, 1) == n-1) 
count = 0

else 
while (count != 0) ;

Problem?

FetchAndAdd returns the old value



Centralized Barrier, Suggested by 
Past Students, Version 2.0

Shared variable: count = 0
Code for barrier for a given thread:

if  (FetchAndAdd(count, 1) == n-1) 
count = 0

else 
while (count != 0) ;

Problem: same as previous attempt: a thread may not 
see the barrier exit condition

FetchAndAdd returns the old value



Centralized Barrier (handles reset)
Shared variables: countEven = countOdd = nB = 0
Code for barrier for a given thread (assume n threads):

if  (nB mod 2 == 0) {
if  (FetchAndAdd(countEven, 1) == n-1) {

nB = nB + 1
countEven = 0

}
else 

while (countEven != 0) ;
else {

// same code, but with countOdd instead of countEven
}

FetchAndAdd returns the old value

45



Symmetric Barrier Picture
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Symmetric Barrier, 2 threads 
(not quite correct)

Thread 0’s code

arrive[0] = 1
while (arrive[1] != 1)

;
arrive[1] = 0

Thread 1’s code

arrive[1] = 1
while (arrive[0] != 1)

;
arrive[0] = 0

int arrive[2] = {0,0}

47Flag synchronization principle: a thread resets flags on which the thread spins.



Symmetric Barrier, 2 threads 
(correct)

Thread 0’s code

while (arrive[0] != 0)
;

arrive[0] = 1
while (arrive[1] != 1)

;
arrive[1] = 0

Thread 1’s code

while (arrive[1] != 0)
;

arrive[1] = 1
while (arrive[0] != 1)

;
arrive[0] = 0

int arrive[2] = {0,0}

48



Symmetric Barrier Picture, 2p threads
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Symmetric Barrier, 2p threads
• Conceptually, just glue multiple two-thread 

barriers together
– Problem:  flags meant for one thread might be seen by 

another thread
– Solutions to this: use more storage (e.g., a two-

dimensional array of arrive flags, with the first index as 
the round), or set the arrive array values to the round id

• Setting to the round id is generally preferable (simpler and 
more space efficient)

50



Dissemination Barrier

• Similar to symmetric barrier in that it has a 
logarithmic number of steps

• Different from symmetric barrier in that at 
each round, a thread will signal one thread 
and wait for a different thread’s signal
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Dissemination Barrier Picture
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Dissemination Barrier
int arrive[0:P-1] = {0, 0, …, 0}  in C, need volatile

Thread i’s code (local vars: j and waitFor):
for j = 1 to ceiling(log2(P)) {

while (arrive[i] != 0)  ;
arrive[i] = j
waitFor = (i + 2j-1) mod P
while (arrive[waitFor] != j)  ;
arrive[waitFor] = 0

} 53


