Example Concurrent Program
it x =0
CO
x=x+1
//
X=Xx+2
OC

print X

What are the possible outputs of this program?

1



Example Concurrent Program

(cont.)

* One possible execution order is:
— Thread 0: R1 :=x (R1 ==0)
— Thread 1: R2 :=x (R2==0)
— Thread 1: R2:=R2+2 (R2==2)
— Thread 1: x :=R2 (x ==2)
— Thread 0: R1 :=R1+1 (RI==1)
— Thread 0: x :=R1 (x==1)

* Final value of x1s 1 (!!)

* Question: what 1f Thread 1 also uses R1?

2



Example Concurrent Program
it x =0
CO
x=x+1
//
X=Xx+2
OC

print X

Possible outputs are 1, 2, and 3
The output cannot be 0 because of the oc



More Concurrent Programming: Linked Lists

(head 1s shared)
Insert(head, elem) { Void *Remove(head) {
elem—next := head; Void *t;
head := elem; t:= head;
} head := head—next;
return t;
)

(Assume one thread calls Insert and
one calls Remove, concurrently)



One Possible (Fine) Execution

| > > Remove: t := head;
_____________________ 4. head - -
Insert: elem—next := head; l > >
A
2. he&’ > > {—
A
lem — | TET TS ms s s—ss-—-—--==-
— Remove: head := head—next;
_____________________ 5. head - -
Insert: head := elem; — > >
A
3 head - - t

e e A

Remove: return t;

elem
—>




One Possible (Bad!) Execution

1 head > > Insert: head := elem;
_____________________ 4. head - -
Insert: elem—next := head; l > >
A
head clem T
2. — > > — > A
A
lem — | TET TS ms s s—ss-—-—--==-
] Remove: head := head—next;
_____________________ head
Remove: t := head; 5. — > >
A
3 head clem T
. —> > > > A
A
eleg) T Remove: return t;
t 6




Definitions

* Several important terms
— State

* The values of all program variables, both implicit and
explicit, at a given point in time

— Atomic action

* an action that indivisibly examines or changes
program state

 an operation that, once started, runs to completion
— more precisely, logically runs to completion

* we assume loads and stores are physically atomic

— meaning: if thread A stores “1” into variable x and thread B

stores “2” into variable x at about the same time, result 1s
either “1” or “2” 7



Definitions, continued

 Additional terms
— History

 Linearization (interleaving) of the atomic actions of
all threads

— Different histories may lead to the same output

— Safety: program never enters a bad state

« Example: partial correctness

— Liveness: program eventually enters a good
state

« Example: termination



Definitions, continued

 Additional terms

— Interference
e Thread 1 interferes with Thread 2 if:

— Thread 1 executes an assignment statement that modifies a
shared variable that invalidates an assertion in Thread 2



Example of Interference

Assertions are 1n {...}

mtx=20
CO
{X == O} Assertion: represents state before assignment in thread 1
x=x+1 Assignment 1in thread 1
{X =] } Assertion: represents state after assignment in thread 1
//
> {X — O} Assertion: represents state before assignment in thread 2
Invalidated!
Xx=x+2 Assignment 1n thread 2
{X —= 2} Assertion: represents state after assignment in thread 2
oC

10



Race Condition

* When output depends on ordering of thread
execution
* More formally:

— (1) two or more threads access a shared variable
with no synchronization, and

— (2) at least one of the threads writes to the
variable

Both the addition code and the list code
shown previously have race conditions 1



General Form of Atomic Operation

(Removing Race Conditions)

® <awa1t (B) S> Called a conditional atomic action

— Atomically do (all of) the following:
e Evaluate B
e Wait until B 1s true
» Execute S (an arbitrary statement list)

— If the “await (B)” 1s omitted, S 1s immediately
executed, but still atomically

— <...> hides intermediate states and reduces
number of histories

12



Example With Await
mtx =20
CO
x=x+1
//
<(awaitx =1)x=x+2>
0C

print x

This program will always output 3.

(It also serializes execution.)

13



Example with Atomic Operations

mx=y=0,z
CO

<X =1>; <z =xt+y>
//

<y = 2> <z = X-y>

OC

What are the possible final values of x, y, and z?

How many histories are there?

14



Example with Atomic Operations

mx=y=0,z
CO

<X =1>; <z =xt+y>
//

<y =2>; <z = X-y>
0C
Vars x and y must be 1 and 2; z can be -1 or 3
Number of histories 1s 6

General formula: (n*m)! / (m!"), where n 1s number of threads
and m 1s number of atomic actions per thread 5



Same Example, Removing Explicit Atomicity

mx=y=0,z

CO
X=1;z=xty

//
y=2;,7Z=X-y

OC

What are the possible final values of x, y, and z?

16



Same Example, Removing Explicit Atomicity
mtx=y=0,z
CO

x=1;z=xty
//

y=2,z=Xx-y

OoC

As before, x and y must be 1 and 2, but while z can still
be -1 or 3 (as before), it can now also be -2 or 1

Note that enumerating all histories here 1s impractical
Via previous formula: (10!) / (5!%) == 252 histories

(2 threads, 5 atomic actions each) 17



Scheduling policies for atomic actions

 Unconditional fairness

— Every unconditional atomic action eventually
executes

* Round robin scheduling satisfies this
Weak fairness: UC + conditional atomic
actions execute if true and seen by the thread

» Strong fairness: UC + conditional atomic
actions execute 1f true infinitely often

18



Scheduling policies: WF vs. SF

continue := true; try := false
CO
while (continue) {try := true ; try := false}
//
<await (try) continue := false>
0C

» With weak fairness, program may never
terminate; with strong fairness, 1t will terminate

— Practical schedulers, however, are not strongly ifair



Finding the max of an array 1n parallel

Sequential version

int max = MINVAL
int a[n]
for1=0ton-1 {

if (a[1] > max)

max = afi]

20



Finding the max of an array 1n parallel
Incorrect parallel version

int max = MINVAL
int a[n]
co1=0ton-1{

if (a[1] > max)

max = afi]

21



Finding the max of an array 1n parallel
Correct but slow parallel version

int max = MINVAL
int a[n]
co1=0ton-1 {

<if (a[1] > max)

max = a[1]>

22



Finding the max of an array 1n parallel
Another incorrect parallel version

int max = MINVAL
int a[n]
co1=0ton-1{

if (a[1] > max)

<max = a[1]>

23



Finding the max of an array 1n parallel

Correct, efficient (but complicated) parallel version
int max = MINVAL
int a[n]
co1=0ton-1{
if (a[1] > max) { « Why do this?
<if (a[1] > max) ‘/

max = a[1]>




