
Example Concurrent Program
int x = 0
co 
x = x + 1

//
x = x + 2

oc
print x

What are the possible outputs of this program?
1



Example Concurrent Program 
(cont.)

• One possible execution order is:
– Thread 0: R1 := x (R1 == 0)
– Thread 1: R2 := x (R2 == 0) 
– Thread 1: R2 := R2 + 2 (R2 == 2) 
– Thread 1: x := R2 (x == 2)
– Thread 0: R1 := R1 + 1 (R1 == 1) 
– Thread 0: x := R1 (x == 1)

• Final value of x is 1 (!!)
• Question: what if Thread 1 also uses R1? 2



Example Concurrent Program
int x = 0
co 
x = x + 1

//
x = x + 2

oc
print x

Possible outputs are 1, 2, and 3
The output cannot be 0 because of the oc 3



More Concurrent Programming: Linked Lists
(head is shared)

Insert(head, elem) {
elem→next := head;
head := elem;

}

(Assume one thread calls Insert and 
one calls Remove, concurrently)

Void *Remove(head) {
Void *t;
t:= head;
head := head→next;
return t;

}

4



One Possible (Fine) Execution

1. head

head2.

Insert: elem→next := head;

elem

head

Remove: t := head;

3.

elem

head

Insert: head := elem;

4.

t

head

Remove: head := head→next;

5.

Remove: return t;
5

t



One Possible (Bad!) Execution

1. head

head2.

Insert: elem→next := head;

elem

head

Remove: t := head;

3.

elem
t

head

Insert: head := elem;

4.

elem
t

head

Remove: head := head→next;

5.

elem
t

Remove: return t;
6



Definitions
• Several important terms

– State
• The values of all program variables, both implicit and 

explicit, at a given point in time

– Atomic action
• an action that indivisibly examines or changes 

program state
• an operation that, once started, runs to completion

– more precisely, logically runs to completion

• we assume loads and stores are physically atomic
– meaning: if thread A stores “1” into variable x and thread B 

stores “2” into variable x at about the same time, result is 
either “1” or “2” 7



Definitions, continued

• Additional terms
– History

• Linearization (interleaving) of the atomic actions of 
all threads

– Different histories may lead to the same output

– Safety: program never enters a bad state
• Example: partial correctness

– Liveness: program eventually enters a good 
state

• Example: termination
8



Definitions, continued

• Additional terms
– Interference

• Thread 1 interferes with Thread 2 if:
– Thread 1 executes an assignment statement that modifies a 

shared variable that invalidates an assertion in Thread 2

9



Example of Interference
Assertions are in {…}

int x = 0
co
{x == 0}
x = x + 1
{x == 1}

//
{x == 0}
x = x + 2
{x == 2}

oc
10

Assertion: represents state before assignment in thread 1

Assertion: represents state after assignment in thread 1

Assignment in thread 1

Assertion: represents state before assignment in thread 2

Assertion: represents state after assignment in thread 2

Assignment in thread 2
Invalidated!



Race Condition

• When output depends on ordering of thread 
execution

• More formally:
– (1) two or more threads access a shared variable 

with no synchronization, and
– (2) at least one of the threads writes to the 

variable

Both the addition code and the list code 
shown previously have race conditions 11



General Form of Atomic Operation
(Removing Race Conditions)

• <await (B) S>
– Atomically do (all of) the following:

• Evaluate B
• Wait until B is true
• Execute S (an arbitrary statement list)

– If the “await (B)” is omitted, S is immediately 
executed, but still atomically

– <…> hides intermediate states and reduces 
number of histories

12

Called a conditional atomic action



Example With Await
int x = 0
co 
x = x + 1

//
<(await x == 1) x = x + 2>

oc
print x

This program will always output 3.
(It also serializes execution.) 13



Example with Atomic Operations
int x = y = 0, z
co 
<x = 1>; <z = x+y>

//
<y = 2>; <z = x-y>

oc

What are the possible final values of x, y, and z?
How many histories are there?

14



Example with Atomic Operations
int x = y = 0, z
co 
<x = 1>; <z = x+y>

//
<y = 2>; <z = x-y>

oc
Vars x and y must be 1 and 2; z can be -1 or 3
Number of histories is 6

General formula: (n*m)! / (m!n), where n is number of threads 
and m is number of atomic actions per thread 15



Same Example, Removing Explicit Atomicity

int x = y = 0, z
co 
x = 1; z = x+y

//
y = 2; z = x-y

oc

What are the possible final values of x, y, and z?

16



Same Example, Removing Explicit Atomicity
int x = y = 0, z
co 
x = 1; z = x+y

//
y = 2; z = x-y

oc

As before, x and y must be 1 and 2, but while z can still 
be -1 or 3 (as before), it can now also be -2 or 1

Note that enumerating all histories here is impractical
Via previous formula: (10!) / (5!2) == 252 histories

(2 threads, 5 atomic actions each) 17



Scheduling policies for atomic actions

• Unconditional fairness
– Every unconditional atomic action eventually 

executes
• Round robin scheduling satisfies this

• Weak fairness: UC + conditional atomic 
actions execute if true and seen by the thread

• Strong fairness: UC + conditional atomic 
actions execute if true infinitely often

18



Scheduling policies: WF vs. SF
continue := true; try := false
co

while (continue) {try := true ; try := false}
//

<await (try) continue := false>
oc

• With weak fairness, program may never 
terminate; with strong fairness, it will terminate
– Practical schedulers, however, are not strongly fair19



Finding the max of an array in parallel

Sequential version

int max = MINVAL
int a[n]
for i = 0 to n-1 {

if (a[i] > max)
max = a[i]

}

20



Finding the max of an array in parallel

Incorrect parallel version

int max = MINVAL
int a[n]
co i = 0 to n-1 {

if (a[i] > max)
max = a[i]

}

21



Finding the max of an array in parallel

Correct but slow parallel version

int max = MINVAL
int a[n]
co i = 0 to n-1 {

<if (a[i] > max)
max = a[i]>

}

22



Finding the max of an array in parallel

Another incorrect parallel version

int max = MINVAL
int a[n]
co i = 0 to n-1 {

if (a[i] > max)
<max = a[i]>

}

23



Finding the max of an array in parallel

Correct, efficient (but complicated) parallel version
int max = MINVAL
int a[n]
co i = 0 to n-1 {
if (a[i] > max) {

<if (a[i] > max)
max = a[i]>

}
}

Why do this?

24


