
Semantics of Send and Receive
• Can be blocking (“synchronous”) or

nonblocking (“asynchronous”)
– remember:

• procedure call is synchronous
• thread fork is asynchronous

– send, receive both have synchronous and
asynchronous implementations

• Channels were defined as asynchronous send,
synchronous receive

Here, we will look at all four combinations of send/receive

Picture of Synchronous Send and
Synchronous Receive

P1 P2

send

receive

(blocked)

(blocked)

proceed

consume
message

Data

“Go ahead”

What happens if send is invoked before the receive?

Sieve of Eratosthenes:
Find primes <= N

1. Add the number 2 to the set of primes
2. Create a list of consecutive odd integers
3. Let p = 3, the first prime number (besides 2)
4. Count up from p and cross out all multiples

of p
5. Add p to the set of primes
6. Set p = the smallest number not crossed out
7. If p <= N, goto step 4; else quit

Picture of Sieve of Eratosthenes

Sieve of Eratosthenes Using
Synchronous Message Passing

process Sieve[1] {
for j = 3 to N by 2

Sieve[2]!j
}

process Sieve[i = 2 to Max] {
Sieve[i-1]?p
print “found a prime”, p
while (Sieve[i-1]?num) {

if (num mod p != 0)
Sieve[i+1]!num

}
}

• Uses CSP notation: ? (receive)
and ! (send)
• Terminates in deadlock, but this
could be fixed
• Max must be large enough to
guarantee all primes generated

Picture of Asynchronous Send,
Synchronous Receive

P1 P2

send

receive
(blocked)

proceed consume
message

Data

What happens if message arrives before the receive?

Picture of Synchronous Send,
Asynchronous Receive

P1 P2

send

Post receive

(blocked)

(keep working)

proceed

consume message

blocked (need data)
data

“proceed”

But, message may arrive before the block on the receiver (next slide)

Picture of Synchronous Send,
Asynchronous Receive

P1 P2

send

Post receive

(blocked)

(keep working)

proceed

consume message

need data
(no blocking)

data

“proceed”

What does (Asynchronous Send, Asynchronous Receive) look like?

Implementation of Asynchronous Send,
Blocking Receive

• Implementation must keep track of all channels
– one buffer and one semaphore per channel at receiver

• On Send(channel, userSpecifiedData)
– copy userSpecifiedData into sender-side buffer
– (buffer eventually put onto network)

• On Receive(channel, userSpecifiedData)
– P(thisQueue); copy buffer into userSpecifiedData

• On incoming message (specifies channel)
– copy message into receiver-side buffer; V(thisQueue)

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Channel ch

Message queue

Sem ch_sem

0

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send(ch, x)

Send outgoing buffer

Receive(ch, y)

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Channel ch

Message queue

Sem ch_sem

0

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send(ch, x)

Send outgoing buffer
x
ch

Receive(ch, y)
P(ch_sem)

Copy

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Channel ch

Message queue

Sem ch_sem

0

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send outgoing buffer
x
ch

Receive(ch, y)
P(ch_sem)

To: e.f.g.h; channel ch, value x

Network packet

Copy

(Send has completed)

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Channel ch

Message queue

Sem ch_sem

0

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send outgoing buffer

Receive(ch, y)
P(ch_sem)

To: e.f.g.h; channel ch, value x

Network packet
Network transmission

Physical network

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Channel ch

Message queue

Sem ch_sem

0

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send outgoing buffer

Receive(ch, y)

x

P(ch_sem)

channel ch, value x

Copy V(ch_sem)

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Channel ch

Message queue

Sem ch_sem

0

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send outgoing buffer

Receive(ch, y)

x

Copy

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Channel ch

Message queue

Sem ch_sem

0

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send outgoing buffer

Receive(ch, y) y now == x

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Data at Receiver Before Receive

Channel ch

Message queue

Sem ch_sem

0

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send(ch, x)

Send outgoing buffer

(Nothing happening here yet)

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Data at Receiver Before Receive

Channel ch

Message queue

Sem ch_sem

1

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send outgoing buffer

x

(Send has completed)

Skipped many steps where message transmitted over network and arrived

(Nothing happening here yet)

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Data at Receiver Before Receive

Channel ch

Message queue

Sem ch_sem

1

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send outgoing buffer

Receive(ch, y)

x

P(ch_sem)

(Send has completed)

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Data at Receiver Before Receive

Channel ch

Message queue

Sem ch_sem

0

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send outgoing buffer

Receive(ch, y)

x

Copy

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Channel ch

Message queue

Sem ch_sem

0

Receiver (IP e.f.g.h)Sender (IP a.b.c.d)

Send outgoing buffer

Receive(ch, y) y now == x

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Sender and Receiver on same machine

Channel ch

Message queue

Sem ch_sem

0

Receive(ch, y)

x

Send(ch, x)
P(ch_sem)Copy

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Sender and Receiver on same machine

Channel ch

Message queue

Sem ch_sem

0

Receive(ch, y)

x

Send(ch, x)
P(ch_sem)V(ch_sem)

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Sender and Receiver on same machine

Channel ch

Message queue

Sem ch_sem

0

Receive(ch, y)

x

Copy

(Send has completed)

Picture of Message Passing Implementation
(Asynchronous Send, Synchronous Receive)

Sender and Receiver on same machine

Channel ch

Message queue

Sem ch_sem

0

Receive(ch, y) y now == x

Tradeoffs in Message Passing
• Advantages of synchronous send

– won’t overwrite message, less buffering
• Advantages of asynchronous send

– can continue after send (can do other work)
– but what if the buffer is full? Block? Fail?

• Advantages of synchronous receive
– know message is received, avoid polling

• Advantages of asynchronous receive
– can result in fewer copies (buffer posted in

advance)

