
Semantics of Send and Receive
• Can be blocking (“synchronous”) or 

nonblocking (“asynchronous”)
– remember: 

• procedure call is synchronous
• thread fork is asynchronous  

– send, receive both have synchronous and 
asynchronous implementations

• Channels were defined as asynchronous send, 
synchronous receive

Here, we will look at all four combinations of send/receive
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What happens if send is invoked before the receive?



Sieve of Eratosthenes:
Find primes <= N 

1. Add the number 2 to the set of primes
2. Create a list of consecutive odd integers
3. Let p = 3, the first prime number (besides 2)
4. Count up from p and cross out all multiples 

of p
5. Add p to the set of primes
6. Set p = the smallest number not crossed out 
7. If p <= N, goto step 4; else quit



Picture of Sieve of Eratosthenes



Sieve of Eratosthenes Using 
Synchronous Message Passing

process Sieve[1] {
for j = 3 to N by 2

Sieve[2]!j
}

process Sieve[i = 2 to Max] {
Sieve[i-1]?p
print “found a prime”, p
while (Sieve[i-1]?num) {

if (num mod p != 0)
Sieve[i+1]!num

}
}

• Uses CSP notation: ? (receive)
and ! (send)
• Terminates in deadlock, but this
could be fixed
• Max must be large enough to
guarantee all primes generated
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What happens if message arrives before the receive?
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But, message may arrive before the block on the receiver (next slide)
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What does (Asynchronous Send, Asynchronous Receive) look like?



Implementation of Asynchronous Send,  
Blocking Receive

• Implementation must keep track of all channels
– one buffer and one semaphore per channel at receiver

• On Send(channel, userSpecifiedData)
– copy userSpecifiedData into sender-side buffer
– (buffer eventually put onto network)

• On Receive(channel, userSpecifiedData)
– P(thisQueue); copy buffer into userSpecifiedData

• On incoming message (specifies channel)
– copy message into receiver-side buffer; V(thisQueue)
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Tradeoffs in Message Passing
• Advantages of synchronous send

– won’t overwrite message, less buffering
• Advantages of asynchronous send

– can continue after send (can do other work)
– but what if the buffer is full?  Block?  Fail?

• Advantages of synchronous receive
– know message is received, avoid polling

• Advantages of asynchronous receive
– can result in fewer copies (buffer posted in 

advance)


