
Problems with Send and Receive

• Low level
– programmer is engaged in I/O
– server often not modular
– takes 2 calls to get what you want (send,

followed by receive) -- error prone

• Solution
– use procedure calls -- familiar model

Remote Procedure Call (RPC)

• Allow procedure calls to other machines
– servicing of procedure remote
– caller blocks until procedure finished, as usual
– simpler than explicit message passing

• Complications
– caller and receiver in different address spaces
– parameter passing
– where is the server?
– what about crashes?

Recall: Programming Client/Server
Applications (General Outline)

Outline of Client code
while (1) {
build request
send(request, server)
receive(reply)
do something

}

Outline of Server code
while (1) {
receive(request)
switch(request.type)
case FOO:

…
send(client, reply1)

case BAR:
…
send(client, reply2)

etc.

Programming Client/Server
Applications with RPC

Outline of Client code
while (1) {
reply = foo(params)
do something

}

Note: Server is
written as collection
of several procedures

Outline of Server code
foo(params) {

….
return reply1;

}
bar (params) {

….
return reply2;

}

Basics of RPC Implementation
• Goal: provide complete transparency to

RPC user
– Implementation replaces a normal procedure

call with:
• pack arguments (including function) into a message

via a “stub function”
– may need to worry about byte ordering, linked lists, etc

• send message to server; block waiting for reply
– implemented via explicit message passing (send/receive)

Basics of RPC Implementation
• Goal: provide complete transparency

– On receipt at server: unpack and push
parameters onto the stack, call function (create
new thread)

• Implemented by creating a thread that calls a stub
function

– picture following does not show stub function on server
side, for simplicity

– Server then sends reply to client with results of
function

– On receipt of reply at client: put result where it
belongs, unblock client

RPC Implementation

Client
while (1) {
reply = foo(params)
do something

}

Server
foo(params) {

….
return reply1

}

RPC Implementation
Client
while (1) {
reply = foo(params)
foo_stub(params, &reply)
do something

}
foo_stub(params, &reply) {
msg.func = foo
msg.data[0] = param1
msg.data[1] = param2
send(Server, msg)
receive(Server, result)
reply = result.returnVal

}

Server
foo(params) {

….
return reply1

}

RPC Implementation
Client
while (1) {
reply = foo(params)
foo_stub(params, &reply)
do something

}
foo_stub(params, &reply) {
msg.func = FOO
msg.data[0] = param1
msg.data[1] = param2
send(Server, msg)
receive(Server, result)
reply = result.returnVal

}

Server
foo(params, &returnVal) {

….
return reply1
returnVal = reply1

}
RPC_server() {
receive((Client = ANY_SOURCE), msg)
params = msg.params
switch(msg.func) {

case FOO:
t = thread_create(foo, params, &retVal)
thread_join(t)
msg.returnVal = retVal
send(Client, msg)

}
}

RPC Implementation Issues
• Weakly typed languages

– E.g., C --- what to do if unbounded array passed to
RPC?

– Pointers across different machines?
• Communication via global variables impossible
• Binding

– How does client know where server is?
• One solution: use a database

• Failures?
– What if function is partially executed, or

executed twice, or executed never?

RPC Parameter Passing

• Client machine may be a different
architecture than server
– we will ignore this issue – one side must convert

data if byte ordering is an issue
• Parameter issues

– what parameter passing style should be provided?
– can be important performance issue
– not as easy as it seems at first glance

Call by Value

• Simple semantics
• Just package up the args, and send them

– can be problematic (efficiency-wise) if pointer
parameter points to a complex data type, e.g.,
graph or list

• Server uses these args
– doesn’t need to send them back

Call by Reference

• What do pointers mean across machines?
– remember, they mean nothing across address

spaces
• Could send back message to client on each

reference
• SLOW!
• Never used for RPC

Call by Copy/Restore

• Similar to call by reference
– parameter copied in, same as call by value

• same disadvantages of having to copy entire structures
– but when procedure finished, copy parameter back

to caller
– not quite same as call by reference
– method of choice for “reference parameters” when

using RPC

(Contrived) example of how call
by reference and call by copy-

restore can differ

int a;
foo(int x) {
x = 2; a = 0;

}
int main() {
a = 1; foo(a); print(a)

}

Call by reference outputs 0; call
by copy-restore outputs 2

Failures

• Many things can go wrong with RPC, e.g.,
server crash
– How do we know, from client’s perspective, if the

server crashed?
– Supposing we know the server crashed, what do we

do from the client side?
• Run RPC again?
• Something else?

Rendezvous
• Similar to RPC

– Key difference: no new process created on the
server (but unlike RPC, there is synchronization)

– Caller side is the same as with RPC
– Server looks roughly as follows:
in op1(…)

execute code for op1
[] op2(…)

execute code for op2
ni
– Server blocks until >= 1 pending invocation on

any op (can be implemented via UNIX select)

One Lane Bridge Problem:
Picture

NC1
NC2
NC3

SC1
SC2
SC3
SC4

Current direction:
South

(Waiting to cross)

Bridge

One Lane Bridge with Monitors
monitor Bridge

void Arrive(int)
void Exit(int)
int numCars = 0, int currentDirection = 0, condition headOn

void Arrive(int direction)
while (currentDirection != direction and numCars > 0)
Wait(headOn)

if (numCars == 0)
currentDirection = direction

numCars ++

void Exit(int direction)
numCars –
Broadcast(headOn)

Cars invoke Bridge.Arrive(direction) and Bridge.Exit(direction)

One Lane Bridge with RPC
module Cars
call Bridge.Arrive(direction) or call Bridge.Exit(direction) // RPCs on Client

monitor Bridge // Executes on server
void Arrive(int)
void Exit(int)
int numCars = 0, currentDirection = 0, cond headOn

void Arrive(int direction)
while (currentDirection != direction and numCars > 0)
Wait(headOn)

if (numCars == 0)
currentDirection = direction

numCars ++

void Exit(int direction)
numCars –
Broadcast(headOn)

Note: Arrive and Exit
need to be monitor functions

One Lane Bridge with Rendezvous
module Cars // Executes on client
call Bridge.Arrive(direction) or send Bridge.Exit(direction) // Remote invocations

module Bridge // Just a class---not a monitor! Executes on server
void Arrive(int)
void Exit(int)
int numCars = 0, currentDirection = 0

process ManageBridge {
while(true)

in Arrive(direction) and (currentDirection == direction or numCars == 0)
if (numCars == 0)
currentDirection = direction

numCars++
[] Exit(direction)

numCars--
ni

}

