Efficient Support for Two-DimensionalData Distrib utions in Distrib uted Shared
Memory Systems$

David K. Lowenthat
VincentW. FreeH
David W. Mill ert

Abstract

Despite their clear advantge in scalability two-
dimensionabatadistributionsare not efficiently supported
by currentsoftwae distributedshaedmemorySDSM)sys
tems.Thisis becausesharingbetweemodesccuisonboth
columnsandrows Sharingin two dimensionss nota good
matd for SDSMsystemgbecauseithera row- or column-
major data layout of pagesleadsto (1) severe thrashing
if a strong memaoryconsistencys used,or (2) exchange of
unnecessardatabetweemodesijf a relaxedmemorycon-
sistencyis used.

Thispaperexaminegwo alternativesfor efficiently sup-
porting two-dimensionalata distributionsin SDSMsys
tems. We developtwo new page consisteng protocolsfor
this purpose One protocol, called Explicit-2D, requires
that the useror compilerexplicitly identify truly shared el-
ementswithin a page; the other called Implicit-2D, infers
sudh elementamplicitly. Knowledg of truly shaied ele-
mentsallows the SDSM at syndronizationpoints,to send
only truly shawed data, which reducs diff sizes. As the
problemsizeor the numberof nodesgrows, programswrit-
tenusinga two-dimensionadlistributionswith our new pro-
tocolsare superiorto thoseusinga one-dimensionabne
Thedifferencein our testsis asmud as12%for Red-Badk
SOR,and increags with the problemsizeand numberof
nodes.

1 Intr oduction

Onekey to writing efficient parallelprogramss choos-
ing an effective distribution of datato processorgnodes).
An ideal distribution balanceghe computationaload and
minimizescommunication. For applicationsthat perform
uniform computationon eachdataelement,balancingthe

tDepartmenbf ComputerScienceThe Universityof Geogia, Athens,
GA 306@. Contactdkl @s. uga. edu

fDepartmentof Computer Scienceand Engineeing, University of
Notre Dame,Notre Dame,IN 465%. Contact:vi n@d. edu

load can be effectively done by assigningeachnode an
equalnumberof dataelements. The key factor then be-
comesminimizing communicatioroverhea. For mary ap-
plications,atwo-dimensionaldatadistribution, whereeach
nodeis assigned two-dimensionakubgrid,haslesscom-
municationoverheadhanits one-dimensionatounterpart.

Unfortunately two-dimensionatistributionsarenot ef-
ficiently supportedn software distributed sharedmemory
(SDSM) systemg14]. In an SDSM[11, 3, 10, 7], two-
dimensionaldistributions can causea large amountof ex-
cesscommunicatiorbetweennodes,even when using re-
laxedmemaoryconsistenciesuchaseagemwrite shared3],
lazy write shared[10, 7, 8], or a hybrid [1]. The primary
problemis that two-dimensionalistributions force nodes
to sharedatain two dimensionsbut the datais organizedin
eitherarow- or column-majorayout. Consequentlynodes
shareboth rows and columns,meaningthat every element
in a pagemustbe write-shared gven thoughtypically, in
the non-majoraxis only a smallnumberof valuesaretruly
shared.Thisis true no matterwhich write-sharedsariantis
used.

This paperintroducegwo alternatves Explicit-2D and
Implicit-2D , that extend write-sharedprotocolsto allow
two-dimensionatiatadistributions. Thefirst providesapro-
gramminginterface throughwhich the user(or compiler)
canindicatewherecolumnsareshareetweemodes.The
secondnferssharedcolumnsautomaticallyobviatingspec-
ification of the shareddata. Both mechanismgrovide the
information necessy to determinewhich portionsof the
pageare truly shared. This allows the SDSM to avoid
communicatinguseles data. Whenthe sharingpatternis
stable,programswritten usinga two-dimensionatistribu-
tions execute 12.3%fasterthana one-dimensionabersion
whenusing25 nodeson Red-BlackSOR.Furthermae, we
shav that two-dimensionaldistributions scalebetterthan
their one-dimensionatounterparts.Finally, we shov that
Explicit-2D is the appropriateprotocol when the sharing
patternis not stable while Implicit-2D is betterwheneither
the sharingpatternis stableor the sharedcolumnscannot
be determinedstatically

Node 0
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

Node 7
Node 8

Page Boundary

ITITNTTIINT
Node O | Node 1| Node 2
Node 3| Node 4| Node 5
Node 6 | Node 7| Node 8

Figure 1. A one-dimensioal andtwo-dimensionaldatadistribution in an SDSM. In the former, eachnodeis assigneda equal
numberof consecutie rows; in thelatter, eachnodeis assigne@nequal-sizegquare Also, thelayoutof arow (whichis comprised
of two pagesn this example)in thetwo-dimensionatistributionis shavn.

The rest of this paperis organized as follows. The
next sectiongivesan overview of the problem. Section3
describeghe implementationand Section4 gives perfor
manceresults.Finally, Section5 summarizeshe paper

2 Overview

Parallelizationof grid applicationswith uniform work-
loadsandregular, nearest-neighbasharingpatternsareof-
ten carriedout by assgning eachnodea contiguousregion
of thegrid. Suchanassignmentesultsin a noderequiring
datafrom eachof its adjacenteighboringnodes Assuming
thedimensionalityof thearrayis atleasttwo, typically one
or two dimension®f the grid aredistributed. The scalabil-
ity advantagesf two-dimensionaHistributions have been
noted by otherresearches [5]. However, currentSDSM
systemado not efficiently supportsuchdistributions. This
is despitethe significantamountof SDSMresearchhathas
focusedon waysto reduceconsisteng-relatedcommunica-
tion by usingdiffs on sharechageqd3, 10,7, 1]. (See[7] for
afull discusson of thesetechniquey.

No SDSM system we know of supplies the user
with a protocol that allows efficient execution of multi-
dimensionaldistributions. Standardwrite-sharedproto-
colswill incur excesscommunicatiorfor evensimpletwo-
dimensionaHldistributionson very regular applicationsthis
is becausehey canonly handlefalsesharingnottrue shar
ing [1]. Theleft sideof Figurel is a strips-basedlistribu-
tion, whereeachnodeis assigned contiguoussetof rows;
in theright part,eachnodeis assigned square.Theright-
handsidealsoshaws the first row of thearray In this ex-
ample,assumeherow is split over two pages Supposehis
row is written andthe programusesnearest-neighbarom-
munication,andconsidertheinducedcommunicatiorfrom
the point of view of nodel. If aneagerwrite sharedpro-

tocolis used,atthe endof iteration, nodel mustcreatea
diff for bothpagespecaus it writesto partsof both. This
diff is sentto both node0 andnode2. Node 1l mustalso
receve diffs from nodeO andnode?2. These(entire)diffs
aresent,receved, andapplied,eventhougheachnodewill
requireonly boundarypoints(shadedn the figure), which
oftenarea smallpercentagef the modifieddatawithin that
page.

The primary problemis that while write-sharedproto-
colstoleratefalsesharing,they force every elementhatis
modifiedon a write-sharecageto be communicatedeven
if thatelements not neededby ary othernode. Onesolu-
tion to this is givenin [14] (andwas previously discussd
but notimplementedn [4]). Their solutionis to usestatic
analysisto detectthis situation;they thenhave their com-
piler rewrite the codeto duplicatethe shareccolumnin pri-
vatememoryandexplicitly communicatehatdatabetween
nodes.While this solvesthe problem.,it requiressignificant
compileranalysis,coderewriting, andadditionalmemory
A final solutionis to usea languagesuchas Jasa where
thereis an extra level of indirectionon objectaccesss[6],
but this relieson usingsuchalanguage.

Our approachis insteadto develop new protocolsthat
allow theuser(or compiler)to inform the SDSM systemof
whatdatais actuallyneededy othernodessothatonlythat
datacanbe communicated Our techniqueis implemented
in two new SDSM protocolsdescribedn the next section.

3 Implementation Alter natives

We experimentedwith two basicalternatvesto achieve
efficient supportfor two-dimensionaldistributions. Both
protocols,which we call Explicit-2D and Implicit-2D, are
implementednsidethe FilamentsSDSM [12], which sup-
portsmultiple consisteng protocolsincludingeagerelease

consisteng. Although the new protocolsdo not support
three-dimensionafor greater)distributions, most parallel
programgantypically achieve asmuchefficiency from two
distributeddimensionsasfrom threeor more[5].

3.1 Explicit-2D

In the Explicit-2D protocol,the sharingpatternis spec-
ified by the user(or compiler); an API call (shar eCol)
containsinformationthat allows the SDSM to know what
columnsto send.This allows the SDSMto avoid transmit-
ting entirepagesvhenonly a smallnumberof elementson
thatpageareactuallyneeded.

3.1.1 Userlinterface

The userinterface containsonly two function calls. The

first, shar eCol , indicatesthat a column or columnsis

sharedbetweentwo nodes;this allows us to specify regu-

lar arrayaccespatternslt takesall necessy information,

including the sharingnodes,size and numberof elements
in the column,numberof columns,anda stride. The sec-
ondfunction,st abl eShar i ng, indicateghatthesharing
patterndoesnotchangeacrossterationsof acomputational
phasd3].

3.1.2 Implementation

For eachcall to shar eCol , the FilamentsSDSM creates
adescriptorcontainingthe above informationaswell asthe
startingandendingSDSM pageon which the columnlies.
This will allow the SDSMto efficiently gatherand scatter
the elementsvhenneeded.Eachnodeis sentthe sharing
informationof all othernodes.

Therearetwo waysto implementthe Explicit-2D proto-
col. Thefirst is by detectingand exchangingthe columns
thataresharedetweemodes.If elementof acolumnare
not modified betweensynchronizatiorpoints, they do not
needto be disseminatedo othernodes.Write faulting de-
termineswhich columnelementsave beenmodified.

When a nodewrite faults on a sharedpage,that page
is eithermarlked, if it falls within any columndescriptoyor
cloned if it doesnot. At thenext synchronizationpoint,ary
pagethatis clonedis handledn exactly the sameway asin
eagereleaseconsisteng. However, pageswithin therange
of acolumndescriptorarehandleddifferently Specifically
eachpagein eachdescriptoiis traversed anda singlemes-
sageper descriptoris created. The messge containseach
pagethatis marked aswritten. This mimics whatis done
in an explicit messaggassingprogram. This messages
sentto the destinationnode,which appliesthe changego
eachpagewhile traversingthe descriptor Finally, all nodes
setthe permission®n eachpagein a columndescriptonto
read-onlyin preparatiorfor the next iteration.

There are several sourcesof inefficiency in the above
implementationof the Explicit-2D protocol. Specifically
on eachiteration, threeactionsoccur: (1) initial write fault
to eachboundaryelement,(2) receiptof column(s)(at the
next synchronizatiorpoint), and(3) resetof columnpages
to read-only Eachof thesehassignificantcosts,includ-
ing faulthandlersreprotectiorof pagesandmessagever
head.The costof theseitemsis substantia(seeSection4).
If a stablesharingpatternhasbeenindicated(througha
call to st abl eShar i ng), then Explicit-2D keepsa sta-
ble sharinglist for eachiteration. At theendof aniteration,
all active descriptorgoneswhosecolumnswere written),
areplacedon a stablesharinglist for thatiteration.

Then, descriptorlists for earlieriterationsare matched
againsttheonefrom thecurrentiteration;if thereisamatch,
then we have reacheda stable sharingpoint. After we
have found stablesharing the actionstaken by Explicit-2D
changefrom using the (costly) detectionschemeto sim-
ply sendingonly the neededcolumnsfor that iterationto
nodes.Thisavoidsoverheadslueto pagefaultsandprotec-
tion switchesfor theremaindeinf the computation.

If stablesharingis not specified,we can eliminatethe
above overheasby simply exchangingall columns.While
this will, in general,sendmore data’ thereis no needto
keeptrackof which pagesaaremodified. Thereis atradeof,
though;whenthe numberof columnsis large andfew are
modifiedon eachiteration,detectiormaybemoreeffective.

3.2 Implicit- 2D

While theExplicit-2D protocolresultsn anefficient pro-
gram,it requireshe programmenr compilerto specifyex-
plicitly shareddata.In somecaseghis mightbestraightfor
wardbutin othersit is difficult; in thegenerakasejt cannot
be staticallydetermined.For the latter caseswe have de-
velopedthe Implicit-2D protocol,which infers shareddata
usingsystem-lgel techniques.

3.2.1 Userlnterface

The basicideabehindImplicit-2D is the following: when
aremoteaccesss made,a pagefault occurs.However, in-

steadof satisfyingthe fault by either obtaininga copy of

the pageor creatinga clone, the acces is logged, storing
theaddreson which thefault occurredaswell aswho has
the neededdata. At the next synchronizatiorpoint, before
thenormalbarrieror reductionis carriedout, all loggedad-
dresses@recombinednto onemessagéto eachnode),and
the datais returned;then, the (deferred)computationcan
complete.Thisway both(1) avoidsthrashingand(2) avoids

1This schemesendsexactly the sameamourt of dataasthe detection
implementatiorin the casewhenthe applicationrequiresthatall elements
of all columnsareexcharged.

regular() {
N := Ye — Yw +1
for i := startrav to endrav
for j := startcolto endcol
Sci =7 — Yuw
A'[(Ne +j + Se)/Nelli][] := B'[(Ne + 5 + 1+ Se) /Nel[il[§ + 1] + ..
checkRultOccurred(j);

}

updatedeferred() {
while ('deferredupdates.empty)) {
(i,j) = deferredupdate.remee()
// datamustnow be presentsouseR/W shadav copy
A'[)[d][5] = B'[1][]l5 + 1] + ...

Figure 2. Transformedacobicode.If afault occurstheupdates logged, notactuallycomputed(Theusercodespecifiesexactly
what shouldbe logged.) After all necessandatahasbeenacquired(which occursat the next synchronizatia poinf), function

updat e_def err ed is called.It useshecopy of thepagethatis readableandwritable.

sendinguselesdata:lt infersatruntime theactualdatathat
is neededandits location.

The userinterfacefor Implicit-2D allows sharingto be
determineddynamically This requiresusercodemodifica-
tion, which we madeby hand, althoughthe requireduser
codechangesould be generatedy a preprocessousing
only standarccompilertechniquesaswell asexisting opti-
mizations(seebelow).

The first modification involves using what we call
shadowvariables Givena variablewith a virtual address
A, thatmapsto aphysicaladdressd,, ashadev variableis
adistinctvirtual address4,’ thatalsomapsto A,. In our
system/for eacharrayin SDSM spacethe usercodemust
allocatethreeshadaev arrays(describedelaw). In practice,
to malke the codesimpler the threearraysaregroupedinto
one,with anadditionaldimensionaddedto distinguishbe-
tweenthem. Our conventionis that B'[1][N][N] is a copy
ownedby the currentlyexecuting node, while B'[0][N][NV]
and B'[2][N][N] areownedby theleft andright neighbors,
respectiely.

The next modification is to replace, for each array
B, referencesBl[i][j] with B'[F(3,j)][¢][j]. In particu-
lar, two-dimensionalarray accesesare changedo three-
dimensionalones. Function F' always evaluatesto either
0, 1, or 2. A value of 1 shouldbe returnedfor ary ac-
cessin that lies within the rectangulaisubarrayowned by
anode. We designatea nodes ownedsubarrayby coordi-
nates(z,, yw) [upperleft] and(z,, y.) [lowerright]. When
i < x, Ori > x4, the B[i][j] is remoteandis handledby
currentwrite-sharedechniquegor one-dimensionadlistri-
butions. On the otherhand,whenz,, < i < x4, thisnode

owns points B[i][y,,] to B[i][y.]. However, B[i][ys + 1] is
remote.Hence,n theabove transformatiorfrom B([i][j] to
B'[F(i,)][{][j], we musthave F = 0if j < yy, F =1
if yo < j < ye,andF = 21if j > y.. Fortheaccess
Bi][j], wedetermineF via theformula(N, + j — S.) /N,
whereN, is ye — ¥ + 1 andS. is y,,. Intuitively, the col-
umnindex (y) is dividedby thenumberof columnelements
owned(N,). The N, in the numeratoris to designatel as
ownership(and0 and?2 asleft andright neighbors)and.S,
is subtractedo shift the expresson whenit doesnot startat
0.

In general,we supportary acces of the form Blai +
bl[cj + d], wherea, b, ¢, andd are constants.This access
is corvertedto B'[Netedtd=5e14i 1 p][cj + d]. Thevalues
N, andS, aredeterminédnsidetheImpIicit—2D protocol.
Theaddedarrayindexing overhea canbereducedy using
known compilertechniguege.g.,[2]), whichis orthogonal
to ourwork.

The final user code modificationis to the application
code,asshavn in Figure2. The systemwill catchall ref-
erencego neighboringnodes,i.e., referenceso B’[0] and
B'[2]. Theusercodemustbe modifiedto record(with as-
sistancefrom the SDSM) which iterationsreferencedata
ownedby neighborsBecaus acces permission®nneigh-
bor shadevs areprotectedanacces generatea pagefault.
The checkFaul t Gccurred() function, which is ap-
plication specific,is insertedinto the applicationkernelto
recordthisinformationandqueuetheiterationsothatit can
be executedlater A secondversionof kernel code (up-
datedefered) is neededwhich executesthe deferrediter-
ations. The deferredkernel usesthe local shadev for all

-

Pagej ——

<

S

Physical Copy

Node i-1 Node i Node i+1

<— Left copy of page{—

< Owner's copy of page+

<— Right copy of page§=

Shadov
Copies

Node i-1 Node i Node i+1
No access permitted

Node i-1 Node i Node i+1
Read/Write permitted

Node i-1 Node i Node i+1
No access permitted

Figure 3. Pictureof the pagemappingschemausedoy Implicit-2D. For eachpagej, threeshadaev copiesof the pagearemapped.
The middle copy is readableandwritable, whereaghe other two representiatanot ownedandare hencenot accesspermissible;
acessedo thesecopieswill beloggedandre-executedat the next synchronizatia point.

referencedecausat is executedafter all remotedatahas
beenobtained.

3.2.2 Implementation

Thebasicideabehindtheimplementatiorof Implicit-2D is
to allow several differentviews of a single page. This is
similar to the work pioneeredy the Millipede system[9].
Onnodei, we createthreeviews for eachpageusingnmap;
oneis ownedby node; andallows readsandwritesto com-
pleteuninterruptedTheothertwo arelogically “owned” by
nodesi — 1 andi + 1, assuminghatnodes is an interior
node. Theseviews areprotectedwith PROT_NONE, which
meanghatary accesssto themwill betrapped.Figure3
shaws the situation. Accesesto an elementownedby a
left or right neighboringnodeare automaticallyredirected
to the othercopiesby changingthevalueof thefirst dimen-
sion,which wasdescribedbove.

Upon accessto a view that is protected with
PROT _NONE, thelmplicit-2D handlercodelogsthefaulting
addressaaswell asthe specificvaluesof the loop variables
(which are passedn throughthe usercode). It enqueues
this information on a list (denoteddefered updateshere)
thatis alsovisible to the user The offendingpageis then
re-protectedvith PROT_NONE in casethereare otherad-
dresseonit thatareaccessed.Mostacceseswill likely be
to a view that allows readsand writes; theseaccessgare
notaffected.

At the next synchronizatiorpoint, all neededatais de-
terminedby theaddressesn the defered_updatedist. The
requestis combinedinto a single messagdor eachof the
left andright neighborgassuminga nodehasboth). Upon
receipt of such a request,a node will respondwith the
neededlata,which will resultin anupcallto theusercode,
causingthedeferredterationsto be executed.

After determiningwhat elementsare truly shared,the
Implicit-2D protocolperformscheckdo seeif theelements
representa column. If so, metadatan the messagecan
be removed; furthermore,if stablesharingexists we can
achieve performanceequivalentto the Explicit-2D proto-
col, aswe describenext. Theonly requirements to switch
the function pointerto a versionof the codethat usestwo-
dimensionahrrays.

4 Performance

This sectionreportsthe performanceof two programs:
Red-BlackSORand Jacobiiteration. For eachapplication
we exeauted three programsusing using two-dimensional
distributions with the Explicit-2D protocol. The different
programsare (1) exchangingonly the necesary columns
(Explicit-Precisd, (2) exchanging all columns (Explicit-
All), and(3) stablesharing(Explicit-Stabg). We alsocom-
pareto programsusing Implicit-2D both without andwith
stablesharing(Implicit and Implicit-Stablg. For compari-
sonpurposeswe executedan eagerwrite-sharedprotocol
thatuseda one-dimensionatistribution (WS aswell asan
explicit message-pamg programusing MPICH [13] that
usedatwo-dimensionadistribution.

Below, we presentthe resultsof runs on either9, 16,
or 25 UltraSparcbs, eachwith a 360 MHz processomland
8K pagesize, connectedby a 100MbsFast Ethernet. All
programsusedgcc with the - Oflag. All programswere
run whenno otheruserwason the machine,andall times
reportedarethe medianof threetestruns.

4.1 Scalability

We evaluatel the scalability of one- and two-
dimensionaldistributions using Red-Black. We ran a 9-

Overhead Per lteration

0.2
_. 015 4
© ~SDSM-1
© 01 — ~SDSM-2
£ =
= 0.05 / _— ~MPI-2

Number of Nodes

Figure 4. Graphof absoluteoverteadperiteration. Each
programuseda grid sizedsuchthateachnodewasassigned
a1024 x 1024 subgrid Theincreasedn overheadis much
lesswith atwo-dimensionalistribution.

nodeRed-Blackiterationtestusinga 3072 x 3072 grid, a
16-nodetestusinga 4096 x 4096 grid, anda 5120 x 5120
grid using 25 nodes. The grid is scaledso that eachnode
wasassignedhe sameamountof datain eachtest. An in-
creasen the problemsize when using a two-dimensional
distribution doesnot affect the communicatiordueto data
exchange(exceptfor boundarynodes),whereashe com-
municationincreasesvith theone-dimensionalistribution.
Therewill alwaysbe anincreasen total overheaddueto
barriersynchronizationwhichscalesasO(log P). Figure4
shows thatwhenmaoving from 9 to 16 nodesthe overheads
in boththe one-andtwo-dimensionaprogramsincreaseat
aboutthesamerate.However, therateincreasesnuchmore
in theone-dimensionglrogramwhenmoving from 16to 25
nodes.This suggestshatthe differencewill becomemore
pronouncegsthenumberof nodesncreasesAs acompar
ison, the resultsfor the MPI two-dimensionaldistribution
arealsoshown.

4.2 Red-Black SOR

For Red-BlackSOR,we usedarraysof size of 5120 x
5120 and 25 nodes. The testswere run for 100 itera-
tions. We ran both one- and two-dimensionaltests; the
one-dimensionabnesuseda standardeagerwrite-shared
protocol, and the two-dimensionalones used either the
Explicit-2D or Implicit-2D protocol. Eachnodewas as-
signeda 256 x 5120 strip in the one-dimensionaiestsand
a1024 x 1024 squarein the two-dimensionatests. Also,
for Explicit-2D, we usethe stride partof our userinterface
to avoid sendinguselesslatawhencolumnsareexchanged

(becausén eachphasehalf the pointsareunneeded).

Theperformancef Red-Blackis shavnin Figure5. The
left graphshows the componentf the overall time for a
singleiteration,includingthetime for computationprotec-
tion changesfaulting, copying, andreleasingandapplying
diffs. The seven differentprogramsdescribedabore were
tested. It is importantto note that for the stablesharing
versionswe measure@niterationafter stablesharingwas
found. The right graphshawvs overall execution time; this
includesall iterations,including oneswherestablesharing
hasnotyet beendetected.

FromFigure5, it is clearthatthe stablesharingtests(as
well astheversionthatexchangesll columns)aresuperior
to the one-dimensionalrite-sharedtest. Explicit-Precise
suffersfrom significantoverheadslueto faulting, copying,
and (especially)protectionchanges.Implicit suffers from
significant periteration computationaloverhea to access
three-dimensionarrayswith a complicatedndex expres-
sion. The programthatusesa one-dimensionadlistribution
performssomavhat betterthanthe two-dimensionabletec-
tion version,but is inferior to the stablesharingversiondue
to the increasedsize of the messagexchangeat the syn-
chronizatiorpoint. Theresultis thatthe performancef the
two-dimensionadlistribution (with stablesharing)is 12.3%
betterthanthe one-dimensionatlistribution. It is alsoim-
portantto note thatto make the one-dimensionatestsas
efficient aspossible we hadto increasehe soclet receve
buffer size. This reduceshe numberof messageetrans-
missionsnecesary. Thetwo-dimensionatestssenda fixed
amountof data,independenbf the numberof nodes. Be-
causethe amountof communicateddataincreasesn the
one-dimensionatests,eventuallythereis a pointwherethe
buffer sizecannotbeincreasedalthoughthis pointwasnot
reachedn ourtests).

The bestSDSM version(Explicit-Stable)is still 10.4%
slower thanthe MPI program.A smallamountof the over-
headis dueto generalSDSMoverhealsthatarenot present
in message-pamg programs,suchas pagefaults. How-
ever, while much of the programsare similar in structure,
the messagingubsystemare different. Our SDSM uses
UDP with reliability built on top, whereasMPI usesTCP
The SDSM programshave more variability thanthe MPI
ones,becausef costly messageetransmissionsilt is im-
portantto note that this overheadis not inherentto our
SDSM;in fact,in testrunswheretherewerevery few re-
transmissionghe SDSMtime waswithin 4% of MPI.

4.3 Jacobilteration

The resultsfor Jacobiiteration are shovn in Figure 6.
Jacobiterationis asimilar programto Red-Blackhowever,
it differsin threeimportantways: one(not two) barrierper
iteration, two arrays(not one), and all column points are

Red-Black (per iteration) Red-Black Total Execution Time
0.7 70
06 Release/Apply 60
’ i 50
~05 Diff (Msg.) © 10
) 7 Copyi E
Qo 04 7 Copying £+ — — — — —
0 B B R B B B
£ 0.3 - TR R RS R
F 0.2 .\\ [1Page Fault 10
0 2L 2 s protection SN Qc}“ & ©
€ # & & & | Changes & R (},@" & Q\,@"
& TF& T8 £ Computation R & N
Program Program

Figure 5. Resuls from several differentRed-Bhack SORtestson 25 nodes,oneusinga one-dimensionadistribution (W9, and
theothersusingatwo-dimensionadistibution. Theleft figure shavs the periteration cost,andtheright figureshavs thetotal time
takenfor 100iterations.

Jacobi (per iteration) Jacobi Total Execution Time
2 160
Release/Apply 19
Diff (Msg.) 0100 - — —
 Copying FEXANEEEERIE
. g EE =D
[Page Fault sl A B BB BB
= Protection v Q\ & & 8
Changes &< Q\b N Qfo
Computation A & N
Program Program

Figure 6. Resultsfrom severaldifferentJacobiiteratian testson 16 nodes pneusinga one-dimensionalistribution (WS, andthe
othersusinga two-dimensionadistribution. The left figure shawvs the periterationcost,andtheright figure shows the total time
takenfor 100iteratians.

needederiteration.

Thekey differencebetweenlacobiandRed-Blackis that
the presenceof two arraysin the former causeghe com-
putationto be much greater Hence,the differencein to-
tal executiontime is smallbecaus a significantamountof
computations performed—infact, the computationdomi-
natesthe overhead.Thisis why thetwo-dimensionattable
sharingprogramsshav only abouta 5% improvementover
the one-dimensionabersion. Also, Explicit-All performs
slightly worsein this case becausét needso sendandre-
ceive twice asmary columns(it sendscolumnsfrom both
arrays,even thoughonearrayis not modified). However,
it is still significantlyfasterthanExplicit-Precise.The MPI
versionis only slightly fasterthanthe bestSDSM version,
again becausenostof timein this programis spentin com-
putation.

This sectionhasdemonstratedeveral importantpoints.
First, two-dimensionaldistributions are superiorto their
one-dimensionatounterpartasthe problemsize or num-
ber of nodesincreass. Second,Implicit-2D is the bet-
ter protocol from the perspectie of the useror compilet
but its performanceds acceptableonly if the sharingpat-
ternis stable;otherwise the extra computationabverhead
is unacceptableand Explicit-2D shouldbe usedif possi-
ble. Third, anincreasen computationtime relative to the
amountof datacommunicatedesultsin arelative improve-
mentin one-dimensionadlistributions.

A few other points concerninglmplicit-2D are worth
mentioning. First, the computationabverheadincreasesf
the samenonlocalelementis accesedsereral times; this
is because fault will be generatedn every acces. Sec-
ond,it is possiblethatthe sharingpatternis notknown until
runtime. In suchcasesExplicit-2D cannotbe used,while
Implicit-2D can.We arecurrentlyinvestigating suchappli-
cations.

5 Conclusion

This paperhasdiscussedhe designandimplementation
of two new software distributed sharedmemory (SDSM)
protocols,Explicit-2D and Implicit-2D, that supporttwo-
dimensionabatadistributions. They areextensiongo stan-
dard write-sharedprotocols. In our tests, the Explicit-
2D protocol performsfavorably (as much as 12.3% bet-
ter) comparedto one-dimensionalata distributions us-
ing a standardwrite-sharedprotocol. Furthermore two-
dimensionaldistributionsaremore scalablethantheir one-
dimensionalcounterpartsso we expectthatthe difference
will increasealongwith increasesn boththe datasetsize
andthe numberof nodes.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

(10]

(11]

(12]

(13]
(14]

C. Amza, A. Cox, L. Lin, S. Dwarkadas, and
W. Zwaenepoel. Adaptive protocot for software dis-
tributed sharedmemory Proceaings of IEEE, pages
467-47%Mar. 1999

J. Andersonand M. Lam. Global optimizationsfor paral-
lelism andlocality on scalableparallelmachines. In Pro-
ceedingof the SIGPLAN'93 Confeenceon Program Lan-
guage Design and Implemenrdtion, pages112-125 June
1993.

J.B. Carter J. K. BennettandW. Zwaenepoellmplemen-
tation and performanceof Munin. In Proceedingsf 13th
ACM Symposim On Opeiating Systemspages152-564,
Oct.1991.

S. ChandraandJ. R. Larus. Optimizing communicatiorin
HPF proglamson fine-graindistributed sharedmemory In
SixthSymposiunon PrinciplesandPracticeof Parallel Pro-
gramming pagesl00-111, Junel997.

M. GuptaandP. Banerjee Demonstratiorof automaticdata
partitioning techinguesfor parallelizingcompilerson mul-
ticomputersIEEE Transactioms on Parallel andDistributed
Systems3(2):179—-193 Mar. 1992.

Y. C. Hu, W. Yu, D. Wallach,A. Cox, andW. Zwaenepoel.
Run-time supportfor distiibutedsharingin typedlanguages.
In Fifth Workshopon Languayes,Compikrs, and Run-Tme
Systemsor Scalatbe Compuers, pages39-95,May 2000.
L. Iftode. Home-Base&haed Virtual Memory PhDthesis,
PrincetonUniversty, Junel1998.

L. Iftode, J. Pal Singh andK. Li. Scopeconsisteng: a
bridgebetweernreleaseconsisteng andentryconsisteny. In
Procealingsof the 8th AnnualACM Symposim on Parallel
Algorithms and Architectuies Junel996.

A. Itzkovitz and A. Schuster Multiview and Millipage —
fine-grainsharingin page-base@®@SMs. In Proceedingsof
the Third Symposiunon Operating System®esignand Im-
plementatn, Feb 1999.

P. Keleher S. Dwarkadas,A. Cox, and W. Zwaenepoel.
TreadMarksDistributedsharednemoryon standardvork-
stationsandoperatingsystems.Iln Proceeding®f the 1994
Winter UsenixConkrence pagesl15-131Jan.1994.

K. Li andP. Hudak. Memory coherencén sharedvirtual
memorysystems ACM Transactonson Compuer Systems
7(4),Nov. 1989.

D. K. Lowenthal,V. W. Freeh,andG. R. Andrews. Using
fine-grainthreadsandrun-tme decisionmakingin parallel
computing.Journal of Parallel and Distributed Compting,
37:41-54,Nov. 1996.

MPI: A messag@assingnterfacespecification. Junel995.
K. Zhang, J. Mellor-Crummey, and R. J. Fowler. Com-
pilation and runtime optimizatons for software distributed
sharedmemory In Fifth Workshopon Languages, Compit
ers, and Run-Tme Systemsor ScalableComputes, pages
83-88,May 2000.

