
1

Client-Centered Energy Savings for Concurrent
HTTP Connections

Haijin Yan, Rupa Krishnan, Scott A. Watterson, David K. Lowenthal
Department of Computer Science

The University of Georgia

Abstract—In mobile devices, the wireless network interface card (WNIC)
consumes a significant portion of overall system energy. One way to reduce
energy consumed by a WNIC is to transition it to a lower-power sleep mode
when data is not being received or transmitted.

This paper investigates client-centered techniques for saving energy dur-
ing web browsing. The basic idea is that the client predicts when packets
will arrive, keeping the WNIC in high-power mode only when necessary.
This is challenging because web browsing generally results in concurrent
HTTP connections. To handle this, we maintain the state of each open con-
nection on the client and then transition the WNIC to sleep mode when
no connection is receiving data. Our technique is compatible with stan-
dard TCP and does not rely on any assistance from the server, a proxy, or
IEEE 802.11b power-saving mode (PSM). Our technique combines the per-
formance of regular TCP with nearly all the energy-saving of PSM during
web downloads, and we save more energy than PSM during client think
times. Results show that over an entire web browsing session (downloads
and think times), our scheme saves up to 21% energy compared to PSM
and incurs less than a 1% increase in transmission time compared to regu-
lar TCP.

I. INTRODUCTION

Reducing energy consumption on mobile devices is becom-
ing increasingly important. The wireless network interface card
(WNIC) is a significant source of consumed energy in mobile
devices. One way to reduce energy consumed by a WNIC is to
transition it to a lower-power sleep mode when data is not being
received or transmitted.

One common use of mobile devices is browsing the Inter-
net [1]. Typically, this involves periods of downloading rela-
tively short files followed by user inactivity. Mechanisms like
802.11b power-saving mode (PSM) [2] can be used force data
to be buffered at the access point and arrive in bursts, which
allows for an increase in WNIC sleep mode time at the client.
However, PSM buffering increases round-trip times when data is
arriving. According to [3], latencies when using PSM increase
round-trip times from 16% to 232%.

This paper describes the design and implementation of a
client-centered technique for saving energy during web brows-
ing, where the browsing results in multiple concurrent HTTP
(and therefore TCP) connections. For example, browsing
msn.com results in five concurrent connections for embedded
images and popups. Note that in this paper, we use the terms
HTTP connection and TCP connection interchangeably.

Our technique is implemented with no change to TCP and no
assistance from the web server or 802.11b power-saving mode
(PSM) [2]. Our basic strategy is to maintain the state of each
client-initiated connection. When all connections are idle, i.e.,
not actively receiving or sending data, the client transitions the
WNIC to a lower-power sleep mode. The client then transitions
the WNIC to back to high-power mode before the next packet
(on any connection) arrives.

To carry out the algorithm described above, there are two key
challenges that must be met. First, the client must make use

of round-trip time information to accurately predict when the
next packet will arrive on any connection, allowing for variance
present in network transmission. We handle this by tracking
each connection and use smoothed round-trip time and variance
estimates to accurately predict packet arrival times. Second, as
an optimization, we want the client to be able to transition the
WNIC to sleep mode during connection setup. This is because
during web browsing, connections are often concurrent. This
means that there is a larger percentage of time when at least one
connection is in setup. To handle this, we exploit the principle
of locality, caching detailed information including connection
setup characteristics about each web site the client has visited
within a single top-level web request.

To test our system, we ran actual tests to real Internet servers.
In all comparisons we compared the results of our system with
both PSM and a related approach known as the Bounded Slow-
down Protocol (BSD) [3]. Our technique combines the per-
formance of regular TCP and BSD with nearly all the energy-
saving of PSM during web downloads, and we save more en-
ergy than PSM during client think times. Our experimental re-
sults show that over an entire web browsing session that includes
downloads and think times, our scheme saves up to 21% energy
compared to PSM and incurs less than a 1% increase in trans-
mission time compared to regular TCP. In addition, our tech-
nique saves up to 25% more energy than BSD.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III describes the design and imple-
mentation of our client-centered technique, and Section IV de-
scribes our experiments and discusses the results. Finally, Sec-
tion V summarizes and discusses possible future directions for
this research.

II. RELATED WORK

This section discusses related work. Due to space limitations,
not all related research can be included; please see our accom-
panying technical report for full details [4].

One way to save energy is to use the energy-saving mech-
anisms defined by 802.11b (power-saving mode, or PSM) [2].
Using PSM increases round-trip times to the nearest multiple
of 100 ms, causing a significant delay. One improvement to
802.11b is the Bounded Slowdown Protocol (BSD) [3]. BSD
maintains the WNIC in high-power mode during almost all of a
TCP transmission (see Section IV), while bounding the trans-
mission slowdown based on a user-supplied parameter. It is
aimed at situations where there are long periods of user inac-
tivity. Our work, while providing no bound on the potential
slowdown, saves energy during transmission while generally in-
curring little or no delay.

In previous work we studied the problem of conserving en-
ergy on large file downloads [5]. That work is different than this



2

current paper in that we consider only a single (ftp) connection,
and we focus there on converting a smooth stream to a bursty
one. In other words, we change the client TCP implementation
to cause bursts. This paper focuses on concurrent HTTP connec-
tions for small file downloads and does not in any way modify
TCP.

There has been also been significant research in power-aware
computing at the network, hardware, and operating system lev-
els, including dynamic voltage scaling [6], disk spindown [7],
memory bank power-down [8], and power-aware end-to-end
communication in wireless networks [9]. Our work, on the other
hand, saves energy through transitioning the WNIC to sleep
mode. It exploits energy savings at the network level and does
so in a client-centric manner, without modifying communication
protocols.

Finally, our connection table maintains information across all
TCP connections. This is reminiscent of TCP multiplexing [10].

III. IMPLEMENTATION

In this section we describe our detailed algorithm and im-
plementation. We assume that when the client wishes to save
energy for web downloads, it informs the client OS of its in-
tentions. The client OS then must restrict the kinds of network
traffic that can be sent and received. This is further discussed
in Section III-D; for the rest of this section, we consider only
HTTP traffic.

We assume that the WNIC modes are idle, receive, transmit,
and sleep. The first three are referred to as high-power modes,
and sleep mode is the low-power mode. Any packets arriving
during sleep mode are dropped. We assume that the client OS
will transition the WNIC into high-power mode when data is
sent from the client, and we inform the client OS to transition
the WNIC between modes based on our predictions.

Ideally, the client would only be in high-power mode while
packets are actually arriving and in sleep mode at all other times.
In practice, the client makes predictions about when packets will
arrive, transitioning the WNIC to high-power mode if it expects
packets and sleep mode if not. The prediction of the arrival time
of incoming packets is nontrivial even when the client has only
one outstanding connection. This is particularly true when pack-
ets are delayed or lost in the network. Furthermore, the existing
Internet introduces many factors that do not exist in simulated
networks. These factors contribute to delay and loss in unpre-
dictable ways.

In a client where multiple concurrent connections exist, it is
even more challenging to predict the arrival time of the next
packet because of accumulated error over many connections.
We do two things to solve this problem. First, we track every
concurrent connection in the client, collecting detailed informa-
tion and making predictions. Second, we cache round-trip time
information about each site visited by the client to allow us to
save energy during connection setup. This section first discusses
each of these techniques in more detail. We then discuss our im-
plementation within Netfilter [11], a Linux kernel module. Fi-
nally, we discuss the limitations of our approach.

A. Connection Tracking

The client tracks each of its initiated open connections. This
provides all the necessary information to predict (1) when to
transition the WNIC from high to low power mode and (2) how
long to keep the WNIC in low power mode. The client divides

an individual connection into stages, between which transition-
ing the WNIC to sleep mode is possible; each stage is the client’s
estimate of the server’s TCP window. Stages are easier to dis-
tinguish during TCP slow start. Fortunately, web objects are
generally small, so many HTTP connections spend a significant
percentage of time in slow start. The client builds a connection
table to hold detailed information about each connection, which
allows accurate prediction of the next packet arrival time. We
first discuss tracking a single connection and then discuss com-
bining information from many connections to determine when
to transition the WNIC.

A.1 Connection table

The key data structure used in our system is the connection
table (shown in Figure 1). The connection status field reflects
four possible connection states: active, idle, finished and satu-
rated (discussed below). The site field is used to index into the
site table maintained on the client to locate the detailed informa-
tion about the remote server site. (The actual table uses IP and
port number. For presentation purposes, we present the logical
name.) We partition each connection into stages and keep the
stage number in the stage field. We also record the number of
packets received in each stage. The next stage start time and
end time are the predicted starting and ending times of the next
transmission stage. We use the current estimate of the round
trip time (in the SRTT field) and variance (var) to compute the
start and end times of the next transmission stage. If the con-
nection is active, we also keep track of when the current stage
is expected to end (current expiration). We use a timer to detect
when there are no packets received within a threshold amount of
time (described below); this is a possible indicator of the end of
a stage.

In the example connection table shown in Figure 1, there are
4 concurrent connections. This is a sample of a connection table
taken at time 100. The second connection (marked active) is re-
ceiving data, the first and fourth connections are between stages
(marked idle), and the third connection is finished.

A.2 RTT estimation

Traditionally, TCP only measures RTTs at the sender side for
data packets; this is used for setting retransmission timers. On
the receiver side, it is difficult to estimate RTTs because it is
hard to associate incoming packets with the outgoing acknowl-
edgement that triggered them [12]. Fortunately, the TCP times-
tamp option provides accurate RTT measurements when both
the sender and the receiver agree to use it on a connection. Once
enabled, up-to-date timestamps are always sent and echoed in
the TCP header of each packet. Upon receiving a packet, either
endpoint can calculate a new RTT sample as the time difference
between the current timestamp value and the echoed value. TCP
uses these accurate RTT samples to improve the quality of the
TCP RTO estimate, which in turns improves TCP performance.
As a result, presently the TCP timestamp option is used in most
TCP implementations [13].

By default, the TCP receiver does not measure RTT for pure
acknowledgements. Nevertheless, the timestamps of the ac-
knowledgement are echoed back in the data packets triggered
by the acknowledgement. We added measurements at the TCP
receiver to produce RTT samples for acknowledgement packets
(as well as data packets) sent back to the server.



3

Id Status Site Stage Num Next Stage Current SRTT Var.
Packets Start End Expiration

1 idle www.cnn.com 7 — 140 160 — 50 5
2 active www.espn.com 5 6 232 TBD 102 143 12
3 idle www.cnn.com 12 — 147 174 — 50 5
4 finished www.cnn-ads.com — — — — — 20 5

Fig. 1. Sample connection table with 4 concurrent connections (two idle, one finished, and one active). TBD means that the value has not yet been determined.

Currently we assume that the timestamp option is enabled. In
all the servers in our experiments, this was the case. If it were
not, we believe that by using techniques such as those presented
in [12] to associate packets with their acknowledgements, we
could obtain accurate RTT estimates. We leave this for future
work.

A.3 Next stage prediction

Whenever stage
�

ends, the client predicts the stage
�����

start
and end time as ���	��

��� � SRTT � VAR and ��������� � SRTT

�
VAR.

Variables ������
���� and ��������� are the times the first and last ac-
knowledgements are sent during stage

�
. SRTT is our smoothed

round-trip time estimate, and VAR is the estimated variance.
We record the interval between the first acknowledgement the

client sent out in stage
� � �

and the first packet the client re-
ceived in stage

�
as our new round-trip measurement (RTT). The

new variance measurement is then the difference between the
measured RTT and the SRTT. To calculate the SRTT and its vari-
ance from each measurement, we employ the same algorithm
which is used by many implementations of TCP: the new SRTT
is calculated using the formula �����! SRTT

�"� �#�$ RTT, where
RTT is the observed value. (The new variance estimate is com-
puted similarly.)

A.4 Transitioning between states

Figure 2 shows the state transition diagram. A connection is
in active state when it is receiving data within a stage. A con-
nection is in idle state if it is finished receiving packets from the
previous stage and is waiting for the start of the next stage. In
general, this is determined by two conditions: (1) the predicted
ending time of the current stage has passed, and (2) no packet
has arrived for �%�'&	

()�)& ms (set dynamically based on the maxi-
mum observed interval between successive acknowledgements)
since the last outgoing acknowledgement was sent. Conditions
(1) and (2) combine to serve as safeguards against network de-
lays, which would otherwise lead to prematurely marking a con-
nection as idle.

As HTTP/1.1 uses a persistent connection for successive
HTTP requests, connections are not terminated after transmis-
sion of a requested object. We mark the connection as finished
when the requested page has been fully downloaded (and so the
client will not receive data on this connection). This is detected
using the web page size, which was available over 95% of the
time for the web sites in our experiments. If it is not, a connec-
tion is never marked finished.

The final possibility is that sender’s window size is larger than
the bandwidth-delay product of a connection, and so there is no
possibility for energy savings between stages. In this case, we
mark a connection as saturated.

Receiving dataNext window starts

End of window

Request issued

IDLE

starts while active
Next window

(WNIC on)
SATURATED

Connection silent

Connection silent

FINISHED

(C3)

(C1)

(C2)

ACTIVE

(C5)

(C4)

(C4)

and the WNIC should remain on

for a threshold, it is declared stagnant

to active state

C1: A new request on a stagnant
connections returns the state to active

(slow start) or timer (congestion avoidance)
C2: End of the window can be detected by count

C3: Next window requires a transition

C5: If the next window starts before the
current one ends, there is no "dead time"

C4: When no data arrives on a connection

Fig. 2. State machine demonstrating our algorithm.

A.5 Extending to multiple connections

The technique described above identifies periods when no
data is expected on a single connection. Web browsers like Inter-
net Explorer and Netscape generally issue multiple concurrent
connections to a site to retrieve embedded objects. The exten-
sion to handling multiple concurrent connections on the client
is straightforward. In particular, we track each active connec-
tion in the client and change its state individually. Each time a
connection state changes to either idle or finished, we check all
open connections. The client transitions WNIC to sleep mode
only when all connections are idle or finished, and the client
keeps the WNIC in sleep mode until the nearest predicted next
stage starting time of all connections.

B. Round-Trip Time Cache

While the algorithm above is effective in saving energy in
many cases, it can be improved. Without prior knowledge, the
client cannot predict the SYN/SYN-ACK and GET/GET-ACK
round trips (the GET/GET-ACK is often longer than the
SYN/SYN-ACK). In addition, the round-trip time for the actual
data can differ from both. Unfortunately, with multiple connec-
tions, the percentage in which at least one connection is in ei-



4

Site Syn-RTT Get-RTT SRTT
nytimes.com 28 49 33

popupads.com 45 60 49
akamai.com 32 45 38

Fig. 3. Example Round-Trip Time Cache for a top-level request to
nytimes.com.

ther the SYN/SYN-ACK,GET/GET-ACK, or first slow start stage
can be large. This makes the solution of keeping the WNIC in
high-power mode during these phases non-scalable: for highly
concurrent connections, little, if any, energy can be saved.

Fortunately, user web accesses exhibit high degrees of locality
[14]. Therefore, we cache detailed round-trip time information
for sites the client has visited within a “top-level” web request
(see below), including SYN/SYN-ACK time, GET/GET-ACK
time, and the last known SRTT (see Figure 3). For a given
connection � , we start by performing a cache lookup. This in-
formation is used to transition the WNIC into low-power mode
during the SYN/SYN-ACK and GET/GET-ACK stages as well as
the first slow start stage. If there is no entry for � , we revert to
the conservative algorithm

The key issue is how long entries in the cache should remain
valid. Clearly, a cached value stored during off-peak hours is
invalid during peak hours and will lead to the client to transition
to sleep mode for too long, meaning that the SYN-ACK packet
could be missed. To investigate variance in SYN/SYN-ACK and
GET/GET-ACK times, we downloaded web pages from sev-
eral sites every half hour, over several days. Investigation of
the results show in fact that there is little correlation between
SYN/SYN-ACK (and GET/GET-ACK) times, even when com-
paring just peak or just off-peak measurements. Hence, our ap-
proach to RTT cache consistency is as follows. Between two
“top-level” web requests (i.e., requests in our trace file), we flush
the RTT cache. Within one top-level web request, we fill the
RTT cache with entries for each unique web site accessed. This
simple solution has worked well in our experiments (see Sec-
tion IV).

C. Netfilter

We implemented our prediction-based algorithm in a Linux
kernel module based on Netfilter [11]. Our implementation fil-
ters each incoming and outgoing packet on the client, applying
the techniques discussed above. It also maintains the current
state of the WNIC. For each incoming packet, we either pass
the packet on to the client (if the state of the WNIC is high-
power mode) or drop the packet (if the state of the WNIC is
sleep mode). We patched our kernel using the KURT microsec-
ond resolution timer [15] for our Linux client, because we need
to be able to sleep at the granularity of a millisecond. Because
we use a kernel module, we can run actual Internet experiments
as opposed to just simulations.

D. Limitations

This section discusses two of the limitations of our system.
First, in this paper we support HTTP traffic. This type of traf-
fic is two way (request/reply) and predictable. Two-way pre-
dictable traffic can be handled as we have in this paper, by tran-
sitioning the WNIC between sleep and high-power mode when
necessary. DNS requests would fall into this category, though

Access Point 20Mb/s
(Emulated)

Wireless 
Client

(Emulated) Internet

Fig. 4. Our experimental setup for the tests to actual Internet servers.

because of the likely small round-trip time, the WNIC should
probably remain in high-power mode exclusively until the re-
ply. For two-way, unpredictable traffic, the WNIC can be left in
high-power mode until the reply is received. Our approach can-
not be used for one-way traffic. So, for example, a client cannot
use our energy-saving techniques for web downloads while us-
ing an application such as voice-over-IP. In addition, web pages
using server push cannot be used. Finally, we cannot respond
to ARP requests. However, we believe our approach handles the
most common cases.

Second, our technique successfully saves energy for web sites
with a moderate number of concurrent connections. If the num-
ber of concurrent connections is large enough, there are not suf-
ficient gaps to save energy, so our algorithm will keep the WNIC
in high-power mode for the entire download. However, in such
a case, no scheme, including PSM or BSD, is capable of saving
energy.

IV. PERFORMANCE

This section describes our experiments and presents our re-
sults. Section IV-A describes the experimental methodology.
Then, Section IV-B gives our results on real Internet experi-
ments. This includes a comparison with 802.11b power-saving
mode (PSM) [2] and BSD [3], as well as a detailed analysis
of some of the aspects of our system. It is important to note
that we run actual experiments to real Internet servers. Due to
space limitations, we report on a limited number of experiments;
full results are reported in an accompanying technical report [4].
Note that those results also provide simulation results with an
identical trace as was used by [3].

A. Experimental Methodology

This section describes our experimental methodology. In
turn, we discuss how we chose the web sites, how we imple-
mented the competing techniques (PSM and BSD), and how we
set up the experiments.

We carried out our experiments by running a script that re-
trieves 100 web pages over a total browsing time of 5,400 sec-
onds. These retrievals generated 558 requests for subobjects,
and a total of 2.79 MB was downloaded. The web pages were
chosen as follows. First, we selected the 20 most popular web
sites (denoted top-level sites) as determined by the Alexa Top
Sites web pages [16]. Note that the reach is provided by alexa,
which is the percentage of Internet users that visit that site per
day. For each top-level domain, the alexa list also provides the
probability of visiting each of its subdomains, provided the user
stays within that top-level domain. Note that alexa does not
provide the probability that the user stays within the top-level
domain. For each site, we include all sub-sites that have a prob-
ability larger than 2%.

Our next step is to generate a sequence of web page requests,
which is done by using the Alexa probabilities and reach—first



5

Peak Energy Consumption
Jo

ul
es

0

200

400

600

800

1000

1200

1400

1600

1800

ps
m

bs
d_

10
0

bs
d_

50

bs
d_

20

bs
d_

10 C
C

C
C

−
no

ca
ch

e

C
C

−
5

C
C

−
1

Transmission Energy

Think Energy

Normalized Peak Time

0

0.5

1

1.5

2

2.5

ps
m

bs
d_

10
0

bs
d_

50

bs
d_

20

bs
d_

10 C
C

Off Peak Energy Consumption 

Jo
ul

es

0

200

400

600

800

1000

1200

1400

1600

1800

ps
m

bs
d_

10
0

bs
d_

50

bs
d_

20

bs
d_

10 C
C

C
C

−
no

ca
ch

e

C
C

−
1

C
C

−
5

Transmission Energy

Think Energy

Normalized Off−Peak Time

0

0.5

1

1.5

2

2.5

ps
m

bs
d_

10
0

bs
d_

50

bs
d_

20

bs
d_

10 C
C

Fig. 5. Energy consumption and normalized transmission time for both peak and off-peak real Internet tests. CC, PSM, and several BSD variants are shown.
Smaller bars are better.

we compute the probability of visiting a site given the reach;
then, we use the conditional probability of each site in the do-
main if the next request is in that domain. For think times in be-
tween requests, we use the same method for determining think
times as used in the BSD work [3] (a Pareto distribution with��� ��� �

and � � �
). The exact set of experiments, along with

further details, can be found on line at
http://www.cs.uga.edu/˜yan.

We compare our client-centered technique (CC) with PSM
and BSD [3]. Our emulation of PSM and BSD for the actual In-
ternet tests uses a transparent proxy that intercepts packets be-
fore they reach the access point and emulates the access point
behavior. For PSM, the proxy buffers packets and sends them
(after the beacon packet, which indicates if any data is buffered)
to the client every 100 ms, our chosen beacon period. Note that
our implementation of PSM is essentially optimal; it is unlikely
to perform in practice as well as it performs in our emulation
(see [4] for more details). For BSD, the proxy keeps track of
the slowdown parameter (which was either 10%, 20%, 50%, or
100%—this means the slowdown is bounded by no more than
that percentage) so that it knows when the client is expecting
data.

Our experimental setup is shown in Figure 4 (previous page).
The wireless client was emulated by a 1GHz Pentium desktop
machine running Linux 2.4-18. The access point is emulated
using another 1GHz desktop running FreeBSD 4.5 -stable; we
used tunneling so that DummyNet [17] could be used to provide
a 20Mb/s bandwidth between access point and client. This value
was selected by experimenting with 54 Mb/s access points with
an actual wireless client and measuring the peak bandwidth at-
tained. We use a 100Mb/s connection from the access point to
the Internet. In all experiments, we performed each test three

times and report the results from the test with the median trans-
fer time.

As described above, we ran our script in both ns-2 and on
the Internet. In the former, we use standard ns-2. In the lat-
ter, we divide our tests into peak tests (run between 12pm and
5pm EDT, which have significant RTT variations) and off-peak
tests (run between 10pm and 6am EDT). In both, we calculate
during execution the amount of time the WNIC is in each of its
modes (idle, sleep, transmit, receive). Then, we compute energy
based on a model of a 2.4Ghz WaveLAN DSSS WNIC, which
uses 1319 mJ/s when idle, 1425 mJ/s when receiving, 1675 mJ/s
when transmitting, and 177 mJ/s when in sleep mode [18]. Also,
we model the energy cost of transitioning the WNIC from sleep
to idle mode as 2 ms in idle time [3].

B. Results

Figure 5 shows that CC is superior to PSM in both energy
consumption and transmission time. It is also superior to BSD
in energy consumption. The figure also shows several CC vari-
ants, each with different behavior during think times. BSD is
restricted to waking up more often than the CC variants (at least
once every 0.9 seconds, to ensure its transmission bound). This
means that CC can improve upon the best BSD variant in terms
of think time behavior (BSD-100). Figure 5 also shows the ben-
efit of using the RTT cache, which is discussed further below.

This section gives an in-depth analysis of several aspects of
our system. We first break down the different components of
energy. Second, we show the improvement gained from using
the RTT cache. Finally, we investigate the effect of different
RTTs on energy consumption.

Figure 6 quantifies the sources of energy consumed in our ex-
periments. Energy can be divided into five categories: early



6

Energy Classification
Jo

ul
es

0

200

400

600

800

1000

1200

1400

CC−Peak CC−OffPeak

Late

Early

Inter−arrival

Sleep

Receive

Fig. 6. Breakdown of energy consumed for CC, in joules, for both peak
and off-peak browsing sessions.

Effect of RTT Cache

Number of Concurrent Connections
1 2 3 4 5 6 Avg

0

0.2

0.4

0.6

0.8

1

CC CC−nocache Reg

Fig. 7. Benefit of RTT cache. All results are normalized to regular TCP,
during downloads only.

wakeup, late sleep, inter arrival, receive, and sleep. Early
wakeup energy accounts for energy consumed between the tran-
sition to idle mode and the receipt of the next packet. Late sleep
energy accounts for the time spent between the transmission
of the last acknowledgement and the transition to sleep mode.
Inter-arrival energy accounts for the time spent in idle mode
while actively receiving packets. Receive energy is the energy
consumed when actually receiving data. Sleep energy is the en-
ergy consumed when the WNIC is in sleep mode. Note that any
energy-saving technique will contain some of each of these cat-
egories (other than optimal, which has no early wakeup or late
sleep).

Figure 7 shows that the RTT cache is effective in saving en-
ergy during downloads. In particular, the overall benefit (far
right) is about 10% (compared to the regular TCP test). The
rest of the figure breaks down the benefit of the RTT cache for
each number of concurrent connections. In particular, the largest
benefit of the RTT cache is at 3 and 4 concurrent connections,
providing an improvement of 13% and 32%, respectively. With
1 and 2 concurrent connections, the benefit is limited because
the RTT cache pays off only during connection setup. With 5
and 6, there is a high likelihood that connection setup overlaps
with an active stage for a different connection.

V. SUMMARY AND FUTURE WORK

This paper has discussed a client-centered technique for sav-
ing energy during web downloads. Our algorithm does not re-
quire changes to TCP or web servers; furthermore, it requires
no proxies or use of 802.11b power-saving mode. The client

maintains the state of each initiated connection and transitions
the WNIC to a lower-power sleep mode when all connections
are idle. The client then transitions the WNIC to high-power
mode before the next packet arrives. The key implementation
mechanisms are (1) a connection table that tracks the state of
each connection and (2) an RTT cache that allows the WNIC to
be transitioned to sleep mode during connection setup.

Results show across 40 web sites, the median energy savings
is over 20% and the median increase in transmission time is less
than 5%. In addition, our client-centered technique is better than
PSM in terms of transmission time and better than BSD in terms
of energy savings. We feel that our energy-saving techniques
will help prolong battery life on mobile devices without signifi-
cantly affecting the user web browsing experience.

While our results are good in most cases, there is still further
investigation required. In particular, some web sites will have
jittery connections to the Internet or lossy routing paths, making
predictions difficult. Though this did not occur in our experi-
ments, it is possible that a significant number of packets could
be missed on such connections due to mis-predicted WNIC tran-
sitions. This could cause transmission time to greatly increase
and would also increase the amount of energy consumed. In ad-
dition, we intend to investigate handling multiple clients, which
will have the effect of additional variance. Finally, we will look
at issues arising from user roaming.

REFERENCES

[1] David Kotz and Kobby Essien. Analysis of a campus-wide wireless net-
work. In Mobicom, pages 107–118, September 2002.

[2] IEEE Computer Society LAN/MAN Standards Committee. IEEE Std
802.11: Wireless LAN medium access control and physical layer speci-
fication. Technical report, August 1999.

[3] Ronny Krashinsky and Hari Balakrishnan. Minimizing energy for wireless
web access with bounded slowdown. In Mobicom, September 2002.

[4] Haijin Yan, Rupa Krishnan, Scott A. Watterson, and David K. Lowenthal.
Client-centered energy savings for concurrent HTTP connections. Techni-
cal report, University of Georgia.

[5] Haijin Yan, Rupa Krishnan, Scott A. Watterson, David K. Lowenthal, and
Kang Li. Client-centered energy savings for TCP downloads. Technical
report, University of Georgia.

[6] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of
dynamic voltage scaling algorithms. In ISLPED 1998, August 1998.

[7] F. Douglis, P. Krishnan, and B. Bershad. Adaptive disk spin-down poli-
cies for mobile computers. In Proc. 2nd USENIX Symp. on Mobile and
Location-Independent Computing, 1995.

[8] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page alloca-
tion. In ASPLOS, pages 105–116, 2000.

[9] R. Kravets, K. Schwan, and K. Calvert. Power-aware communication for
mobile computers. In Proc. 6th International Workshop on Mobile Multi-
media Communications, Nov 1999.

[10] Jim Gettys and Henrik Frystyk Nielsen. The WebMUX protocol. Internet
Engineering Task Force, 1998.

[11] Netfilter. http://www.netfilter.org.
[12] Guohan Lu and Xing Li. On the correspondency between tcp acknowledg-

ment packet and data packet. In ACM Internet Measurement Conference
2003, Oct 2003.

[13] Richard Wendland. ”How prevalent is timestamp options and paws”. Web
survey result published in end-to-end interest list, 2003.

[14] Virgilio Almeida, A. Bestavros, M. Crovella, and A. Oliveira. Character-
izing reference locality in the WWW. In Proceedings of PDIS, December
1996.

[15] Kansas Unversity Real-Time Linux. http://www.ittc.ku.edu/kurt/.
[16] Alexa Top Sites. http://www.alexa.com/site/ds/top 500.
[17] Luigi Rizzo. Dummynet: A simple approach to the evaluation of network

protocols. ACM Computer Communications Review, 27(1), January 1997.
[18] Paul J. M. Havinga. Mobile Multimedia Systems. PhD thesis, Univ. of

Twente, Feb 2000.


