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Abstract—Although users of high-performance computing are most interested in raw performance, both energy and power

consumption have become critical concerns. One approach to lowering energy and power is to use high-performance cluster nodes

that have several power-performance states so that the energy-time trade-off can be dynamically adjusted. This paper analyzes the

energy-time trade-off of a wide range of applications—serial and parallel—on a power-scalable cluster. We use a cluster of frequency

and voltage-scalable AMD-64 nodes, each equipped with a power meter. We study the effects of memory and communication

bottlenecks via direct measurement of time and energy. We also investigate metrics that can, at runtime, predict when each type of

bottleneck occurs. Our results show that, for programs that have a memory or communication bottleneck, a power-scalable cluster can

save significant energy with only a small time penalty. Furthermore, we find that, for some programs, it is possible to both consume

less energy and execute in less time by increasing the number of nodes while reducing the frequency-voltage setting of each node.

Index Terms—High-performance computing, power-aware computing.
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1 INTRODUCTION

HIGH-PERFORMANCE computing (HPC) tends to push
performance at all costs. Unfortunately, the “last

drop” of performance tends to be the most expensive; that
is, the last 10 percent increase in performance requires a
disproportionally large amount of resources. The Earth
Simulator, one of the world’s fastest supercomputers,
consumes 7 MW of power [19]. It is unlikely that super-
computing centers can continue increasing consumption of
resources. In particular, energy consumption—and the
resultant heat dissipation—is becoming an important limit-
ing factor; reducing energy saves money and increases
reliability, among other things.

As a result, low-power high-performance clusters have
been developed to stem the ever-increasing demand for
energy. Such systems improve the energy efficiency of
nodes. In particular, Green Destiny [72] consumes about
three times less energy per unit performance than the
Accelerated Strategic Computing Initiative (ASCI) Q ma-
chine. However, because Green Destiny uses a slower (and
cooler) microprocessor, ASCI Q is about 15 times faster per
node (200 times overall) [72]. A reduction in performance
by such a factor is likely unreasonable from the point of
view of many HPC programmers.

We believe one should choose a path between these two
extremes using a high-performance commodity micropro-
cessor that has both frequency and voltage scaling. Each

frequency-voltage pair provides a power-performance point
that we call a gear. It is possible to reduce power consumption
without a significant increase in execution time because an
increase in CPU frequency generally results in a smaller
increase in application performance. The reason for this is
that the CPU is not always the bottleneck resource. Therefore,
increasing frequency also increases CPU stalls—which are
usually due to the CPU blocking while waiting for data from
either the memory subsystem or another node.

This paper investigates the trade-off between energy and
performance (execution time) for HPC applications on a
real small-scale power-scalable cluster. Our cluster has as its
nodes AMD-64 processors that support frequency and
voltage scaling. This paper investigates the trade-off
between energy and performance (execution time) for both
serial and parallel HPC programs. Our results illustrate an
energy-time trade-off: By this, we mean that decreasing
energy is possible at the cost of increased time. Not every
energy-time trade-off is desirable, as some offer little energy
savings and large time penalties. However, more than half
of our tests show a savings equal to or better than the
penalty (for example, 10 percent less energy and 10 percent
more time), and some are much better. For example, we
found that the single-node version of cg from the NASA
Advanced Supercomputing (NAS) suite allowed 20 percent
less energy to be used while only increasing execution time
by 3 percent. With others, such as ep, there was essentially
no energy savings and a large time penalty. Additionally,
we found that, in some cases, one can save energy and time
by executing a program on more nodes at a slower gear
rather than on fewer nodes at the fastest gear.

We also present and analyze two simple metrics, misses
per operation (MPO) and slack, that can predict this energy-
time trade-off. We argue that these metrics will allow
system software designers to determine when to use
frequency scaling and which gear to use.
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The rest of this paper is organized as follows: Section 2
describes related work and Section 3 describes our
methodology. We show results for single and multiple
nodes, respectively, in Sections 4 and 5. Section 6 discusses
categorizing applications for the purpose of choosing the
proper energy gear using online metrics. Section 7 provides
discussion of three aspects of this work. Finally, Section 8
summarizes the paper.

2 RELATED WORK

There has been a voluminous amount of research per-
formed in the general area of energy management. In this
section, we describe some of the closely related research.
We divide the related work into two categories: server/
desktop systems and mobile systems.

2.1 Server/Desktop Systems

Several researchers have investigated saving energy in
server-class systems. The basic idea is that, if there is a large
enough cluster of such machines, such as in hosting centers,
energy management can become an issue. In [7], Chase et al.
illustrate a method to determine the aggregate system load
and then determine the minimal set of servers that can
handle that load. All other servers are transitioned to a low-
energy state. A similar idea leverages work in cluster load
balancing to determine when to turn machines on or off to
handle a given load [63], [62]. The policy proposed in [60],
as well as several new polices, was investigated in [15].

Such work shows that power and energy management is
critical for commercial workloads, especially Web servers
[5], [47]. Another approach [30] minimizes energy for a
cooperative Web server running on heterogeneous cluster
nodes by directing requests to be serviced by the appro-
priate node; different nodes can consume vastly different
amounts of power. Additional approaches that have been
taken include dynamic voltage scaling (DVS) [66] and
request batching [14]. The work in [66] applies real-time
techniques to Web servers in order to conserve energy
while maintaining quality of service.

Our work differs from most prior research because it
focuses on HPC applications and installations, rather than
commercial ones. A commercial installation tries to reduce
cost while servicing client requests. On the other hand, an
HPC installation exists to speed up an application, which is
often highly regular and predictable. One approach is to
save energy in an application-specific way; Chen et al. [8]
used this approach for a parallel sparse matrix application.
Another HPC effort that addresses the memory bottleneck
is given in [34]; however, this is a purely static approach.
Also, Feng et al. [20] developed a measurement infrastruc-
ture for power-aware HPC programs on a cluster of laptops
and performed experiments on NAS programs. In [37], a
generic evaluation infrastructure that makes use of Sim-
Point [67] is described; this infrastructure combines simula-
tion and direct measurement. Another approach that can be
used for HPC and is independent of the application can be
found in [43]; performance counters are used to estimate
IPC dynamically and choose the correct gear. Finally,
metrics for power-aware HPC are described in [36].

In server farms, disk energy consumption is also
significant. One study of four energy conservation schemes
concludes that reducing the spindle speed of disks is the
only viable option for server farms [6]. DRPM is a scheme
that dynamically modulates the speed of the disk to save
energy [27], [29]. Several have investigated RAID systems
specifically. In [28], it was shown that tuning the traditional
RAID parameters such as stripe size was the key to
optimizing both energy and time. On the other hand, Li
and Wang [48] looked at new scheduling and caching
schemes, and Pinheiro and Bianchini [61] migrated popular
data to a subset of disks so the others can be transitioned to
a low power state. The work in [78] generalizes [61] in the
sense that the disks can run at different speeds, and the data
are migrated to an appropriate disk. Another approach is to
improve cache performance—if many consecutive disk
accesses are cache hits, the disk can be profitably powered
down until there is a miss; this is the approach taken by Zhu
et al. [79]. An alternative is to infer the access pattern based
on inspection of the program counter and shut down the
disk accordingly [24]. A final approach is to try to aggregate
disk accesses in time. A compiler/runtime approach using
this was designed and implemented in [31], and a
prefetching approach in [58].

There are also a few HPC clusters designed with energy
in mind. One is BlueGene/L [1], which uses a “system on a
chip” to reduce energy. Another is Green Destiny [72],
which uses low-power Transmeta nodes. A related ap-
proach is the Orion Multisystem machines [54], though
these are targeted at desktop users.

Additionally, an analysis of energy efficiency and
operating points in [53] shows that the most energy-efficient
gear does not always result in the lower performance point.
Some approaches estimate power consumption using
performance counters [4], [40], [24]. In a high-performance
processor, a dominant part of power consumption is due to
exploiting instruction level parallelism (ILP). As the ILP
increases, the processor becomes busier, and there is a
subsequent increase in power. Explorations of IPC and
performance are done in [9], [70], and [55]. In addition, IPC
is utilized in [39] for an architectural simulator for both
dynamic energy efficiency and temperature management.
Kotla et al. use IPC as a means of predicting future
performance to schedule frequency changes in a server
cluster [43]. Section 6 discusses an alternative metric (MPO)
for characterizing the criticality of the CPU.

This paper is partly based on our previously published
works. A study of single-node applications can be found
in [57]; however, it explores energy-time trade-off in
mobile systems. In [22], we study the energy-time trade-
off in message passing interface (MPI) programs and
develop a simulation infrastructure for larger clusters. We
have also examined the energy saving potential by using
multiple energy gears in MPI programs [23]. In a separate
work, we develop techniques for increasing throughput
by improving the power/energy efficiency of nodes in
data centers [17], [18].

2.2 Mobile Systems

There is also a large body of work in saving energy in
mobile systems; most of the early research in energy-aware
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computing was on these systems. Here, we detail some of
these projects.

ECOSystem [77] attempts to implement a power man-
agement system without the need to rewrite application
software using the currency model. The case for a closer
relationship between the operating system and power
management is further explored by Vahdat et al. [69]. This
includes a case for treating energy as a first-class resource in
operating systems. Perhaps the best endorsement of OS-
controlled power consumption comes from the Advanced
Configuration and Power Interface (ACPI) standard [10]. It
is an evolution of several existing methods including basic
input/output system (BIOS) power management, the
Advanced Power Management (APM) API, and a smart
battery interface.

In general, the goal of the OS is to reduce energy, given a
multiprogrammed workload; although performance is
important, on a laptop, it is fairly likely that energy is the
first concern. Our approach differs in that we are concerned
with reducing system energy for a single HPC program
while sacrificing little performance.

2.2.1 Individual Devices

Many have worked on saving energy in different devices,
such as the CPU, disk, memory, and network. Many modern
processor architectures allow different frequency-voltage
settings. This work developed into DVS [21], [26], [59], [64],
which has come to mean the simultaneous changing of clock
speed and voltage to reduce power consumption. Typically,
DVS optimizes the energy� delay or energy� delay2 [51], [25]
product. This creates a system that more efficiently uses
energy, but is still powerful and responsive. In order to do
this, DVS must accurately predict upcoming load. A poor
prediction either consumes too much energy or causes too
much delay. In this work, we investigate the relationship
between frequency-voltage and execution time.

2.2.2 Disk

Disks consume a large percentage of energy on some mobile
architectures. Many have studied disk spindown to save
energy (for example, [32], [13], [74], [3], and [49]). In
general, the idea is to determine when there is a large time
period in which there are no disk requests and transition to
a lower energy level. Cooperative I/O allows applications
to defer I/O operations in order to save energy [73]. In this
paper, we do not consider disk energy.

2.2.3 Memory and Network

In some architectures, individual memory banks and
network cards have multiple energy states. Works on
transitioning these to lower energy states include [11] and
[46]. The idea is to place data intelligently in banks so that
some banks will not be accessed. In some devices, the
network card has multiple energy states; methods to save
network energy include [44], [76], and [45]. In this paper, we
do not consider memory or network power.

The primary distinction between these projects and ours is
that energy saving is typically the primary concern in mobile
devices. In HPC applications, performance is still the primary
concern. Hence, our work is orthogonal to these efforts.

3 METHODOLOGY

This section describes our experimental methodology. In
our single-node tests, we studied programs from three
different benchmark sets: NAS, System Performance Eva-
luation Cooperative (SPEC) integer, and SPEC floating
point. The NAS suite is a popular HPC benchmark. It
consists of scientific benchmarks, including application
areas such as sorting, spectral transforms, and fluid
dynamics. In contrast, the SPEC integer benchmarks are
nonscientific applications that are CPU and/or memory
intensive. The SPEC floating point benchmarks are a
mixture of both scientific and nonscientific programs. For
example, mesa and facerec are nonscientific graphics
programs, whereas swim and mgrid are well-known
scientific benchmarks. In our multinode tests, we studied
the NAS MPI suite as well as some of the ASCI benchmarks
[2]. We used all valid configurations up to nine nodes.
Presumably, such mature benchmarks have been thor-
oughly analyzed and are well written (for example, see
[75]). Thus, they are not unrealistically memory or commu-
nication bound (which would make frequency scaling
appear better than it will typically be in practice).

As stated earlier, this study uses, as a reference example,
a cluster of 10 nodes, each equipped with a frequency and
voltage-scalable AMD Athlon-64. All single-node tests are
run on one of the nodes. We run each program at each
available energy gear: 800 to 2,000 MHz in steps of
200 MHz. The voltage, which ranges from 1.5 to 1.0 V, is
reduced in each gear. Each node has a 1-Gbyte main
memory, a 128-Kbyte L1 cache (split), and a 512-Kbyte
L2 cache. The nodes are connected by a 100 megabit-per-
second network. In this paper, we control the CPU power
(by shifting gears) and measure overall system energy. This
is effective in saving energy because the CPU—a major
power consumer—uses less power.

For each program, we measure the execution time and
energy consumed for an application at a range of energy
gears. The execution time is the elapsed wall clock time. The
energy consumed by the entire system is calculated by
measuring the power consumption of each node using a
WattsUp Pro meter [52] attached to each node at the wall
outlet. This value is integrated over time to determine the
energy used. Because we attach a meter to each node, for
multinode tests, the total energy consumption by all
systems can be easily and accurately obtained by calculat-
ing the sum of each individual node’s energy consumption.

Table 1 shows idle power and active power ranges for all
gears of the AMD-64. The active power ranges are
determined using single-node data collected in Section 4.
The idle power is determined with CPU in the C1 state
using the halt command. In Linux, the CPU enters the
C1 state when the operating system determines that the
system is idle. We can see that the difference in active
power consumption between highest and lowest frequen-
cies is about 40 percent, whereas the difference in idle
power is approximately 15 percent.

The time to shift between any two gears is at most
500 microseconds and generally less than half that [16].
Fig. 1 shows that the overhead of gear shifting is acceptably
small for the range of shifting frequencies shown. The
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energy consumption and elapsed time of the lu benchmark
from the NAS suite are shown for a single node in the
cluster. The plots show these values for various shifting
frequencies. For example, the leftmost points show the
energy and time when shifting between the top two gears
every 8 seconds (0.125 shifts/seconds). The extreme
horizontal lines show the time and energy values when
the sequential lu program is run exclusively in the top two
gears, which does not depend on shifting rate. The middle
horizontal line is the analytic average value of the top two
gears. All shifting programs spend approximately half the
time in each gear. Therefore, the theoretical expectation is
that the shifting values are the average of the two fixed
values. The figure shows that the shifting points are all
within 1 percent of the average value (note that the extreme
lines differ by 5 and 8 percent in time and energy,
respectively).

Section 4 shows the single-node results, which illustrate
the energy-time trade-off due to the memory bottleneck.
Then, Section 5 describes the multiple node results, which
illustrate the effect of the communication bottleneck as well
as the energy-time trade-off when the number of nodes
increases.

4 SINGLE-NODE RESULTS

Because we studied a large number of programs from three
benchmark suites, space constraints do not permit the
presentation of all the individual results. Therefore, we
divide single-node results into two parts. First, we discuss
the overall results. Then, we look at a few representative
applications in detail. Complete individual application
results can be found in [56].

4.1 Overall Results

All of our tests show that, for a given program, using the

fastest gear takes the least time. A slower gear takes more

time and uses less power. However, this may or may not

result in a decrease in overall system energy.
If the decrease in power exceeds the increase in time, a

slower gear uses less energy. This is the case for all of the

programs we tested, where one of the slower gears results

in the least energy consumed. However, it is conceivable

that the time increase could exceed the power decrease, so

the fastest gear would also consume the least energy.
Fig. 2 plots the normalized aggregate results for each

program set on one node (NAS, SPEC INT, and SPEC FP).

The x-axis plots the gear in terms of frequency from highest

to lowest. There are three lines showing time, power, and

energy. All values are normalized to those of the fastest

gear; thus, all lines begin at 1 on the left-hand side. The

increasing line is the elapsed time, and the strictly

decreasing line is the average power consumption. The

energy consumption, which is the product of the power and

time, initially decreases and then rises. In each benchmark

suite, the power consumption decreases with frequency to

approximately the same degree. There is little difference in

power consumption because all programs in all sets are

simple “batch” programs: no communication, little I/O

delay, and so forth. While the power always decreases, the

time delay at the slowest gears is so great that the energy

savings, if any, is small. However, we notice that all of the

programs have an energy-time trade-off: There is an energy
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Idle and Active (Total System) Power for Each AMD-64 Node

Fig. 1. Examining the effects of shifting gears on lu.

Fig. 2. Aggregate plots of all programs in each set. (a) NAS. (b) SPEC INT. (c) SPEC FP.



savings (and a time delay) at a reduced frequency.
Complete results are shown in [56].

For the NAS programs, the time and energy diverge
from 1 about equally for higher frequencies. This means the
energy savings is approximately equal to the time delay. For
example, at 1,600 MHz, the energy used and time taken are
91 and 112 percent of full, respectively. The SPEC sets also
show an increase in time, but show little decrease in energy.
The programs in the SPEC suites are much more CPU
bound than NAS, as discussed in Section 6. Although the
SPEC sets are common benchmark suites, many of the
programs are not representative of HPC applications. On
the other hand, all the NAS programs are simplified HPC
programs with large data sets; therefore, a typical HPC
application is more likely to resemble a NAS program than
a SPEC program.

Some programs, especially those that are CPU bound, do
not benefit from CPU scaling, Therefore, Fig. 3 shows the
results of a subset of the NAS suite that is least CPU bound (cg,
lu, and sp). In this subset, the energy used and time taken are
86 and 105 percent of full, respectively, at 1,600 MHz. This
result indicates there is significant benefit to CPU scaling, but
it must be applied judiciously.

4.2 Detailed Results

In this section, we analyze six programs in detail that
represent the best and worst in terms of energy-time trade-
off from each program set. The data for a program are
presented using a scatter plot of energy versus time. The
total system energy consumed at each gear is plotted on the
y-axis, and the total execution time is plotted on the x-axis.
The higher of the two points uses more energy, and the
further right of two points takes more time. Therefore, a
near-vertical slope indicates an energy savings with little

time delay between adjacent gears, whereas a horizontal

slope indicates a time penalty and no energy savings.
The programs shown in Fig. 4 have the best energy-time

trade-off in each set: NAS (cg), SPEC INT (mcf), and SPEC

FP (art). In these vertical applications, the execution time

advantage of the fastest gear is small. However, the energy

penalty for this best performance is large. Consider, for

example, the cg benchmark in Fig. 4a. Setting the gear to

1,400 MHz yields a 3 percent increase in execution time

compared to the fastest, whereas the corresponding

decrease in energy consumption is 20 percent.
Next, we examine how a vertical energy-time shape

occurs. Our experience shows that programs use essentially

the same number (within 1 percent) of microoperations

regardless of the gear. This is the case for all SPEC and NAS

programs. However, the number of cycles that an execution

takes can change, especially in the vertical applications. For

example, consider the mcf application at the two fastest

gears (2,000 and 1,800 MHz), in which the performance gain

is less than 1 percent. Using the slower gear with a clock

rate that is 90 percent of the highest, the execution has

90 percent as many cycles (approximately 5.0 to 4.5 trillion).

Because the number of microoperations does not change,

the microprocessor throughput, in microoperations per

cycle (UPC), increases as the frequency decreases. The

additional cycles in the faster gear do not perform useful

work. This indicates that the CPU is not the performance

bottleneck. Below, we examine this and, not surprisingly,

determine that memory is the bottleneck.
On the other hand, Fig. 5 shows the programs that do not

exhibit an energy penalty for the ultimate performance.

Instead, in these programs, the fastest gear is nearly the

lowest energy consumed. We call these horizontal programs.

The time penalty (increase in execution time) is more than

10 percent for all three programs, which is nearly the same

as the increase in the CPU cycle time (11 percent). Thus,

these programs are highly CPU bound. The minimum

energy is always at 1,800 MHz, and the savings is less than

4 percent. The reason the energy decreases is that the power

consumption decreases by 13 to 14 percent, which is more

than the time increases. Therefore, the last 10 percent of

performance requires more than 10 percent more power.
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Fig. 3. Aggregate plot of the three NAS programs that have least CPU

bound.

Fig. 4. Best energy-time trade-off in each set. (a) cg. (b) mcf. (c) art.



5 MULTIPLE-NODE RESULTS

Section 4 investigated the energy-time trade-off on a single

node. This section studies the effect of distributed pro-

grams. Fig. 6 shows results from six NAS programs. (We do

not show is or ft because they do not have any parallel

speedup on our cluster.) Each graph has the same general

layout as in Figs. 4 and 5, except that it shows the results

from multiple experiments: two, four, and eight nodes (or

four and nine nodes in the case of bt and sp). It also plots the

one-node results from Section 4, but in most cases, the data

are to the right of the window of time shown. The energy

plotted is the cumulative energy of all nodes used.

5.1 Overall Results

Before discussing the results, we describe the possible layouts

of these graphs. First, for a fixed number of nodes, the shape of

the curve depends on the memory and communication

bottlenecks. This is because, in a distributed program, not

only might a processor wait for the memory subsystem, but,

at times, it might also block while awaiting a message. In

either scenario, the CPU is not on the critical path, and it is

more efficient to execute in a lower energy gear.

Second, consider the possible effects when comparing an

experiment with twice the number of nodes ð2P Þ versus one

with P nodes. The following possibilities exist. Note that we

do not consider the case where the time on 2P nodes is

larger than on P nodes.

1. The curve for 2P nodes can lie completely above and
to the left of the curve for P nodes (more energy, less
time). Each point on the 2P node curve lies above all
points on the P node curve. This case occurs when
the program achieves poor speedup on 2P nodes
compared to P nodes.

2. The point that represents the fastest energy gear for
2P nodes can be to the left of, and at or below, the
corresponding point on the curve for P nodes. This
case occurs when the program achieves perfect or
superlinear speedup on 2P nodes compared to P
nodes.

3. The curve for 2P nodes can lie to the left of the curve
for P nodes, but not completely above or below the
fastest gear point for P . This is the most interesting
case. While the program executes faster and con-
sumes more energy in the fastest gear on 2P nodes
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Fig. 5. Worst energy-time trade-off in each set. (a) ep. (b) crafty. (c) sixtrack.

Fig. 6. Energy consumption versus execution time for NAS benchmarks for one to eight or nine nodes. (a) bt B—poor speedup. (b) cg B—poor setup.

(c) ep B—perfect speedup. (d) lu B—good speedup. (e) mg B—poor/good speedup. (f) sp B—poor speedup.



than on P nodes, there is a lower gear at 2P nodes
that has less energy consumption than the fastest
gear point at P nodes. Therefore, it is possible to
achieve better execution time and lower energy
consumption by running in a slower gear on
2P nodes than in a faster gear on P nodes. There is
no energy-time trade-off between these points
because one point dominates the other in both
energy and time. This case occurs when speedup
is good (that is, not superlinear and not poor) and
there are a significant number of main memory
accesses (so that scaling down the processor has only
a slightly detrimental effect).

We describe each of the cases in turn below.
Case 1: Poor Speedup. Fig. 6 offers several examples of

Case 1. In particular, this case is illustrated in bt, sp, and mg
from two to four nodes, and cg both from two to four and
four to eight nodes (the two-to-four case for cg actually
slowed down). Suppose a given supercomputer cluster was
restricted to a certain amount of power consumption or heat
dissipation. This limit could be represented by a horizontal
line that a program must remain below. The most desirable
point would be the leftmost (fastest) one under this limit.
For programs in this case, the horizontal line will intersect
at most one of the curves.

Case 2: Perfect or Superlinear Speedup. Fig. 6 does not
contain an example of superlinear speedup. However, ep,
which gets almost perfect speedup, comes extremely close
to illustrating this case. Power consumption doubles when
the number of nodes doubles. Because the time is cut in

half, the total energy consumed is the same. With super-
linear speedup, the energy consumption decreases as nodes
are added. When speedup is perfect or superlinear, there is
no energy-time trade-off.

Case 3: Good Speedup. Fig. 6 shows several examples of
this case. First, consider lu at four and eight nodes. Gear 4
on eight nodes uses approximately the same energy as the
fastest gear on four nodes but executes 50 percent more
quickly. The fastest gear executes 72 percent faster on eight
nodes than on four nodes but uses 12 percent more energy.
This case illustrates an additional choice not available in a
conventional cluster, which only supports either of the
fastest gear options (four or eight nodes). So, a user must
trade off a performance increase against an energy increase.
With a power-scalable cluster, the user can select a slower
gear on eight nodes, which may offer better performance for
the same energy consumption. Thus, a user of a power-
scalable cluster has two dimensions to explore: 1) number of
nodes and 2) processor performance gear. In Case 3, the
user may be able to get better performance by using more
nodes, with each node executing at a lower energy gear.

Next, Fig. 7 plots data for the Jacobi iteration application.
This application is shown because it can run at any number
of nodes, unlike the NAS benchmarks. The figure shows
energy-time curves on five configurations: two, four, six,
eight, and 10 nodes. Because this application gets good
speedup (1.9, 3.6, 5.0, 6.4, and 7.7), each adjacent pair of
curves falls under Case 3. For example, executing in the
second or third fastest gear on six nodes results in the
program finishing faster and using less energy than using
the fastest gear on four nodes.

5.2 Detailed Results

So far, we have discussed the results in absolute terms. It is
also useful to look at the relative shapes of the energy-time
curves. Fig. 8 shows the curves for three of the NAS
programs relative to the fastest gear. Therefore, the fastest
gear is always plotted at (1, 1). These plots are presented
because they illustrate the three cases described above.
Fig. 8a shows that, for ep, increasing the number of nodes
has little effect on the relative energy or time. This is because
ep has an almost perfect speedup. Consequently, the
program executes nearly identically on any number of
nodes.

The next case is illustrated in Fig. 8b. This program is bt,
which speeds up poorly because it has a large communication
component. Although an increase in CPU cycle time increases
computation time, it has little effect on the communication
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Fig. 7. Energy consumption versus execution time for Jacobi iteration on

two, four, six, eight, and 10 nodes.

Fig. 8. Relative energy versus time. (a) ep B. (b) bt B. (c) mg B.



time. Therefore, the increase in execution time due to
frequency reduction becomes less significant as the computa-
tion to communication ratio decreases. This effect is shown in
Fig. 8b, as the curve compresses horizontally as the number of
nodes increases. For example, the rightmost (slowest) point
decreases from 2.15 to 1.76 to 1.52.

The last case is illustrated by mg, which gets good

speedup (Fig. 8c). This example shows how the curve

becomes more vertical as parallelism increases, indicating

that the time penalty decreases. Both mg and bt have similar

memory behavior, so the difference in these shapes must be

due to communication. The important factor is the relative

amounts of computation (executing) and communication

(blocked) time. The gear setting primarily affects the active

portion. Because bt has significant idle/blocked time (33

and 50 percent on four and nine nodes, respectively), the

gear setting has a small effect on bt. However, mg has a

much smaller amount of idle time (10, 13, and 24 percent on

two, four, and eight nodes, respectively); therefore, the gear

setting makes a more pronounced difference.

5.3 Additional Applications

Fig. 9 shows the energy-time trade-off of more modern

benchmarks from the ASCI suite [2]. The ASCI programs

typically execute for hours if not days on 96 processors or

more, depending on inputs. They are designed to push the

limits of current high-performance clusters and aid in the

assessment of requirements for the next generation of

clusters. We chose data set sizes appropriate for our cluster

and truncated iterations to shorten the duration of the tests.

There are a different number of tests in each figure because

the programs do not support the same set of node

configurations.
The figure shows that these applications have varying

behavior and that each “maps to” one of the NAS programs.

For example, sphot has near-perfect speedup, so there is

almost no energy penalty for using more nodes; this is

similar to ep from the NAS suite. On the other hand, the

shape of the graph for aztec resembles that of lu. There is

good but not perfect speedup, and it can be beneficial, in

both time and energy, to use more nodes at a lower gear per

node. Finally, sweep3d is similar to mg in that it attains

reasonable speedup, but each individual curve is not quite

as steep (though the steepness increases with the number of

nodes due to communication overhead).

6 CATEGORIZING APPLICATIONS

The previous sections have shown opportunities for energy

saving in HPC programs on both a single node and multiple

nodes. As mentioned earlier, the challenge for system

software designers is to exploit these opportunities when

they are available—and only when they are available. For

example, programs like cg should be run at a lower gear on

a modest number of nodes, whereas programs like ep

should be run at fastest gear on as many nodes as possible.
The question is stated as follows: Which metrics should be

used to categorize programs into equivalence classes? As

explained in Sections 4 and 5, the two key relevant

characteristics are memory performance and speedup. We

therefore investigated metrics to quantify these. Because we

are primarily interested in inferring which gear to use

dynamically, we prefer to determine effective online metrics

—as many have done in the past (for example, [65]).

First, we investigated a metric termed �, introduced by

Hsu and Kremer in [34] and applied to HPC by Hsu and Feng

[35], which quantifies the extent to which the CPU is on the

critical path. It compares the application slowdown to the CPU

slowdown. Application slowdown is T�TmaxTmax
, where T and Tmax

are the execution times at the corresponding frequencies. The

CPU slowdown is fmax�f
f , where f is a given frequency and

fmax is the highest frequency (2,000 MHz in this case). The

criticality of the CPU, �, is defined as

� ¼
T�Tmax
Tmax
fmax�f

f

¼
T

Tmax�1
fmax
f�1

:

Theoretically, if a program is completely CPU bound, then

T would increase by the amount of increase in cycle time,

T ¼ fmax
f � Tmax, in which case � ¼ 1. On the other hand, if a

program is completely independent of the CPU, then T ¼
Tmax and � ¼ 0. For these programs, the largest difference

we observed between any two � values (same application

but different frequencies) is 5 percent.
The NAS suite has an average � of 0.40, and half of those

programs are less than 0.50. On the other hand, the SPEC

suites have a � of 0.59 and 0.71 for the integer and floating

point benchmarks, respectively. Furthermore, only one INT

program and one-third of the FP programs have a � less

than 0.50. This indicates that the NAS programs are less

CPU bound than SPEC.
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Fig. 9. Energy-time trade-off of some applications. (a) Aztec—poor/good speedup. (b) Sphot—perfect speedup. (c) Sweep3d—poor setup.



In general, � is an excellent measure of whether an
application is “vertical” or “horizontal.” Furthermore, it
works independently of whether the program is sequential
or parallel—it is just a measure of how CPU bound an
application is, and so it does not matter whether the CPU is
waiting for data from the memory system or from another
node. Unfortunately, calculating � requires using applica-
tion execution time for two frequencies, which requires at
least two profile runs of the entire application. Below, we
show two simple online metrics that predict the � of an
application without such overhead.

6.1 Single-Node Programs

On a single-node program, there is no internode commu-
nication, and HPC applications are (generally) not I/O
bound. Consequently, either the CPU or the memory
system is on the critical path.

The first metric is MPO, which measures memory
pressure.1 This metric is determined using hardware perfor-
mance counters to measure the number of operations retired
and the L2 cache misses (which are memory accesses); both
counters are initialized when the application commences and
are read upon program termination. Therefore, MPO can be
determined online. MPO stays constant as the frequency
changes. The largest difference in MPO, using the same
application and different frequencies, is about 1 percent.
Therefore, MPO is more useful than the typical measure of
IPC or UPC, which varies greatly with frequency. MPO
correlates well to application slowdown (see below). It
represents a good trade-off between 1) simplicity of data
collection/analysis and 2) predictive power of the metric. As
the MPO decreases, a program becomes more CPU bound
because, on the average, it has fewer memory references per
operation.

Fig. 10 shows a scatter plot of MPO versus � for all the
applications we tested. In this and all figures that show
MPO, for readability, we actually graph misses per thousand
operations; this eliminates most decimal points. We ran a
logarithmic regression to find the correlation between �,

which is clearly a good metric (yet requires multiple runs),
and logðMPOÞ. The figure plots the regression line,
0:697� 0:150 logðMPOÞ. We found that the correlation
coefficient is 0.84 and the p-value2 is 0.001, indicating a
close correlation. Again, the advantage of MPO is that,
unlike �, this measurement is obtained at runtime with
negligible overhead using any gear.

6.2 Multinode Programs

We now investigate multiple-node programs. Because the
SPEC programs are sequential, we tested using NAS.
However, we found that the correlation coefficient of
MPO versus � for the multinode programs is just 0.52—this
is not a close correlation. We conclude that using MPO is
not sufficient to determine the proper gear setting on
multinode programs. This is not surprising as, while � is a
metric that implicitly includes all non-CPU activity (for
example, memory accesses and communication latency),
MPO only concerns memory pressure.

The additional metric we investigated to predict a
bottleneck at runtime is slack, which predicts communica-
tion bottlenecks. The slack is simply the ratio of the total
time a node is blocked in MPI calls to the total execution
time. A larger slack suggests a greater benefit in reducing
the gear. Similar to MPO, slack can be computed on the fly,
with no additional program executions. In this paper, we
measure slack by using our MPI-Jack tool, which intercepts
MPI calls and allows for arbitrary code to be inserted before
and after execution of the call. To determine blocking time,
we simply take the wall clock time before and after MPI
blocking calls, and blocking time is the difference between
the measured times.

Hence, as described above, we need to include periods
when the CPU is blocked and waiting for communicated
data by using slack. We ran a multivariable correlation
between � and both logðMPOÞ and slack. (Both logðMPOÞ
and slack are independent variables, and � is the dependent
variable.) Note that slack does not affect MPO; when a node
is blocked, it does not do any operations at all. (The
correlations show that multicollinearity is not a problem.)

Table 2 shows the values for �, MPO, and slack for all
multinode programs that had relatively uniform slack
between nodes (we did not use lu or the B and C classes
of cg) running on eight nodes. The reason for requiring
uniform slack is that reducing the gear in situations where
some nodes have more slack than others does not yield a
clean idea of what happens to �. This is discussed further
below. Next, we added the single-node data points to the
multinode set, setting slack to zero for the single-node
points. This produced a correlation coefficient of 0.90,
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Fig. 10. MPO versus � for all single-node applications on AMD-64.

TABLE 2
Comparing � to MPO and Slack (Sorted by �)

1. The AMD executes a reduced-instruction-set computing (RISC) engine
internally. It translates x86 (complex-instruction-set computing, CISC)
instructions into RISC microoperations. Therefore, operations are a better
indicator of CPU performance than instructions.

2. The p-value essentially gives statistical significance; it represents the
probability that the relation between the variables is a mistake. Generally,
the p-value should be less than 0.05.



which is extremely good. Also, the p-values for logðMPOÞ
and slack are both 0.001, which is excellent. We conclude
that system software designers should be able to use
metrics, such as MPO and slack, that can be collected on
the fly to determine the proper energy gear for relatively
load-balanced programs.

Finally, we discuss the situation when slack is not
uniform between the nodes, as is the case when the load is
not well balanced. The NAS programs CG and LU exhibit
this property, along with Aztec and Sweep3d from the ASCI
Purple suite. Here, the problem has several dimensions.
First, different nodes need to be in different gears in the
same code region, something that is outside the scope of
this paper (which we addressed in [41]). Second, once the
slack is balanced, then one needs to consider MPO. Again,
this is outside our scope and, in fact, has not yet been
addressed by the research community.

7 DISCUSSION

This paper has focused on saving energy by executing
programs at a lower energy gear. However, in the previous
sections, we restricted our study in three ways. First, we
used a single gear per program, as opposed to allowing the
gear to vary dynamically. Second, we did not perform “field
tests” that show how we would relate MPO to an actual
gear selection based on a specific metric. Third, we did not
discuss how to select the number of nodes to use. Although
these have been the foci of our recent and current work, in
this section, we discuss the basic ideas.

7.1 Phases

As MPO in large part determines the effectiveness of
executing a program at a slower gear, different parts of
programs, which often have different MPOs, may have
different optimal gears. We refer to each distinct part of a
program as a phase; many researchers have studied the
general problem of phase detection (for example, [67], [42],
[12], and [38]). In this work, we find phases as follows: We
profile programs and divide them into phases based on
changes in MPO. The profiling itself is done with MPI-Jack.

Fig. 11 shows two example programs, each with two
phases, run in all possible gear permutations on a single
node for the five fastest gears. The Fig. 11a is SP class C,
where it is clear that phases are profitable. In particular, we

can save almost 10 percent energy (which is double what is
possible with a single gear solution) and run faster using
phases than we can using a fixed gear solution. Fig. 11b is a
synthetic program; the first phase is based on EP (small
MPO), and the second phase is based on CG (large MPO).
This represents a best case (when considering just a single
node) for using phases. The results here show that we,
again, can double the energy savings, this time up to at
most 20 percent. Another way to look at this figure is that
around 7 percent energy can be saved with essentially no
time delay—if different gears are used (in this case, the first
phase uses the fastest gear, and the second phase uses the
second-fastest gear).

In Section 7.3, we show the use of dynamically switching
gears in different phases in a multinode program. There,
using phases in a situation where the total energy is limited
can result in a much faster program.

7.2 Field Testing MPO

This section examines whether one can make practical use
of our proposed metrics. As mentioned previously, fre-
quency scaling is a mechanism that trades performance
(time) for energy. One way to evaluate this trade-off is the
energy-delay product (EDP) [33]. This product weighs energy
savings and time equally. Thus, a decrease in energy is
“canceled” by a proportional increase in time. To reduce the
EDP, the relative energy decrease must be greater than the
relative time increase. The previous section argued that
MPO correlates to �, so it should be usable as a predictor of
slowdown when using slower gears. Here, we use the data
that we have collected to determine if MPO can be used to
minimize EDP. In particular, we use the elapsed time and
energy consumed for each program in each gear. From this,
we can determine the gear that has the smallest EDP, which
we call the “best” gear.

We selected several cutoff MPO values that partition the
(energy-time) space into six distinct gear regions. If there
exist cutoff points that also partition the space of the best
gear, then MPO can be used to classify EDP. Fig. 12 shows
this pictorially. It plots log(MPO) versus best gear for both
SPEC sets (FP and INT) and NAS (sequential and parallel).
The horizontal axis plots MPO—as in Section 6.1, it actually
shows misses per thousand operations to eliminate most
decimal points. The best gear is plotted on the vertical axis.
Thus, each data point plots the MPO versus the gear that
minimizes EDP. Notice that the best gear generally
decreases as MPO increases. Furthermore, using EDP, the
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Fig. 11. Scatter plot of all possible gear permutations for SP class C (a) and a synthetic program (b). Circles indicate runs in which different gears

were used for different phases and triangles indicate single-gear runs.



best gear for most of the programs is the fastest gear
(2,000 MHz).

We selected three cutoff points to divide the MPO space
into four gears, which are 13.5, 18.5, and 85 (in MPO). Given
this partitioning, we see that there are seven programs that do
not execute in the best gear. These are enumerated in Fig. 12,
along with the percentage error compared to the minimal
EDP. Using this partitioning, MPO predicts the best gear
82 percent of the time. In only one case (lucas) does MPO fail to
select a gear that is not adjacent to the best gear. In all cases
where MPO does not predict the best gear, the error is less
than 5 percent, and more than half the time, it is within
2 percent. For each program, the worst EDP is always a factor
of 2 to 3 more than the best EDP; hence, although not perfect,
this method clearly avoids poor gear choices.

EDP is only one way to evaluate the energy-time trade-
off. Another choice is energy-delay-squared product (ED2P)
[50]. This metric more heavily weighs the increase in time.
In fact, the relative energy decrease has to more than double
the relative time increase in order to reduce ED2P.
Consequently, the top gear is best for 74 percent (28/38)
of the programs. Fig. 13a shows the results of this
partitioning. We found a partitioning that correctly classi-
fied 32 of the programs (84 percent), with a maximum error
of 4.9 percent.

Using the above two metrics, the top gear is best for most
of the programs, which may make it simple to predict the
correct gear. For example, a trivial classification that always

selects the top gear is correct 58 or 74 percent of the time for
EDP or ED2P, respectively. Therefore, we also examine
energy-squared-delay product (E2DP). In this case, the top gear
is best for only 10 programs and 1,200 MHz is best for six
programs. We found a partitioning in which 10 programs
were misclassified (74 percent correct) and the maximum
error was 7.2 percent, which is shown in Fig. 13b.

In summary, MPO can classify programs according to
energy-time trade-off. However, the data are highly skewed
to the top gear, so we do not make strong claims for its
efficacy. Nevertheless, these data show that, while MPO by
itself may not be an ideal classifier, it is an important metric
that has a strong correlation to the best gear. We are
currently investigating how to augment MPO to obtain a
stronger classifier.

We note that we do not field test slack. This is because
the choice of a gear on a given node for a given amount of
slack is additionally dependent on the choice of gear on
other nodes. Choosing proper gears in the presence of slack
is the subject of the current work [41].

7.3 Number of Nodes

Traditionally, parallel computing users execute their pro-
grams on as many nodes as possible, each running as fast as
possible. Sections 3 and 5 explain that programs may not
run significantly faster when 1) running them at top speed
per node or 2) running them on as many nodes as possible.
The former has to do with low energy efficiency, whereas
the latter is a traditional parallel computing issue—that of
(low) parallel efficiency.

Fig. 14 shows the energy-time scatter plot for lu for all
combinations of number of nodes and gear per phase. We
denote the combination of a gear per phase and a number of
nodes as a schedule. This benchmark has three phases. Each
multigear schedule is shown by a triangle, whereas each
single-gear schedule uses a square. The “dominating”
points (ones that are better than all others in time for a
given amount of energy) are connected by a dashed line.
There are two things of note here. First, at each number of
nodes, there are energy-efficient schedules that run almost
as fast as running the schedule that uses the fastest gear
throughout the program. In fact, if an energy limit was
imposed, there exist certain limits (for example, 21.5 kJ),
where using a multigear schedule leads to an execution
time that is much less than that of the best single-gear
schedule (about 37 to 57 seconds). Second, the parallel
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Fig. 12. Selecting EDP with MPO. Misclassified programs are labeled

with the relative error.

Fig. 13. Using MPO to determine the best gear using ED2P and E2DP. Misclassified programs are labeled with the relative error. (a) ED2P.

(b) E2DP.



efficiency is significantly less than 1 between four and eight

nodes, because the time decreases by much less than a

factor of two—so the energy consumed increases when

comparing similar gear schedules.
Whether to use greater or fewer nodes as well as which

gear per node requires understanding parallel and energy

efficiency simultaneously. In general, this involves under-

standing the scalability of parallel programs, which is a

well-studied yet difficult problem. By scalability, we mean

both intranode (increasing the gear) and internode (increas-

ing the number of nodes). We would like to be able to use

an understanding of scalability to predict the graph shown

in Fig. 14 so that an appropriate schedule (by some metric)

can be chosen.
There are multiple ways that this can be done. One

obvious way to understand scalability is to execute the

program on every possible number of nodes in all possible

gears. However, this is impractical—consider just the lu

example and its 864 different schedules—so we have

attacked this problem through modeling and partial

program execution. Some researchers have studied scal-

ability by investigating all message operations as the

number of nodes increases [71].
Our current work involves using a combination of

modeling, profiling, and partial program execution. The

basic idea is to create a model of both execution time and

consumed energy, make some partial program runs, and

then use the model along with the profiling information to

predict time and energy. This procedure is performed

iteratively until a satisfactory schedule is found.
Full details on this can be found in [68]. Briefly, we

mention the results that we found using this idea on lu. In

just over 20 partial program executions under a specific

energy limit3 of 23 kJ, we found that the best schedule was

to use all eight nodes, but to execute the three phases in

gears 1,600, 1,200, and 1,600, respectively. This schedule

was only 6 percent from optimal, which, again, would

require 864 executions to find exhaustively.

8 CONCLUSIONS

This paper investigates the trade-off between energy and
performance in both serial and parallel HPC applications.
Using a wide range of applications, we found that, in the
best case on one node, reducing the CPU speed makes it
possible to use 20 percent less energy while increasing time
by only 3 percent. On the other hand, a program that is
largely CPU bound should be run at the fastest gear
possible, because decreasing CPU speed may result in both
slower execution and more energy. We examined two
metrics, MPO and slack, which can be used by system
software to choose the appropriate gear. We believe that
choosing appropriate gears will be important in the future,
where a cluster may have heat limitations.

In addition, we showed that avenues such as changing
gears between phases and choosing the right number of
nodes can further improve energy efficiency. Our current
work involves both of these topics along with integrating
solutions to them within MPI. This way, scientific programs
already written using MPI will be more energy efficient.
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