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Abstract—In mobile devices, the wireless network interface card (WNIC) consumes a significant portion of overall system energy.

One way to reduce energy consumed by a device is to transition its WNIC to a lower-power sleep mode when data is not being

received or transmitted. In this paper, we investigate client-centered techniques for energy efficient communication, using IEEE

802.11b, within the network layer. The basic idea is to conserve energy by keeping the WNIC in high-power mode only when

necessary. We track each connection, which allows us to determine inactive intervals during which to transition the WNIC to sleep

mode. Whenever necessary, we also shape the traffic from the client side to maximize sleep intervals—convincing the server to send

data in bursts. This trades lower WNIC energy consumption for an increase in transmission time. Our techniques are compatible with

standard TCP and do not rely on any assistance from the server or network infrastructure. Results show that during Web browsing, our

client-centered technique saved 21 percent energy compared to PSM and incurred less than a 1 percent increase in transmission time

compared to regular TCP. For a large file download, our scheme saved 27 percent energy on average with a transmission time

increase of only 20 percent.

Index Terms—Client-centered, energy, wireless networking, TCP.
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1 INTRODUCTION

WITH the explosion of battery-constrained mobile

devices, conserving energy has become increasingly

important. One significant source of consumed energy on

such devices is the wireless network interface card (WNIC);

in fact, it can in some cases be the single largest power drain

in a mobile client. For example, even when all components

of an IBM 560X laptop are active, the WNIC accounts for

15 percent of overall system energy [1].
To enable energy savings, WNICs are designed with

multiple power modes. Generally, there are four power

modes. The idle, receive, and transmit modes are all high

energy modes that consume significant energy, while sleep

is a low-power mode and consumes nearly an order of

magnitude less energy.
The basic idea to reduce energy consumed by a WNIC is

to transition it to a lower-power sleep mode when data is not

being received or transmitted. We call this mechanism

energy-efficient wireless communication. This normally re-

quires packets to be sent in bursts at agreed-upon intervals

in order to allow the wireless client to keep its WNIC in a

lower power-consuming sleep state.

Link-layer mechanisms such as IEEE 802.11b power-
saving mode (PSM) [2] reduce energy dissipation without
any consideration of upper-layer applications and connec-
tions. However, PSM buffering increases connection round-
trip times from 16 percent to 232 percent [3]. For applications
such as Web browsing, the increase in effective round-trip
time is unacceptable.

The focus of this paper is to investigate techniques for
network-layer, energy-efficient wireless communication on
802.11b networks to support popular mobile applications.
We propose a set of client-centered techniques for saving
energy at the WNIC during transmission. The fundamental
ideas are that the client actively tracks connections, predicts
when packets will arrive, possibly shapes traffic, and keeps
the WNIC in high-power mode only when necessary. Our
technique allows mobile clients to save energy in a client-
centered manner, i.e., without any assistance from servers,
proxies, or IEEE 802.11b power saving mode (PSM) in the
access point [2]. In this paper, we concentrate our efforts on
handling TCP streams initiated by the client to a server via
request/response. Our client-side implementation can be
easily deployed at individual end hosts without any
modifications to the servers.

Our implementation is within Netfilter [4], a kernel-level
packet filter. Our techniques are performed strictly by the
client at the network layer by exploiting TCP congestion
control and flow control. Its client-centered manner ensures
the technique can be easily deployed through individual
end host upgrades. We apply our technique to support the
two dominant wireless applications: Web browsing and
large file downloads, where a significant amount of WNIC
energy is expended.

To test our client-centered technique, we ran actual tests
on the Internet as well as in emulated and simulated
environments. When meaningful, we compared the results
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of our system with both PSM and a related approach known
as the Bounded Slowdown Protocol (BSD) [3].

For Web browsing, our technique combines the perfor-
mance of regular TCP and BSD with nearly all the energy-
saving of PSM, and we save more energy than PSM during
client think times. Our experimental results show that over
an entire Web browsing session that includes downloads
and think times, our scheme saves up to 21 percent energy
compared to PSM and incurs less than a 1 percent increase
in transmission time compared to regular TCP. In addition,
our technique saves up to 25 percent more energy than BSD.

For large file downloads, in the best case, we save over
50 percent energy compared to baseline TCP with a
transmission time increase under 8 percent. Over all seven
Internet sites we tested, the average energy savings was
27 percent and the transmission time increase was
20 percent. In an emulated environment (using DummyNet
[5]), the average energy savings was 51 percent when
simulating off-peak hours.

The rest of the paper is organized as follows: Section 2
describes related work. Section 3 discusses the design and
implementation of our client-centered techniques. Section 4
describes our experiments and discusses the results. Finally,
Section 5 summarizes this paper.

2 RELATED WORK

To reduce WNIC energy consumption, one can use the
energy-saving mechanisms defined by IEEE 802.11b
(power-saving mode, or PSM) [2]. PSM is a general
approach that works at the wireless link layer between
the access point and the client. However, using PSM
generally increases round-trip times to at least the nearest
multiple of 100 ms1 [3]. Furthermore, PSM is not a good
match for applications that receive data at a steady and
frequent rate, as an access point using PSM can in some
cases cause additional (unexpected) packet delay [6].

One improvement to PSM is the Bounded Slowdown
Protocol (BSD) [3], which uses minimal energy given a
desired maximum increase in round-trip time. BSD main-
tains the WNIC in high-power mode during almost all of a
TCP transmission (see Section 4), while bounding the
transmission slowdown based on a user-supplied para-
meter. It is aimed at situations where there are long periods
of user inactivity.

BSD is effective in saving energy for Web sessions
compared to PSM and also avoids the significant delay that
PSM incurs. However, fundamental to this approach is that,
after every request sent by the client, the WNIC must
remain in high-power mode for a certain amount of time T .
For example, if the desired maximum transmission time
increase is 50 percent, T is 200 ms. Because BSD is
implemented in the link layer, every acknowledgement
sent by the client must be considered a request. Hence, in
most situations (like the one above, assuming the round-trip
time is less than 200 ms), BSD will have to leave the WNIC
in high-power mode for each entire download and no

energy can be saved. For energy saving, the goal of BSD is
reducing energy consumption during periods of user think
time, not during a transmission.

Our approach, on the other hand, saves energy during
transmissions. Our work improves upon this research by
1) saving energy while incurring little or no transmission
time increase for short file downloads and 2) trading energy
for transmission time for large file downloads. In addition,
BSD requires modification to the access point. Our
approach requires no new hardware and works solely
based on changes to the client TCP implementation.

There has also been work done on reducing idle energy
in the network interface [7]. This has potential to improve
energy usage, but cannot be used on current hardware. The
basic ideas of power-aware routing in wireless multihop
networks are to perform routing in a power-aware manner
or to integrate power awareness into the transport layer [8].
Additionally, there has been work in investigating power-
aware mechanisms for end-to-end communication in wire-
less networks [9]. Our work, on the other hand, saves
energy through transitioning the WNIC to sleep mode. It
exploits energy savings at the network level and does so in
a client-centric manner.

One body of work that is related to ours is in providing
energy savings to multimedia clients at the application level
through the use of a proxy that is interposed in between
servers and mobile clients. The proxy shapes the traffic into
bursts and coordinates transmissions directly with the
clients, allowing transition of the WNIC to sleep mode [6],
[10]. The disadvantage of these approaches is that they
require a proxy, which will not exist on many wireless
networks; our method is implemented on mobile clients,
requiring no assistance from a proxy or server. Also, the
proxy-based approaches above are focused on handling
multimedia, where network traffic is primarily UDP. Our
work is instead focused on TCP traffic, where the use of a
proxy at the network layer requires a “double connection,”
which violates TCP’s end-to-end semantics.

Prior work has substantially advanced power-aware
computing at the hardware and operating system level. At
the hardware level, dynamic voltage scaling (DVS) is a
technique that allows processor speed to be decreased in
order to run at at a lower energy level (e.g., [11]). OS
scheduling can then take advantage of DVS [12]. At the
operating system level, there has also been work in creating
burstiness to save energy consumed by disks [13] as well as
work that uses program-counter-based techniques to
determine when to spin down the disk [14]. Recent work
has advocated managing energy explicitly as a resource in
the operating system [15]. Another approach is to have the
OS exploit application information to save energy [1]. Our
work is similar in spirit to all of these techniques, but we
focus on creating burstiness in network transmissions and
predicting when packets will arrive.

Other researchers have had the idea of using RTT to
transition the WNIC into idle mode [16]. However, this
work only considers that the wireless device is the sender
(which is a different problem). They do note the effect that
smaller TCP window sizes result in more energy savings, a
result which we also observed.
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Controlling the TCP sender’s behavior via manipulation
of acknowledgements by the receiver is not a new idea. In
[17], Chan and Ramjee proposed the Ack Regulator to
improve TCP performance on a 3G wireless link by
regulating the flow of acks back to the sender. Similar
work has been done in [18], where acknowledgement
congestion control and acknowledgement filtering were
proposed to smooth the flow of traffic from the sender. Our
approach is to force predictable bursts by at times sending
acknowledgements that advertise a zero-sized receiver
window. Another idea is the Reception Control Protocol
(RCP), which allows receiver control of the sender [19]. A
protocol that is similar in spirit is TCP-Real [20], which uses
a “wave” pattern in order to avoid congestion and detect
and classify errors—similar to RCP, this protocol is receiver
oriented. However, both RCP and TCP-Real are new
protocols and require deployment on both connection ends,
whereas our client-centered approach requires only client-
side deployment.

Also, studies have been done of the energy consumed by
different versions of TCP (Reno, Newreno, SACK) [21] as
well as by the different actions within TCP (i.e., energy cost
for copying data, radio, etc.) [22]. The latter work also
motivates ways to conserve energy; for example, one way is
to maintain the TCP send buffer on the NIC itself, and
another is to transfer data between the kernel and the NIC
in large chunks. In addition, there has been research to
determine the energy cost of the wireless network interfaces
in an ad hoc network [23].

Another energy-related research area is the study of
transmission power control (TPC) in wireless RF channels
[24]. Generally, TPC algorithms attempt to reduce energy
consumption during the transmission phase. These algo-
rithms affect the link layer, while our work aims to save
energy via the network layer.

Our previous work [25] looked at saving energy during
small (Web) file downloads, where concurrent HTTP
connections are instantiated. We also viewed the problem
from an energy-delay perspective [26]; in principle, our goal
is to achieve energy efficient wireless communication using
IEEE 802.11b in the network layer through application-
aware energy saving methods.

3 IMPLEMENTATION

In this section, we describe the design and implementation
of our client-centered techniques. We assume that the
WNIC modes are idle, receive, transmit, and sleep. The first
three are referred to as high-power modes, and sleep mode
is the low-power mode. Any packets (sent from the server)
arriving during sleep mode are dropped. We assume that

the client OS will transition the WNIC into high-power
mode when data is sent from the client, and then we inform
the client OS to transition the WNIC between modes based
on our predictions.

We first give a detailed description of all the techniques
we used for our energy efficient communications, including
our connection table, client side round-trip time estimation,
traffic shaping, and end-of-burst detection. We then
describe their use in the context of two dominant upper-
layer applications: Web browsing and large file downloads.

3.1 Connection Table

Central to our algorithm is a connection table that we use to
track each TCP connection initiated from the client. This
provides all the necessary information to predict 1) when to
transition the WNIC from high to low power mode and
2) how long to keep the WNIC in low power mode. The
client divides an individual connection into stages, between
which transitioning the WNIC to sleep mode is possible.
Stages naturally appear during TCP slow start and are also
created (by us) through traffic shaping during TCP conges-
tion avoidance.

The client builds a connection table (Fig. 1) to hold
detailed information about each connection, which allows
accurate prediction of the next packet arrival time. The
connection status field reflects four possible states: active,
idle, finished, and saturated (discussed below). The site field is
used to index into the site table maintained on the client to
locate the detailed information about the remote server site.
(The actual table uses IP and port number. For presentation
purposes, we present the logical name.) We partition each
connection into stages and keep the stage number in the
stage field. We also record the number of packets received in
each stage. The next stage start time and end time are the
predicted starting and ending times of the next transmis-
sion stage. We use the current estimate of the round-trip
time (in the SRTT field) and variance (var) to compute the
start and end times of the next stage. If the connection is
active, we also keep track of when the current stage is
expected to end (current expiration).

3.2 Round-Trip Time Estimation

To carry out our energy efficient algorithm, the client must
make use of round-trip time information to accurately
predict when the next packet will arrive on any connection,
allowing for variance present in network transmission. We
leverage the TCP timestamp option [27] in each packet to
calculate round-trip times. We use smoothed round-trip
time and variance estimates to predict first and last packet
arrival times for each burst during slow start. We use the
recorded minimal round-trip time to conservatively predict
packet arrival time during congestion avoidance.
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Traditionally, TCP only measures RTTs at the sender
side for data packets; this is used for setting retransmission
timers. On the receiver side, it is difficult to estimate RTTs
because it is hard to associate incoming packets with the
outgoing acknowledgement that triggered them [28]. For-
tunately, the TCP timestamp option provides accurate RTT
measurements when both the sender and the receiver agree
to use it on a connection. Once enabled, up-to-date
timestamps are always sent and echoed in the TCP header
of each packet. Upon receiving a packet, either endpoint can
calculate a new RTT sample as the time difference between
the current timestamp value and the echoed value. TCP
uses these accurate RTT samples to improve the quality of
the TCP RTO estimate, which in turn improves TCP
performance. As a result, presently, the TCP timestamp
option is used in most TCP implementations [29].

Currently, we assume that the timestamp option is
enabled. In fact, in all the servers in our experiments, the
timestamp option was enabled. If it were not, we believe that
by using techniques such as those presented in [28] to
associate packets with their acknowledgements, we could
obtain accurate RTT estimates. We leave this for future work.

3.3 Connection Tracking

In the following, we discuss our technique to to predict the
start and end time of each stage when tracking a connection
during slow start (without traffic shaping). We will discuss
techniques for shaping traffic in Section 3.4.

Whenever stage i ends, the client predicts the stage
iþ 1 start and end time as Tfirst þ SRTT � VAR and
Tlast þ SRTT þ VAR. Variables Tfirst and Tlast are the
times the first and last acknowledgements are sent during
stage i. SRTT is our smoothed round-trip time estimate
and VAR is the estimated variance.

We use the method in Section 3.2 to estimate RTT. The
new variance measurement is then the difference between
the measured RTT and the SRTT . To calculate the SRTT
and its variance from each measurement, we employ the
same algorithm which is used by many implementations of
TCP: The new SRTT is calculated using the formula
7=8� SRTT þ 1=8�RTT , where RTT is the observed
value. (The new variance estimate is computed similarly.)

Transitioning between states: Fig. 2 shows the state
transition diagram. A connection is in active state when it
is receiving data within a stage. A connection is in idle state

if it is finished receiving packets from the previous stage
and is waiting for the start of the next stage. In general, this
is determined by two conditions: 1) the predicted ending
time of the current stage has passed and 2) no packet has
arrived for Tthresh ms (set dynamically based on the
maximum observed interval between successive acknowl-
edgements) since the last outgoing acknowledgement was
sent. Conditions 1) and 2) combine to serve as safeguards
against network delays, which would otherwise lead to
prematurely marking a connection as idle.

The issue of when a connection is terminated requires a
special case for HTTP (as opposed to TCP). As HTTP/1.1
uses a persistent connection for successive HTTP requests,
connections are not terminated after transmission of a
requested object. We mark the connection as finished when
the requested page has been fully downloaded (and so the
client will not receive data on this connection). This is
detected using the Web page size, which was available over
95 percent of the time for the Web sites in our experiments.
If not, a connection is not marked finished.

The final possibility is that sender’s window size is larger
than the bandwidth-delay product of a connection, and so
there is no possibility for energy savings between stages. In
this case, we mark a connection as saturated.

3.4 Traffic Shaping

An energy efficient communication mechanism saves the
most energy when data is transmitted in bursts. However,
when a TCP stream is in congestion avoidance, it does
nothing to combine packets into bursts—instead, it attempts
to smooth the packet stream—which makes saving energy
difficult due to significant consumption when the WNIC is
always in idle mode. This is because packet arrivals are
unpredictable during the smoothed transmission period
and so are not amenable to energy savings as compared to
the inherent bursts that occur during slow start. To conserve
energy during congestion avoidance, we introduce a traffic
shaping mechanism on the client side to shape the TCP
traffic implicitly into bursts, increasing the time that the
WNIC can be placed in sleep mode.

TCP uses congestion control and flow control to limit the
sending rate without overloading the network and the
receiver. This rate limitation is achieved by a sliding window
scheme that controls the number of in-flight packets (sent
but not yet acknowledged) over each round-trip time. The
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window size2 in TCP is dynamically adjusted according to
network conditions. For example, the window size shrinks
when congestion occurs, while it is usually increased if all
packets in a window are acknowledged. In addition to the
window-based congestion control, TCP uses a self-clocking
mechanism to pace outgoing packets within a window.
Instead of sending all packets in a window at once, TCP only
allows sending a new packet when another packet is
acknowledged. This results in a smooth data stream when
the acknowledgments are evenly paced.

Our goal is to shape a TCP stream into bursts to increase
potential sleep intervals between packet receptions during
congestion avoidance. The basic idea is that the receiver
implicitly forces the sender to send each window of packets
in a burst so that the potential sleep time between bursts is
maximized. To do this, we exploit TCP’s flow control
mechanism at the receiver (client) to manipulate the sender
(server). In TCP, each acknowledgement from client to
server contains the client’s advertised receiver window size,
which is the number of new packets it is able to hold in its
buffer. In our modified TCP implementation, the client first
announces zero buffer space to the sender to delay outgoing
data packets at the server and later announces appropriate
buffer space to allow the server to release packets in a burst.
Specifically, in each but the last acknowledgement in a
window, the client advertises its receiver window size as
zero (denoted as a closed ack). When the server receives a
closed ack, it cannot send any further packets, as it believes
that the receiver has no available buffer space to store them.
When the receiver believes the window has completed, it
triggers the next window of packets by sending an acknowl-
edgement with the window size advertised by TCP (usually
64KB). We denote this kind of acknowledgement as an open
ack. Because the open ack (implicitly) acknowledges the
(entire) previous window, the server will immediately send
the (entire) next window. Fig. 3 shows the difference
between standard TCP and our modified TCP.

Our client-centered technique converts a smooth TCP
stream to a bursty TCP stream. This creates large gaps
during which is possible to transition the WNIC to sleep
mode. In order to decide when to transition into and out of
sleep mode, the client must infer two things: when a burst of
packets ends and when the first packet of the next burst
arrives. We next discuss these in turn. Then, we discuss two
challenges that we face in our implementation.

3.4.1 End of Burst Detection

It is important for our technique to detect the end of a burst
as quickly as possible. The detection of the end of a burst is
nontrivial because of the variance in round-trip times
inherent to the Internet. Conceptually, there is a trade-off
between the client inferring the end of a burst aggressively
and conservatively. If the client believes incorrectly that a
burst is over, packets can be missed. On the other hand, any
time the client spends waiting to declare a burst over is in
idle mode and therefore costs in both time and energy.

Three broad approaches to end-of-burst detection are
possible. We briefly discuss the first two, which passively
predict the end of a burst through 1) a fixed threshold and
2) a dynamic threshold. Then, we discuss in detail a novel
technique we call active burst detection, which can, in most
cases, precisely determine the end of a burst.

Note that both the dynamic threshold and active assume
that the client can maintain an accurate estimate of window
size ðWÞ in each round. Our current algorithm to estimate
W sets the new window prediction as one more than the
number of packets seen in the last window (i.e., the previous
value of W ), to mimic what TCP does in its steady state.3

Passive burst detection. One general idea for determining
the end of a burst is what we call passive burst detection,
where the client infers the end of the burst passively. The
basic idea is for the client to infer the end of a burst when no
packets arrive for a threshold amount of time. The first
possibility for this is to use a fixed threshold, which is
straightforward: If no packet is received for Tf ms, we
conclude that the current burst has ended and the client
sends an open ack to the server. The advantage of such an
approach is that it is simple to implement and has minimal
overhead. The disadvantage is that it cannot adapt to
different network conditions. In particular, when network
transfers have low variance (e.g., late at night), it may be
excessively conservative. When conditions are poor (e.g.,
3:00 pm on a weekday), a fixed threshold may be too
aggressive, transitioning the WNIC to sleep mode before a
burst is complete. Similarly, it could mistakenly transition
to sleep mode because of the time gap caused by packet loss.

We also studied a dynamic approach. Because each
window is sent in a burst, we can use the interarrival times
between packets and their variance to infer the end of a
burst. We use each interarrival time as a sample and then
use a scheme that is analogous to what TCP does when
computing the timeout value. That is, given new samples
for arrival and deviation, we keep a running average of
interarrival times ðIAÞ as well as interarrival deviation ðIDÞ
using a weighted average. Then, if the client has received
P < W packets, we use a dynamic threshold ðTdÞ for
determining the end of the burst: TdðP Þ ¼ ðW � P ÞIA þ 4ID.
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Fig. 3. Example of creating bursts for large file downloads. On the left is
standard TCP, where the packet stream is smoothed, and on the right is
our client-centered technique. To create bursts, the first three acknowl-
edgements advertise a receiver window size of 0, and the fourth
advertises a full buffer. This creates more potential time that the WNIC
can remain in sleep mode, though the transmission time will increase.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23, 2009 at 13:36 from IEEE Xplore.  Restrictions apply. 



Active burst detection. While a dynamic threshold is
typically a better idea than a fixed one, both will at times
suffer from being either too conservative or too aggressive. As
discussed above, this will lead to wasted energy, missed
packets, or both. This is especially true when variation in
round-trip times is significant, which can occur due to
network variation or multiple clients sharing an access point.

We have developed a novel technique for precise end-of-
window prediction that we call active burst detection. The
basic idea is for the client to convince the server to inform it
when a burst is over, i.e., the client actively determines the
end of the burst. If this can be done, the client can transition
the WNIC to sleep mode immediately upon this determina-
tion. active allows in practice for the client to make near-
optimal end-of-burst predictions.

The basic idea is as follows (see the left-hand side of
Fig. 4): When an open ack is sent to the server, the client delays
for time D (see below). Then, the client sends a carefully
crafted window probe packet to the server. In practice, this
packet is essentially a zero-length, out-of-order packet. A
TCP server responds to such a packet by sending an
acknowledgement, which we call the probe response. As
long as D is sufficiently large so that the probe response
arrives after the last packet in the burst, the client can safely
declare the burst over and transition the WNIC to sleep mode.

Three main issues arise with the use of a window probe
packet. First, the server will respond immediately to the
window probe packet, even if the entire burst has not been
released due to server delay. This would cause the window
probe packet to arrive before the end of the burst, leading to
an incorrect transition of the WNIC to sleep mode. To
prevent this problem, we send a closed ack immediately after
the window probe packet. This way, if there is a server
delay, the remaining part of the burst will not be sent until
the next open ack is received. A related problem is that the
window probe packet can be “piggy-backed” on the last
data packet if the time between the open ack and window
probe packet is not large enough.

Second, the choice of D is a trade-off between 1) de-
creased energy savings and increased time overhead and
2) a larger window size and accurate end-of-burst detection.

In other words, the larger D is, the longer the client waits in
high-power mode before sending the open ack and the
window probe packet. However, the smaller D is, the more
likely it is that either 1) the window probe packet sent by
the client arrives at the server too early (shown in the right-
hand side of Fig. 4), which prevents the sender from
sending all of the packets in a window, or 2) the probe
response sent from server to client is piggybacked or
reordered with at least one data packet somewhere on the
network, leading to an incorrect end-of-burst detection.

Our algorithm for determining D is to initialize
D ¼W=B. In this formula, W is the client’s estimate of
the sender’s congestion window size and B is the estimate
of server bandwidth. The idea is that W=B approximates
how long it takes the server to release an entire burst.
Ideally, if we know the server bandwidth and that there are
no variations in round-trip times, we can simply use this D
for the lifetime of the download.

However, in practice, neither of these is the case, so we
allow D to adapt. To calculate the initial D, we currently set
B to 100 Mb/s (because of the popularity of Fast Ethernet).
Variable D is increased by 1 ms (the smallest amount the
timer can support) in two cases: 1) whenever there is
reordering of the probe response that causes it to arrive in
the middle of a burst or 2) whenever the probe response is
piggy-backed on the last data packet of a burst. We can
detect the former situation because the WNIC is not
transitioned to sleep mode until the window probe packet
is sent, which occurs D ms after receiving the probe
response. We can detect the latter case through the TCP
timestamp or a sub-MSS sized packet.

We decrease D when we have seen P bursts in a row
without either of the two cases above occurring (currently, P
is set to 10). The decrease inD is half the average gap between
the last packet in a burst and the window probe packet. We
also provide a floor and ceiling for D; currently this is 3 ms
and the one-way trip time (1/2 RTT). If it would be necessary
to increase D above the ceiling, we instead switch to the
dynamic threshold algorithm, as this indicates that the server
is heavily loaded and cannot promptly send packets.
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Third, the window probe packet could be lost. When this
occurs, the client keeps WNIC in high-power mode for at
most a one-way trip time. If a loss occurs at the largest value
of D that we consider, we switch to passive detection with a
dynamic threshold. In practice, this is rare because of the
small size of the window probe packet and low reverse data
path loss (see below).

Next Window Prediction. Once the end of the window is
detected, an open ack can be sent and the WNIC transitioned
to sleep mode. To avoid missing packets, the WNIC needs to
be transitioned back to idle mode before the first packet of
the next burst. That packet will arrive approximately
RTT ms after the open ack is sent. This means that we must
keep an accurate estimate of the RTT on the client. Note that
we use the technique described in Section 3.2 to estimate the
round-trip time of a connection.

Given accurate RTT estimates, we use the the minimum
RTT over all samples. This is a conservative approach,
resulting in some wasted energy but also almost always
avoiding missed packets on the client. In practice, this
scheme performed quite well (see Section 4).

3.5 Applications

In this section, we describe how our client-centered energy-
saving techniques can be used to support upper layer
applications to conserve energy. Ideally, the client would
only be in high-power mode while packets are actually
arriving and in sleep mode at all other times. In practice, the
client makes predictions about when packets will arrive,
transitioning the WNIC to high-power mode if it expects
packets and sleep mode if not.

3.5.1 Web Browsing

Modern Web browsers usually invoke multiple concurrent
HTTP (and therefore TCP) connections to download
embedded Web objects to reduce latency. Prior work
observed that Internet Web traffic is highly volatile and
bursty in nature [30], [31]. During Web browsing, our
technique tracks the connections and predicts packet arrival
times to exploit “silent intervals” for energy conservation.

The prediction of the arrival time of incoming packets is
nontrivial even when the client has only one outstanding
connection. This is particularly true when packets are
delayed or lost in the network. Furthermore, the existing
Internet introduces many factors that do not exist in
simulated networks. These factors contribute to delay and
loss in unpredictable ways.

In a client where multiple concurrent connections exist,
it is even more challenging to predict the arrival time of
the next packet because of accumulated error over many
connections. We do two things to solve this problem.
First, we use connection tracking technique described in
Section 3.3 to track each concurrent connection in the
client, collecting detailed information and making predic-
tions. Second, we cache round-trip time information about
each site visited by the client to allow us to save energy
during connection setup. We discuss each of these
techniques in more detail in the following sections.

Extending to Multiple Connections. The technique de-
scribed above identifies periods when no data is expected
on a single connection. Web browsers like Internet Explorer

generally issue multiple concurrent connections to a site to
retrieve embedded objects. The extension to handling
multiple concurrent connections on the client is straightfor-
ward. In particular, we track each active connection in the
client and change its state individually. Each time a
connection state changes to either idle or finished, we check
all open connections. The client transitions WNIC to sleep
mode only when all connections are idle or finished, and the
client keeps the WNIC in sleep mode until the nearest
predicted next stage starting time of all connections.

In the example connection table shown in Fig. 1, there are
four concurrent connections. This is a sample of a
connection table taken at time 100. The second connection
(marked active) is receiving data, the first and fourth
connections are between stages (marked idle), and the third
connection is finished.

Round-Trip Time Cache. While the algorithm above is
effective in saving energy in many cases, it can be improved.
Without prior knowledge, the client cannot predict the SYN/
SYN - ACK and GET/GET - ACK round-trips (the GET/GET -
ACK is often longer than the SYN/SYN - ACK). In addition,
the round-trip time for the actual data can differ from both.
Unfortunately, with multiple connections, the chance that
at least one connection is in either the SYN/SYN - ACK, GET/
GET - ACK, or first slow start stage can be large. This makes
the solution of keeping the WNIC in high-power mode
during these phases nonscalable: For highly concurrent
connections, little, if any, energy can be saved.

Because of embedded objects, user Web accesses exhibit
high degrees of locality [32]. Therefore, we cache detailed
round-trip time information for sites the client has visited
within a Web page request (see below), including SYN/SYN

- ACK time, GET/GET - ACK time, and the last known
SRTT . For a given connection C, we start by performing a
cache lookup. This information is used to transition the
WNIC into low-power mode during the SYN/SYN - ACK

and GET/GET - ACK stages as well as the first slow start
stage. If there is no entry for C, we revert to the conservative
algorithm (no sleep time in setup).

The key issue is how long entries in the cache should
remain valid. Clearly, a cached value stored during off-peak
hours is invalid during peak hours and will lead to the
client to transition to sleep mode for too long, meaning that
the SYN - ACK packet could be missed. To investigate
variance in SYN/SYN - ACK and GET/GET - ACK times, we
downloaded Web pages from several sites every half hour
over several days. Investigation of the results show in fact
that there is little correlation between SYN/SYN - ACK (and
GET/GET - ACK) times, even when comparing just peak or
just off-peak measurements. Hence, our approach to RTT
cache consistency is as follows: Between two Web page
requests in our trace file, we flush the RTT cache. Within
one Web page request, we fill the RTT cache with entries for
each unique Web site accessed. This simple solution has
worked well in our experiments (see Section 4).

3.5.2 Large File Downloads

We use traffic shaping techniques and active burst
detection described in Section 3.4 to save energy during
large file downloads. We transition to our traffic shaping
algorithm when slow start is over, which the client detects
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when the number of packets received does not double. In
two cases, we revert to standard TCP: 1) the connection is
saturated or 2) an in-order window is not seen for three
consecutive windows.

Next, we discuss the challenges and issues that arise
when applying our technique for large TCP downloads:
saturated connections, lost open acks, and the effect of bursts.

Saturated Connection. Energy saving is only possible
when the bandwidth of the wireless network is not fully
used. This is because there must be time that the WNIC can
be transitioned to sleep mode. During downloads from some
Internet sites, the wireless network is saturated. If the client
executes the energy-saving algorithm described above, the
result will be longer transmission time and increased energy
usage. Note that when the wireless network is saturated, no
technique can save energy.

To handle this, the client uses its estimate of window
size, wireless bandwidth, and round-trip time to determine
when executing the energy-saving algorithm is not profit-
able. If the window size is within a threshold (currently
90 percent) of the bandwidth-delay product (wireless
bandwidth multiplied by the round-trip time) for three
consecutive bursts, we revert to standard TCP. We do not
attempt to resume saving energy if the bandwidth-delay
product decreases because our experience to date is that a
saturated connection almost always remains saturated.

Lost Open Acks. One problem with our technique is that
TCP is now vulnerable to the loss of open ack packets.
Whenever an open ack is lost, if the client takes no action, the
server will time out and probe the client. This is because, in
the absence of reception of an open ack, the server believes
the client has no buffer space to store packets—it has
previously received a series of only closed acks during the
current burst. A timeout causes a large overhead in both
energy and time because 1) the client spends significant
time waiting for packets in idle mode and 2) the sender cuts
the congestion window size to one packet.

Our current approach to this problem is to have the client
wait twice the estimated RTT after the original open ack. If
no data has arrived, it then retransmits the open ack. An open
ack is retransmitted each RTT ms if the next burst does not
arrive. In practice, this technique was sufficient in our
experiments because, even under network conditions
during peak times, loss of an open ack was rare. In particular,
our experiments showed that no Internet site we used in
our test suite incurred more than one lost open ack. This is
not surprising, given prior research that indicates that more
than 90 percent of loss is on the data path [33].

Effect of Bursts. Our client-centered technique has the
potential to affect the queuing behavior of routers, since it
purposely introduces burstiness into the packet stream.
However, we do not expect the effect to be a significant
problem. This is for two reasons. First, individual packet
streams already experience some amount of burstiness due
to slow start, missing acknowledgements, and blocking at
the application layer [34]. In fact, any wireless device
utilizing IEEE 802.11b power-saving mode (PSM) [2] will
introduce burstiness into the network if the connection is
not saturated—independent of our algorithm—because
PSM results in ack compression at the client. Our approach,

while incurring slightly more burstiness than PSM, differs
primarily in that it attempts to exploit the burstiness and,
hence, controls it, rather than allowing it to happen in an
arbitrary way. In any case, as effective wireless bandwidths
are generally much less than 50 Mb/s, the burstiness caused
by a single wireless client should not be too severe.

Second, because CC increases transmission time, the
amount of data per unit time that passes through routers
decreases, thereby having a net positive effect on queue
length. We studied the interaction of our energy-saving
TCP flows and standard TCP flows using an ns2 [35]
simulation. Somewhat counterintuitively, we found that
replacing standard TCP flows with energy-saving TCP
flows reduces packet loss at the routers and increases the
throughput of standard TCP flows.

Finally, recent research has pointed out that there can be
benefits to bursty transmission. For example, [36] explains
how burstiness can make TCP more robust to the reorder-
ing of packets caused by a route change.

3.6 Implementation with Netfilter

We implemented our techniques in a Linux kernel module.
It is based on Netfilter [4], which is a generalized framework
of hooks in the network stack of Linux 2.4. It is a superset of
a firewall subsystem and is the basis for the implementation
of IP tables and IP chains. Among other things, it supports
packet filtering inside the Linux kernel.

Our implementation filters each incoming and outgoing
packet on the client, applying the techniques discussed
above. It also maintains the current state of the WNIC. For
each incoming packet, we either pass the packet on to the
client (if the state of the WNIC is high-power mode) or drop
the packet (if the state of the WNIC is sleep mode). We
patched our kernel using the KURT microsecond resolution
timer [37] for our Linux client because we need to be able to
sleep at the granularity of a millisecond.

Because we use a kernel module, we can run actual
Internet experiments as opposed to just simulations. Using
this implementation, we are able to observe the real-world
(detrimental) effects of a missed packet, as well as gain
insight into the effectiveness of our solution using real
(unmodified) servers.

Our implementation is emulation based; in other words,
while we implemented our client-centered approach in the
kernel, we emulate the wireless card as well as the
transitioning of states. Further, as will be seen in the next
section, we emulate a wireless network using a wired one
along with DummyNet. To explore the effects of using a
wired network to emulate an actual wireless network and
wireless client, we used ns-2. Specifically, we performed
both wireless and wired simulations with our client-
centered protocol and compared them. The results are
shown in Table 1, which gives details of CC-wired and CC-
wireless for several different RTTs. In this test, the wired
bandwidth was set to 6 Mb/s because that was what we
measured the effective wireless bandwidth as. As can be
seen, the wireless results closely track the wired ones in
execution time and energy consumption. (Further analysis
showed the WNIC sleep time was the same, also.) Based on
these simulations, we believe that our emulations using a
wired network and client are valid.
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3.7 Limitations

This section discusses our limitations. First, in this paper,
our techniques only support the client-initiated request/
response type of TCP streams. This type of traffic is two
way and predictable. Although there are potentially many
other kinds of traffic that can arrive at a wireless client
without client soliciting, we believe this type of traffic is the
largest wireless traffic.

Two-way predictable traffic can be handled as we have
in this paper, by transitioning the WNIC between sleep and
high-power mode when necessary. DNS requests would fall
into this category, though, because of the likely small
round-trip time, the WNIC should probably remain in high-
power mode exclusively until the reply. For two-way,
unpredictable traffic, the WNIC can be left in high-power
mode until the reply is received. Our approach cannot be
used for one-way traffic. For example, ARP traffic as well as
voice-over-IP are one way and unpredictable. For many of
these kinds of traffic, if a packet is missed because the
WNIC is in sleep mode, it is not critical. For example, a
client can temporarily ignore ARP packets (e.g., from peers
on the wireless network). Clearly, though, a client cannot
use our energy-saving techniques for downloads while
using an application such as voice-over-IP. However, we
believe our approach handles the most common cases.

Finally, we do not consider the effect of the mobile client
moving between access points. Clearly, if such a scenario
were considered, the WNIC would need to remain in high-
power mode during periods of roaming.

4 PERFORMANCE

In this section, we show the results of our techniques. In
Sections 4.1, 4.2, and 4.3, we describe our experimental
setup, PSM/BSD implementation, and terminology, respec-
tively. Next, in Section 4.4, we discuss the friendliness and
fairness of CC, TCP, and PSM. In Section 4.5, we give our
experimental methodology and performance results for
Web browsing. In Section 4.6, we present performance
results for large file downloads.

4.1 Experimental Setup

Our experimental setup is shown in Fig. 5. The wireless
client was emulated by a 1GHz Pentium desktop machine
running Linux 2.4-18. The access point is emulated using
another 1GHz desktop running FreeBSD 4.5 -stable; we
used tunneling so that DummyNet [5] could be used to
provide a 20Mb/s bandwidth between access point and

client. This value was selected by experimenting with
54 Mb/s access points with an actual wireless client and
measuring the peak bandwidth attained. In practice, most
wireless TCP flows do not achieve 20Mb/s because of the
way that default socket buffer size is chosen in most
systems (e.g., for a 64KB TCP socket buffer at a 40 ms RTT,
the maximum speed is below 20 Mb/s). Hence, the wireless
link is not the bottleneck, which allows energy saving.

We use a 100 Mb/s connection from the access point to
the Internet. We compute energy based on a model of a
2.4 Ghz WaveLAN DSSS WNIC, which uses 1,319 mJ/s
when idle, 1,425 mJ/s when receiving, 1,675 mJ/s when
transmitting, and 177 mJ/s when in sleep mode [38]. We
model the energy cost of transitioning the WNIC from sleep
to idle mode as 2 ms in idle time [3].

We determine energy consumption by capturing a trace
during execution via tcpdump. We evaluate this trace after
the download has completed to compute energy savings
and record the transmission time. A simulator reads the
trace and computes energy based on the WaveLAN values.
The simulator calculates how much time a client’s WNIC
has spent in high and low-power mode so that total WNIC
energy can be computed. This is compared to a TCP stream,
where the WNIC remains in a high-power mode for the
duration of the experiment. Note that the baseline experi-
ment does not use Netfilter; this avoids any overhead that
might be added. Also, we model the energy cost of
transitioning the WNIC from sleep to idle mode as 2 ms in
idle time [3]. Note that we do not consider the effects on
other system components, especially the CPU. Using our
technique could conceivably cause extra energy to be
consumed by the CPU because of the increased transfer
time (a principle mentioned in [39]). However, in principle,
we could scale down the processor while awaiting each
burst—even possibly providing additional improvement—
which regular TCP cannot as easily do.

In all experiments, we performed each test at least three
times and report the results from the test with the median
transmission time. For each experiment, we ran both our
algorithm and TCP; the latter uses the standard TCP
implementation in the Linux kernel. The TCP version keeps
the WNIC in high-power mode for the duration of the
download. We compute normalized energy savings and
transfer times by comparing to the baseline. We also
compare to PSM and BSD, which are described next.

4.2 PSM and BSD Implementation

We implemented software versions of 802.11b power-
saving mode (PSM) [2] as well as BSD [3]. Our implementa-
tion of PSM uses a transparent proxy that intercepts packets
before they reach the access point and emulates access point
PSM behavior. It buffers packets and, every 100 ms (the
beacon period used by an Orinoco access point), it sends a
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Slowdown and Energy Savings for Wireless

and Wired Versions of CC at a Variety of RTTs

Fig. 5. Our experimental setup.
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beacon packet that indicates if any data is buffered. The
client responds with an ICMP packet (which emulates the
“poll” frame), and then the proxy sends all buffered data to
the client. The last packet in a burst is marked so the client
can immediately transition the WNIC to sleep mode.

It is important to note that this implementation of PSM is
essentially optimal. We compute the energy after the
download has completed via a client trace and assume no
early wakeup whatsoever. Hence, the client is awake
waiting for packets only for the time it takes 1) the ICMP
packet to travel from the client to the proxy and 2) the first
data packet to travel from the proxy to the client. This time
is less than 1 ms. In practice, PSM does not work this
efficiently; in particular, Chandra and Vahdat found via
direct measurement of access points that clients were often
kept waiting (in high-power mode) for data after sending
the poll frame [6]. This means that PSM is unlikely to
perform in practice as well as it performs in our emulation.4

For BSD, the proxy keeps track of the slowdown
parameter (which was either 10 percent, 20 percent,
50 percent, or 100 percent—this means the slowdown is
bounded by no more than that percentage) so that it knows
when the client is expecting data. Note that, during
downloads, the BSD protocol [3] keeps the WNIC in high-
power mode exclusively.5

4.3 Terminology

Here, we briefly discuss the terminology used in this
section. In all experiments, unless otherwise noted, we
report transmission time and energy normalized to those of
the TCP. Furthermore, we run our tests during either what
we denote peak times (between 12:00 pm and 5:00 pm EDT,
which have significant RTT variations) and off-peak times
(run between 10:00 pm and 6:00 am EDT). For BSD, we
denote BSD-num as the BSD version that bounds the
percentage slowdown by num.

4.4 Friendliness and Fairness

With any new protocol, one must be concerned with how it
affects standard TCP streams. In this section, we investigate
the effect of CC on three protocols: CC (itself), TCP, and
PSM. We do this using ns-2. All experiments use a
bandwidth of 20 Mb/s and a 60 ms RTT.

4.4.1 Fairness

The first simulation is intended to measure how CC
competes with itself; i.e., is CC fair? The results are shown
in Fig. 6, with one to 10 concurrent CC flows. For means of
comparison, we also show the corresponding number of
TCP flows. Note that all throughput values (i.e., for each
flow) are normalized to the average throughput for that
number of flows.

Two things are evident from the figure. First, at smaller
number of flows (e.g., four or five), CC has a disparity in
throughput between flows. Here, it is likely due to initial loss,
caused by a burst in one or two flows. Flows not incurring
loss will in practice have less competition for bandwidth, so

there is a spread between CC flows—especially compared to
TCP. Second, at nine and 10 flows, both TCP and CC flows
look similar. This is because there are enough flows that
losses happen more than once and most flows incur a similar
number of losses. While CC is not as fair as TCP at a lower
number of flows, we believe that the behavior at moderately
large (nine to 10) flows is more important (because fairness is
not as significant of an issue with few flows).

4.4.2 Friendliness

The next set of simulations is intended to primarily
determine whether or not CC is TCP friendly. We also run
each protocol (CC, TCP, and PSM) against each of the other
two (separately) to see how well each of the three protocols
coexist with the other two. The results are shown in Fig. 7.
With TCP and CC flows (Fig. 7a), the download times are
relatively similar for a total of four, eight, and 16 flows
(where half are TCP flows and half are CC flows). As
expected, TCP is typically more aggressive than PSM and
CC shows similar behavior when it competes against PSM.

Our measurements of flow throughput indicate that CC
flows are friendly to TCP flows. We further investigated the
effect of the protocols on the queue size—specifically, to
ensure that CC does not adversely affect queue size. Fig. 8
shows four flows of each type on the left, and eight flows of
each type on the right. In each figure, we look at the same
combinations of flows as above. Importantly, it is clear from
the figure that the queue fill levels are close to each other for
all groups of flows.

4.5 Web Browsing

This section describes our Web browsing experiments and
presents the results. It is important to note that we run
actual experiments to real Internet servers.

4.5.1 Experimental Methodology

We carried out our experiments by running a script that
retrieves 100 Web pages over a total browsing time of
5,400 seconds. These retrievals generated 558 requests for
subobjects and a total of 2.79 MB was downloaded. The
Web pages were chosen as follows: First, we selected the 20
most popular Web sites (denoted top-level sites) as deter-
mined by the Alexa Top Sites Web pages. Note that Alexa
provides the reach, which is the percentage of Internet users
that visit that site per day. For each top-level domain, the
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4. In fact, our experience with PSM over a range of access points is that it
performs much more poorly than expected.

5. BSD-100, where a slowdown of a factor of 2 is allowed, can save
energy if the RTT is larger than 100 ms. In our experiments, only inria.fr
has an RTT larger than 100 ms. BSD-10, BSD-20, and BSD-50 could never
save energy during downloads.

Fig. 6. Fairness of CC and TCP. Here, we show up to 10 concurrent

flows of CC and 10 of TCP (separately). For each, we show the

throughput of each flow, normalized to the average from that number of

flows. Note that if points have a similar throughput, they may overlap.
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Alexa list also provides the probability of visiting each of its

subdomains, provided the user stays within that top-level

domain. Note that Alexa does not provide the probability

that the user stays within the top-level domain. For each

site, we include all subsites that have a probability larger

than 2 percent.
Our next step is to generate a sequence of Web page

requests, which is done by using the Alexa probabilities and

reach—First, we compute the probability of visiting a site

given the reach; then, we use the conditional probability of

each site in the domain if the next request is in that domain.

For think times in between requests, we use the same

method for determining think times as used in the BSD

work [3] (a Pareto distribution with � ¼ 1:5 and k ¼ 1).

4.5.2 Results

We ran our script on the Internet and divide our tests into

peak and off-peak. Fig. 9 shows that CC is superior to PSM

in both energy consumption and transmission time. It is

also superior to BSD in energy consumption. BSD is

restricted to waking up more often than CC (at least once

every 0.9 seconds, to ensure its transmission bound). This

means that CC can improve upon the best BSD variant in

terms of think time behavior (BSD-100). The numbers

presented for CC in Fig. 9 include the benefit of using the

RTT cache; we measured this separately and found that its

benefit was 10 percent overall.

4.6 Large File Downloads

This section describes our large file download experiments

and presents the results. We begin with experimental

methodology. Then, we present the overall experimental

results on seven Internet servers, including a comparison to

PSM. Finally, we give a detailed analysis of situations

where round-trip times vary as well as the effect of different
access point bandwidths.

4.6.1 Experimental Methodology

In our experiments, we examined the performance of our
system on both real Internet traffic using actual servers and
emulated traffic using DummyNet. We used DummyNet [5]
to experiment with different wireless bandwidths, RTTs,
and loss rates.6 Most of our tests used a 20Mb/s bandwidth
between access point and client, while a few use other
bandwidths.

Internet Experiments. The Internet experiments were
carried out by running a script that downloaded a file at a
time, in succession, from the seven Internet servers shown
in Fig. 10. In each experiment, the client performs an ftp

download from the server, requesting a file between 4MB
and 5 MB. Experiments were performed during both peak
and off-peak times.

DummyNet Experiments. In order to study our system in
an environment where experiments are mostly repeatable,
we used DummyNet to construct an emulated environment
in which we could control loss rates and round-trip times.
We model both peak and off-peak traffic patterns of the
Internet. We observed that DummyNet is able to emulate
well the lack of significant round-trip variation that occurs
during off-peak traffic times. Hence, our off-peak simula-
tions used the standard DummyNet, with a variety of round-
trip times (30 ms, 60 ms, 90 ms, and 120 ms) and loss rates
(several between 0 percent and 1 percent). However, peak
traffic times show a much higher degree of variation in
round-trip times. Unfortunately, DummyNet does not
handle round-trip time variation; it uses only fixed delay
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6. In our experiments, we do not differentiate between wireless and
wired loss. We show experiments up to 1 percent loss.

Fig. 8. Queue fill level for all three combinations of competing protocols (TCP versus PSM, TCP versus CC, and CC versus PSM). On the left are

four of each flow and on the right eight of each flow.
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values for a particular path. To address this, we modified

DummyNet to add RTT variation without causing out-of-

order packet arrivals, as was done in [17]. We model round-

trip time variation using an uncorrelated gamma distribu-

tion [40]. We obtained this distribution by performing a

ping test during peak time, gathering several thousand

samples from the ftp.cs.washington.edu server

(which has a 61 ms base RTT) and then using these samples

to determine the parameters to the gamma distribution.

Note that while a realistic distribution is likely correlated,

1) DummyNet itself cannot handle a correlated distribution

and 2) an uncorrelated distribution is more difficult for CC

to handle effectively than a correlated one due to the

increased unpredictability of round-trip times. To emulate

peak traffic on round-trip times other than 60 ms, we scaled

this gamma distribution proportionally to the new round-

trip time.

4.6.2 Results

In this section, we discuss the performance of CC on the

Internet as well as in our emulated environment. CC uses

active unless otherwise noted. All results are normalized to

TCP. First, Fig. 11 shows energy consumed and transmission

times for both peak and off-peak times when downloading

files from several Internet servers. Second, Fig. 12 shows the
same metrics using emulated traffic with DummyNet.

In both environments, our system is effective at saving
energy while maintaining reasonable download speeds.
During peak times on the real Internet, our system on
average uses 27 percent less energy with an increased
normalized transfer time of 20 percent. During off-peak
times, our energy savings is 32 percent with a increased
normalized transfer time of 20 percent. In our emulated
peak environment, our average energy savings (over all
round-trip times and loss rates) is 51 percent, with an
increased normalized transfer time of 12 percent. In the
emulated off-peak experiments, energy savings is 47 percent
and the normalized transfer time increases by 6 percent.

Internet experiments. The primary time overhead of CC is
stream delay caused by closed acks. (The overhead D,
described in Section 3, is typically much less than that of
closed acks.) Therefore, the performance of CC is dependent
on two factors: the round-trip time and the average window
size. This is because the closed ack overhead decreases as
1) round-trip times increase and 2) average window size
decreases.

This can be seen from Fig. 11, in which sites are shown
ordered by increasing RTT. The time overhead does not
strictly decrease as RTT increases because the average
window size is not the same for all sites (see Fig. 10). A
typical value for the window size is about 32 KB. The energy
savings for all sites other than cs.uiuc.edu is at least
10 percent, and is often around or more than 50 percent.

There are a few sites for which the average window size
varies significantly from 32 KB, which impacts performance
considerably. One is with our best case, jriver.net,
where the energy savings is more than 50 percent with less
than 8 percent increase in transmission time. This is
because this particular site has a small average window
size (11 KB). On the other hand, both cs.uiuc.edu and
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Fig. 9. Energy consumption and transmission time for both peak and off-peak real Internet tests, normalized to TCP. CC, PSM, and several BSD

variants are shown. Smaller bars are better.

Fig. 10. Sites used in large file Internet tests with base RTT (without

variations) and average window size.
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cs.stanford.edu have a window size of nearly the
maximum (64 KB). Combined with the low RTT for
cs.uiuc.edu, this causes CC to revert to TCP. The
reason for the large overhead is 1) startup overhead when
our client is trying to synchronize into energy-saving mode
and 2) energy-saving overhead, which occurs in the three
round-trips before reverting. The entire 5MB file takes only
2 seconds to download, so these overheads are not well
amortized. For cs.stanford.edu, CC was 44 percent
slower than TCP, 6.7 seconds to 4.6 seconds. Analyzing the
trace produced shows that the 64KB can be read by the
client (which has a 20 Mb/s bandwidth) in about 26 ms.
With an RTT of about 65 ms, we predict the stream delay
as about 26/65, which is 40 percent. It should be noted that
as wireless network bandwidth increases (soon to poten-
tially 108 Mb/s peak speed), the overhead from closed acks
will drop considerably. To verify this, we ran a test to
cs.stanford.edu with 40 Mb/s, and the slowdown
was 16 percent compared to a predicted slowdown of
20 percent.

The time overhead of PSM, unlike CC, is solely dependent
on the round-trip time. Essentially, PSM rounds the RTT to
the nearest multiple of 100ms (see Section 2). Therefore, PSM
is slower than TCP by an average of 100 percent, which
ranges from 511 percent for the lowest RTT (cs.uiuc.edu)
to 29 percent for the largest RTT less than 100 ms
(research.microsoft.com, at 84 ms); see Fig. 11. For
inria.fr, which has a 120 ms RTT, the effective RTT
becomes 200 ms, which adds 61 percent overhead.

Fig. 11 also shows that CC has lower time overhead than
PSM whenever the RTT is less than 75 ms or greater than
100 ms. For a 20 Mb/s access point, the crossover point
between CC and PSM is at approximately 75 ms if the
average window size is 64KB (the maximum). This is
because the stream delay due to closed acks will be about
25 ms, and PSM also increases the RTT 25 ms. (Under ideal
conditions, CC would take slightly longer due to the delay,
D, before the window probe packet.) Note that, as the
average window size decreases, the crossover point will be
a larger RTT.

Emulated experiments. We also experimented in an
emulated environment so that we could precisely control
round-trip time and loss rate. On the whole, the results are
fairly similar to the Internet experiments. However, as
shown in Fig. 12, the energy consumption much more
clearly trends downward as both the RTT and loss rate
increase. As described above, a large RTT means that the
closed ack overhead is relatively small. Furthermore, the
average window size decreases as loss increases, which also
improves the closed ack overhead. Note also that, here, as we
are using a single server, the advertised window size is
similar for a given loss rate.

Fig. 13 compares CC to PSM and the Bounded Slowdown
Protocol [3]. Comparing CC to PSM, we see that at low RTTs,
CC is clearly superior to PSM in transmission time because
PSM rounds effective RTTs up to 100 ms. A similar effect is
seen at 120 ms—PSM also performs poorly because the RTT
is effectively 200 ms. As the RTT increases (but is less than
100 ms), PSM improves in a relative sense in both time and
energy because the effective RTT increase is smaller.

At an RTT of 90 ms, PSM theoretically should perform
better than CC (because the effective RTT increase is small).
However, PSM introduces ack compression, which some-
times eventually results in TCP decreasing its congestion
window—a reaction that is due to its belief that there is a
problem on the network or at the receiver. This results in
the sender returning to slow start. PSM increases the time
without any ack appearing at the server (after a window of
packets is sent by the sender) to at least 100 ms.

Note that BSD is identical to TCP. This is because we use
BSD-50, which accepts a maximum slowdown of 50 percent.
We chose BSD-50 because CC adds less than 50 percent
overhead in transmission time. BSD-50 operates exactly as
TCP at any RTT less than 200 ms, which was the case in all
of our experiments.

Detailed analysis. This section discusses two aspects of our
system in detail using DummyNet. First, we investigate the
effects of RTT variation, both on the network as well as due
to access point contention. Second, we investigate the effects
of access point bandwidth.
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Fig. 11. Overall normalized energy savings and transfer time results for Internet tests using a 20 Mb/s access point and active end of burst detection

during peak (2:00-5:00 PM EST) and off-peak (10:00 PM-1:00 AM EST) times. Results are shown for both CC and PSM.

Fig. 12. Overall normalized energy savings and transfer time results for DummyNet tests using a 20 Mb/s access point and active end of burst

detection during emulated peak and off-peak times. Here, only CC results are shown over different packet loss rates.
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We first discuss the effects of variations in round-trip
times. This can be variation due to the network or variation
due to other clients sharing the access point. The key to
handling RTT variation lies in the end-of-burst detection
algorithm, as the prediction of the next window is based on
the minimum RTT and, so, is conservative (see Section 3).

Fig. 14 shows the effects of network-induced variation in
RTTs. Specifically, we ran experiments with no variation, an
uncorrelated gamma distribution where RTTs vary from 60
to 75 ms, and a distribution that was the same as the gamma
distribution except the difference from the 60 ms base RTT
is doubled (i.e., 60 to 90 ms). The last experiment is
intended to see how our active burst detection performs
under significant RTT variation.

While both active burst detection and the dynamic
threshold handle RTT variation due to the network, active
burst detection is superior in the case when there is RTT
variation. This is because the window probe packet allows
the client to transition the WNIC as soon as a burst has
ended. When there is no variation, small overheads
associated with active burst detection (e.g., energy incurred
between the open ack and window probe packet), the
dynamic threshold is slightly better.

We also experimented with multiple clients sharing an
access point using CC with both active burst detection and a
dynamic threshold. We also include a comparison to PSM. To
do this, we first extended PSM to work with multiple clients.
The PSM specification does not state anything about priority
of packets between PSM clients and non-PSM clients.
Clearly, it is not reasonable to give either type of client
priority because that could lead to starvation of the other
type. Therefore, we chose to use a weighted-fair-queueing
algorithm at the access point when packets are being sent to
both types of clients.

Fig. 15 shows the results of a single PSM or CC client
along with a variable number of competing, regular TCP
clients. Note that all results here are normalized to a single,
regular TCP client; therefore, energy savings can occur even

if the y-value for a given bar is larger than one. This
experiment has all clients download the same file at the same
time. Saturation of the access point occurs at three competing
clients. CC with active burst detection consumes less energy
than PSM. This is because PSM must remain in high-power
mode longer due to the competing flows, whereas with CC,
the sleep time is constant (one RTT per burst).

Comparing CC with active burst detection to CC with a
dynamic threshold indicates that active burst detection plays
an important role in cases where multiple clients compete for
access point bandwidth. The advantage of active burst
detection is that it takes much less time than the dynamic
threshold. Again, this is because active burst detection can
precisely determine the end of each burst even with
competing flows. Keep in mind that multiple flows can be
viewed as single flows, each with RTT variation caused by
the others. On the other hand, with the dynamic threshold,
several packets are missed due to incorrect predictions. This
also results, in turn, in less energy consumed with active
burst detection. Finally, as expected, TCP is faster in
transmission time but consumes more energy.

Finally, we measured the effects of different bandwidth
access points: 4Mb/s, 10Mb/s, 20Mb/s, and 40 Mb/s.
Fig. 16 shows the results of our experiments with these two
bandwidths during peak and off peak hours. We observe
that higher bandwidth access points will result in larger
energy savings and smaller time overhead. The former is
because we typically have a lower link utilization and,
hence, more time to transition the WNIC to sleep mode. In
particular, with a 4Mb/s bandwidth, it is much more likely
that the connection is saturated, which means that 1) no
energy can be saved and, so, 2) the client reverts to standard
TCP. The latter is because the closed ack overhead is reduced
as the bandwidth increases. It is important to realize that
while CC gains a benefit in time and energy as bandwidth
increases, PSM gains a benefit only in energy-it is a rigid
scheme in which download time is independent of the
bandwidth (assuming the connection is not saturated).
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Fig. 13. Normalized energy savings and transfer time results for CC with active burst detection, PSM, and BSD-50 at varying RTTs. We emulated

peak hours with a 0.1 percent loss rate and a 20 Mb/s access point.

Fig. 14. Normalized energy savings and transfer time results ranging from no RTT variation to a maximum of 50 percent increase over the base RTT

(called 2var). We used a 20 Mb/s access point, a 60 ms RTT, and 0.1 percent loss.
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5 CONCLUSION

In this paper, we developed a novel method within the

network layer to allow mobile clients to save energy for two

popular mobile applications, Web browsing and TCP

downloads. Our technique is client-centered and does not

require changes to TCP or Web servers; furthermore, it

requires no proxies or use of IEEE 802.11b power-saving

mode.
Armed with the awareness of upper-layer applications

and connection characteristics, our technique shows a better

performance-energy trade-off than previous methods. For

Web browsing, our results show that across 40 Web sites,

the median energy savings is over 20 percent and the

median increase in transmission time is less than 5 percent.

In addition, our client-centered technique is better than

PSM in terms of transmission time and better than BSD in

terms of energy savings.
We also showed that, for large files, it is possible to

increase WNIC energy savings if a client is willing to accept

slightly longer transmission times. The fundamental idea

for long streams is that a client shapes traffic from the server

into bursts, which allows the WNIC to be placed in sleep

mode for longer periods of time. Also, we use active to

precisely determine the end of a burst. Results show that,

compared to TCP, our scheme saves over 50 percent energy

in the best case with a transmission increase under 8 percent

and also does quite well on average over all our Internet

sites, saving 27 percent energy and increasing the transmis-

sion by 22 percent.
Overall, we believe we have created a building block

towards allowing multiple clients on a wireless network,

some energy-conscious and some not, to selectively apply

our client-centered techniques to save energy.
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