
Implicit Array Bounds Checking
on 64-bit Architectures

CHRIS BENTLEY, SCOTT A. WATTERSON, DAVID K. LOWENTHAL,
and BARRY ROUNTREE

The University of Georgia

Several programming languages guarantee that array subscripts are checked to ensure they are
within the bounds of the array. While this guarantee improves the correctness and security of array-
based code, it adds overhead to array references. This has been an obstacle to using higher-level
languages, such as Java, for high-performance parallel computing, where the language specification
requires that all array accesses must be checked to ensure they are within bounds. This is because,
in practice, array-bounds checking in scientific applications may increase execution time by more
than a factor of 2. Previous research has explored optimizations to statically eliminate bounds
checks, but the dynamic nature of many scientific codes makes this difficult or impossible. Our ap-
proach is, instead, to create a compiler and operating system infrastructure that does not generate
explicit bounds checks. It instead places arrays inside of Index Confinement Regions (ICRs), which
are large, isolated, mostly unmapped virtual memory regions. Any array reference outside of its
bounds will cause a protection violation; this provides implicit bounds checking. Our results show
that when applying this infrastructure to high-performance computing programs written in Java,
the overhead of bounds checking relative to a program with no bounds checks is reduced from an
average of 63% to an average of 9%.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—
Optimization

General Terms: Measurement, Performance

Additional Key Words and Phrases: Array-bounds checking, virtual memory, 64-bit architectures

1. INTRODUCTION

One of the long standing issues in programming languages and compilers con-
cerns checking array bounds to ensure program correctness. The simplest so-
lution is for the compiler to generate bounds-checking code for each array ref-
erence. If the reference is outside the bounds of the array, a run-time error is
generated. Unfortunately, this simple solution adds overhead to all run-time
array accesses. Therefore, languages focused on efficiency, such as C, do not

Authors’ address: Chris Bentley, Scott A. Watterson, David K. Lowenthal, and Barry Rountree,
Department of Computer Science, The University of Georgia, Georgia; email: {cbentley,saw,dkl,
rountree} @cs.uga.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1544-3566/06/1200-0502 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006, Pages 502–527.

Implicit Array Bounds Checking on 64-bit Architectures • 503

require checking of array bounds. Despite their overhead, array-bounds checks
are important because array-access violations are a frequent source of error.
They are particularly difficult to detect and fix because these violations may
cause errors in seemingly unrelated parts of the code. For this reason, some
languages (e.g., Java and C#) require array-bounds checking.

Meanwhile, interest is growing in the scientific programming community
in using higher-level languages, such as Java, for high-performance computing
(HPC). Some reasons for this include attractive features, such as portability, ex-
pressiveness, built-in threads, and safety. However, several obstacles currently
prevent high-level languages from becoming widely accepted for HPC—one of
which is the array-bound checking requirement, which is common in higher-
level languages. While array accesses are infrequent in some applications, sci-
entific programs tend to be array intensive, which means that checking array
bounds can significantly increase execution time. For high-level languages to
have any chance to be widely used for HPC applications, array-bounds checking
overhead must be alleviated.

The two dominant practices for reducing bounds-checking overhead are
static and dynamic analysis. The former, which is most appropriate for a tradi-
tional language like C, attempts to eliminate explicit checks by proving an array
reference is within its bounds [Bodik et al. 2000]. However, there are several
problems with this approach. First, the dynamic nature of many scientific codes
makes static elimination difficult or impossible. This is borne out by our manual
inspection of the NAS benchmark suite [Bailey et al. 1991]. Second, even when
static analysis is possible, currently available compilers may have difficulty re-
moving explicit checks. Dynamic analysis, on the other hand, is most applicable
to modern (dynamic) languages, such as Java. It strives to analyze the code at
run-time to find regions where array-bounds checks can be eliminated and then
generates a new customized routine for that region. Examples of this approach
include Java HotSpot [SUN 2002] and JRockit [BEA 2005].

Rather than attempting to eliminate explicit bounds checks statically, our
goal is to use compiler and operating system support to implicitly check array
bounds. We leverage the 64-bit address space of modern architectures to reduce
the cost of array-bounds checks. This is a potentially useful technique for scien-
tific applications, which are increasingly difficult to analyze statically. If static
analysis cannot eliminate bounds checks, then the compiler must insert up to
2n bounds checks for an n-dimensional array reference.

Instead, we perform no static analysis of the program and we insert, at most,
one check per array reference. We do this by placing each array object in an
index confinement region (ICR), which is an isolated virtual memory region,
of which only a small portion, corresponding to valid array data, is mapped
and permissible to access. The rest of the ICR is unmapped and any access
to that portion will cause a hardware protection fault. This achieves implicit
bounds checking for all array references. While ICRs can be implemented on
most modern architecture/operating systems, they are primarily intended for
64-bit machines. This allows allocation of hundreds of thousands of 32 GB ICRs ,
each of which is large enough to implicitly catch any illegal access to an array
of double-precision numbers.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

504 • C. Bentley et al.

Our initial implementation was within Java, where we made two primary
modifications to gcj, the GNU Java implementation. First, we modified ar-
ray allocation (new) so that array objects are allocated inside of ICRs . Second,
we modified the way gcj generates array-indexing code so that illegal accesses
will fall into an unmapped memory area. Our technique fully supports multi-
threaded Java programs.

Because our new Java implementation utilizes ICRs , dense access patterns
are replaced with sparse ones. This has negative consequences in the TLB,
cache, and memory. Accordingly, we modified the Linux kernel to customize vir-
tual addressing to optimize for a sparse access pattern. Furthermore, a process
can selectively choose to use our customized scheme, so that regular processes
are unaffected by our kernel modifications.

Our results on a 900-MHz Itanium-2 show that performance of our new Java
implementation that uses ICRs is superior to gcj -generated code that uses
explicit bounds checks. Specifically, our approach reduces the bounds-checking
overhead (relative to performing no checks) for scientific Java benchmarks from
an average of 63% to an average of only 9%. In addition, all of the benchmarks
performed better using ICRs , rather than full compiler bounds checking.

The remainder of this paper is organized as follows. The next section de-
scribes related work; Section 3 shows that array-bounds checking incurs sig-
nificant overhead on a variety of architectures. Next, Section 4 provides imple-
mentation details and Section 5 presents performance results. In Section 6, we
show the generality of the ICR technique by describing an implementation spe-
cific to the C language. Section 7 discusses issues arising in this work. Finally,
Section 8 concludes.

2. RELATED WORK

A significant body of work exists on static analysis to eliminate array-bounds
checks. Midkiff et al. [1998] finds safe regions that decrease the impact of Java’s
required run-time checks as well as its precise exception model and a follow-on
paper described a new array class for Java that provides true multidimen-
sional arrays [Moreira et al. 2000]. The technique in Midkiff et al. [1998] is
applied automatically within a compiler Artigas et al. [2000]. It targets sci-
entific applications written in Java. Kolte and Wolfe [1995] perform partial
redundancy analysis to hoist array-bound checks outside of loops. Their al-
gorithm was based on that described by Gupta [1993], who formulated the
problem as a data-flow analysis. In ABCD, Bodik et al. [2000], implemented a
demand-driven approach to bounds checking in Java. Xi and Pfenning [1998]
introduce the notion of dependent types to remove array-bound checks in ML;
Xi and Xia [1999] extend this idea to Java. Rugina and Rinard [2000] provide
a new framework using inequality constraints for dealing with pointers and
array indices, which works for both statically and dynamically allocated areas.
Early work was done by Markstein et al. [1982] on statically removing bound
checks.

Most of the above analyses are performed purely at compile time. This has
the advantage of avoiding run-time overhead, but fails when either (1) the code

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 505

Table I. Percentage of Bounds Checksa

Program Dynamic Percentage of Removable Checks
FT 0%
MG 90%
BT 100%
CG 7%

a Bounds check for four NAS programs, that we believe could be eliminated statically.
In practice, we are not aware of a compiler that can successfully eliminate all of the
removable checks indicated above.

is too complicated to prove anything about array references or (2) the code de-
pends on input data. The former includes cases where, for example, different
arrays are passed (as actual parameters) to functions from several different
call sites. The latter includes applications where indices cannot be determined
at compile time. As one example, Table I shows the results of our inspection of
several benchmarks from the NAS suite. In particular, our inspection of the CG
and FT benchmarks show that it is extremely difficult and impractical to prove
that array references are within bounds. Furthermore, even when most or all
checks are potentially removable, we are not aware of a compiler that will suc-
cessfully eliminate all removable checks. In these cases, compile-time schemes
must fall back to general run-time checking. Instead, our implementation de-
creases the cost of bounds checking and does not depend on static analysis to
do so.

A similar approach to ours is to use segmentation for no-cost bounds check-
ing [Lam and Chiueh 2005]. The basic idea is to place an array in a segment
and set the segment limit to the size of the array. This technique is effective for
small one-dimensional arrays, because automatic checking is done on both ends
of the array. However, typically, one end must be explicitly checked for large ar-
rays. Furthermore, because there are a limited number of segments that can be
simultaneously active (four on the x86, for example), full bounds checking must
be used for some arrays if there are more live arrays than this maximum. Most
importantly, multidimensional arrays cannot be supported. This is because the
segment limit prevents only an access past the allocated memory for the entire
array; an illegal access in one of the first n − 1 dimensions that happens to
fall within the allocated memory for the array will not be caught. While this
provides some degree of security, it can not produce semantically correct Java
programs.

Electric Fence [Perens], which places a single unmapped page on either side
of an allocated memory area, bears some similarity to ICRs . Electric Fence au-
tomatically catches overruns on one end. However, it does not handle arbitrary
array references, such as references past the unmapped page. In contrast, our
Java implementation is able to catch any illegal reference.

Our approach bears some similarities to Millipede [Itzkovitz and Schuster
1999], a software DSM system. Millipede avoids thrashing by placing distinct
variables (that would generally be allocated on the same page) on different
pages at their appropriate offsets; both pages are then mapped to the same
physical page. Different protections can then be used on each variable, because
protections are done at the virtual page level.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

506 • C. Bentley et al.

Table II. Pentium Assembly Code Produced by gcj Both Without (left) and With (right) Bounds
Checkinga

Instruction Description
movl (A), %ecx get A
movl $999, 28(%ecx) A[5] = 999
ret return

Instruction Description
movl (A), %ecx get A
cmpl $5, 4(%ecx) compare to high bound
jae L3 jump to trap if > bound
movl $999, 28(%ecx) A[5] = 999
ret return
L3: pushl $5 push offending index
call ThrowBadArrayIndex generate exception

aSome low-level details are elided for clarity.

Our extended and customizable virtual memory abstraction (xvm) is used
only by those processes that use ICRs . This means that regular processes are
unaffected. This is somewhat reminiscent of microkernels, such as Mach [Young
et al. 1987], which provide flexibility to application-level processes (such as
allowing an external pager). However, our modification is inside the kernel as
opposed to at the application level.

There has been work on how to utilize 64-bit architectures, mostly from the
viewpoint of protection. For example, Chase et al. [1994] describes Opal, which
places all processes in a single 64-bit virtual address space. This allows for a
more flexible protection structure.

We should note that there exists research that claims that bounds checking
on modern processors is only modest. For example, Boisvert et al. [1998] found
a 20% overhead on one scientific program. However, our work, as well as that
of Lam [Lam and Chiueh 2005], shows a much larger overhead.

Finally, array-bounds checking is often mentioned as a technique for pre-
venting buffer overflow. Several have studied the general overflow problem;
this includes using a gcc patch along with a canary to detect it [Cowan et al.
1998]. Another compile-time solution, RAD [Chiueh and Hsu 2001], involves
modifying the compiler to store return addresses in a safe location. This solu-
tion retains binary compatibility because stack frames are not modified.

3. ARRAY-BOUNDS CHECKING OVERHEAD

While this paper focuses on an Itanium-2 platform, bounds checking causes
significant overhead on a range of architectures. The previous section showed
that static analysis cannot always allow for the removal of bounds checks. This
section shows that if the checks cannot be removed, there is inherent overhead
on both the Itanium architecture and the much more ubiquitous Pentium ar-
chitecture. (Note that here we assume that only the high-bound check must
be made; Section 4 shows how it is that the low-bound check can be omit-
ted in the specific case of Java. In C, both low- and high-bound checks must
be made.)

Figure 1 shows a single array access; Table II shows the gcj (with the high-
est optimization level)-generated code with and without bounds checking on

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 507

Fig. 1. Example source code.

Table III. Itanium Assembly Code Produced by gcj (Without Bounds Checking)a

Instruction 1 Instruction 2 Instruction 3 Description
nop addl r15 = 999, r0 r3 = A set r15 to 999, get address of A
ld8 r2 = [r3] adds r14 = 32, r2 nop load and add to get address of A[5]
nop st4 [r14] = r15 nop store into A[5]
nop nop ret return

aSome low-level details are elided for clarity.

Table IV. Itanium Assembly Code Produced by gcj (With Bounds Checking)a

Instruction 1 Instruction 2 Instruction 3 Description
r8 = A nop nop get address of A
ld8 r3 = [r8] adds r15 = 8, r3 adds r16 = 32, r3 load base of A, get

addresses of high
bound and A[5]

ld4 r2 = [r15] cmp4.ltu p6, p7 = 5, r2 nop get high bound, load
high bound

(p7) addl r35 = 5, r0 (p7) call ThrowBadArrayIndex nop if violation, store
offending index and
throw exception

addl r14 = 999, r0 st4 [r16] = r14 nop set r14 to 999, store
into A[5]

nop nop ret return
aSome low-level details are elided for clarity.

the Pentium 4.1 In the bounds-checking version of the code, two additional
instructions are executed. The bounds check also involves an additional mem-
ory reference because of the cmp instruction.

This is the minimal amount of code that can be executed if program correct-
ness is to be maintained. Clearly, there must be a comparison and conditional
jump. Hence, at least two additional instructions must be executed for a bounds
check in Java.

Table III and IV show the generated code without and with bounds check-
ing on the Itanium. This code is more complicated to understand because of
the bundles present on the VLIW-based Itanium. Each (long) instruction con-
tains three regular instructions and dependences (such as read after write) can
appear in a bundle as long as there is a stop placed in between instructions
(not shown in the figure) [Intel 2006]. In addition, any of the three instruc-
tions in a bundle may be predicated. Such an instruction will only be executed
if a predicate register is set to true. These predicate registers are set by cmp

1With gcj, metadata are stored in front of actual array data. The convention is that a pointer to
the object descriptor is stored first (which is 4 bytes on the Pentium and 8 bytes on the Itanium),
and the array length is stored after that (4 bytes on both architectures). The first data element of
an array is located directly after the length.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

508 • C. Bentley et al.

instructions. In the example code shown in Table IV, the array-bound checks
are implemented with such a sequence (using predicate p7).

On the Itanium, the bounds check incurs a load, a compare, and a branch
instruction. In the example shown in Table III, there are nop slots in some
bundles. However, as can be seen in Table IV, scheduling constraints make it
impossible to insert all bounds-checking instructions into nop slots. In the ex-
ample shown in Table IV, the bounds-checking version executes two additional
bundles. While it is conceivable that in this example five (instead of six) bundles
could be used, dependences would eliminate advantages of such packing. The
key point is that there is no way to get around a strict (significant) increase in
the total number of bundles.

Overall, bounds-checking instructions that cannot be removed statically will
cause a significant amount of overhead for the particular load or store that is
being executed—and this overhead is not specific to the Itanium. In scientific
programs, which are often array intensive, this translates to a significant pro-
gram overhead.

4. IMPLEMENTATION

This section describes implementation details on an Itanium-2, which is a 64-
bit machine. First, we discuss our implementation of index-confinement regions
(ICRs). Next, we discuss our modifications to the GNU Java implementation,
gcj . Finally, we describe our modifications to the IA-64 Linux kernel.

4.1 Index-Confinement Regions

An Index-Confinement Region (ICR) is a large, isolated region of virtual mem-
ory. When an array is placed in an appropriately sized ICR , references to
this array are confined within the ICR . For example, consider placing a one-
dimensional integer array, indexed only by 32-bit expressions, within an ICR .
If the size of the ICR is chosen to be at least 16 GB and the array is placed at
the beginning of the ICR , it is impossible to generate an array reference that
is outside of the ICR . A reference below the lower end of the ICR is not possible
because of three factors. First, arrays in Java are limited to 231 entries by the
language specification. Second, negative-index expressions are not permitted
by the Java language specification. Third, our Java compiler (as well as others)
takes advantage of these language restrictions by treating index expressions
as unsigned, so that if a negative 32-bit index expression is generated by a
program, it is converted to a positive index expression larger than 231 −1. Note
that this simple optimization cannot be performed in the general case by a C or
C++ compiler, because negative index expressions are legal in those languages.

An ICR must be large enough so that any 32-bit index expression will result
in an access within an ICR . In general, ICR size is the product of 4 GB (232)
and the size of the array element type; this can be calculated at allocation time.
Although each ICR is several gigabytes in size, a 64-bit virtual address space
permits the allocation of millions of ICRs .

Figure 2 shows two regions and their associated arrays. In an ICR , pages
in which the actual array resides are mapped with read and write permission.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 509

Fig. 2. Two index-confinement regions. Each array is isolated from any other program data; bounds
checking is done automatically through unmapped pages.

All other pages in the ICR are unmapped. This is achieved using mmap (with
MAP FIXED). Because, in general, the array size is not a multiple of the page
size, one end of the array that is within a mapped page is not implicitly pro-
tected. We align arrays so that the upper limit of the array is at a page boundary,
leaving the bottom end of the array unaligned.2 This allows automatic bounds
checking, because an access to an unmapped page results in a protection viola-
tion. Leaving the front end of the array unprotected (not page aligned) does not
matter because of the treatment of negative indices, described above. Finally,
we can suppress null pointer checks and customize the protection violation
code to determine whether the violation was as a result of a null pointer or to
a reference beyond the end of an array.

The ICR abstraction extends naturally to n dimensions, because Java has no
true multidimensional arrays. Instead, Java represents an n-dimensional array
as vectors of vectors. As described above, Java compilers already can avoid a
lower-bound check for each vector. Hence, because each vector is placed in an
ICR , the high-bound check is also unnecessary and no checks are required for
an n-dimensional array reference.

Because Java requires arrays to be allocated via the keyword new , the run-
time system must be modified to place arrays in ICRs . In addition, the Java
compiler must be modified so that implicit bounds checking can be performed.
The next section describes how we modified the gcj compiler and run-time
libraries to facilitate the ICR -based allocation of Java arrays.

4.2 GNU Java Implementation

We created a new Java implementation, based on gcj , that makes use of
ICRs . We made two primary modifications. First, we changed the way arrays
are indexed and allocated, which involves both compiler and run-time library
changes. Second, we changed the GNU backend so that it would conform to the
Java language specification.

4.2.1 Array Indexing and Allocation. Java requires that array-index ex-
pressions produce a positive offset that is within the allocated space of the
array. This means that conceptually gcjmust produce two checks per access—
one to check that the index is positive and one to verify the index is less than
the length of the array. The length of each array is stored as a field in the array
object. However, as mentioned above, gcj optimizes these checks into a single

2Because we use right-aligned placement of arrays, ICRs require one extra page at the right end
to ensure proper protection.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

510 • C. Bentley et al.

Fig. 3. Pictorial description of an illegal array reference and its corresponding sign-extended index
expression versus zero-extended index expression with ICRs .

check by sign-extending indices and comparing the index to the array length as
an unsigned value. Therefore, any negative index becomes a very large positive
index that is guaranteed to be larger than the length of the array. This is as a
result of the restriction that the number of array elements in a Java array is
limited to the maximum signed integer (231 − 1).

We modified gcj to target ICRs . First, we had to disable bounds checking in
the compiler, which was easily done as gcj provides a compile-time flag for this
purpose. Second, because the precise location of ICRs is not known at compile
time, we cannot simply sign-extend the index expression, as this might result in
an access to a mapped portion of a different ICR when added to the array base
address (see Figure 3). While this is not a problem in standard gcj , because an
explicit comparison is made to the upper bound, our implementation makes no
comparisons. As a result, we must map a negative index expression to a page
that is guaranteed to be unmapped. Therefore, instead of sign-extending the
index expression, we zero-extend it. This ensures that any negative expression
becomes an unsigned expression precisely in the range of index expressions (231,
232 − 1). Such an indexing expression will result in an access to an unmapped
page within the ICR for that array.

In Java, all arrays are allocated dynamically with the keyword new , which
calls a run-time library routine appropriate for the array type (object or primi-
tive). These particular routines are NewObjectArray and NewPrimArray, respec-
tively. Each of these functions eventually calls malloc to actually allocate the
array. When using ICRs , we modified both of these routines, replacing malloc
with a call to mmap with (1) the target address of the next available ICR and
the (2) the MAP FIXED flag (as described in the previous section). These methods
extend naturally to n-dimensional arrays, as the first n − 1 dimensions are ar-
rays of objects. The keyword new invokes NewMultiArray, which invokes itself
recursively, calling NewObjectArray until all of the first n − 1 dimensions are
allocated. Finally, the last dimension will be allocated using NewPrimArray if
the type is primitive; otherwise, it is allocated using NewObjectArray.

Because all ICR support is implemented in the compiler, run-time libraries,
and operating system, no source code modification is necessary to allocate ar-
rays in ICRs . However, allocating arrays in ICRs poses many challenges to the

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 511

operating system and architecture. Section 4.3 discusses the impact of ICRs on
the memory hierarchy along with OS support for ICRs .

4.2.2 GNU Backend Modifications. As described above, our ICR technique
allows gcj to avoid generating array-bound checks into the intermediate code.
Potentially, this could enable aggressive optimizations, specifically instruction
scheduling, that could result in a violation of the Java semantics. The particular
situation we face is that without bounds checks, the optimizer might reorder
array references, which is a potentially unsafe optimization. (This is because
we catch out-of-bounds via an OS exception, but the compiler is not aware of
this.)

To prevent this problem, we modified the GNU backend so that it would
not reorder array references. This was done in two steps. First, the syntax tree
created by gcj is inspected and, whenever an array reference tree node is found,
a bit in its RTL representation is set. Second, the instruction scheduler scans for
this bit and moves the RTL corresponding to the array reference earlier in the
generated code only if it is not reordered with another array reference. We note
that this does not prevent reordering of scalar variables with array references.
Our prototype could be modified to prevent this, but we are targeting scientific
applications (our tests use mostly the NAS suite). This situation is uncommon—
most scalars are actually compiler-generated temporaries whose state is hidden
from the programmer.

4.3 Linux Support for ICRs

While our new Java implementation allocates arrays in ICRs , obviating the
need for bounds checks, the ICR abstraction itself places significant pressure
on the memory hierarchy—causing cache conflicts and internal fragmentation.
Smaller page sizes lessen this problem, although the address space available
in Linux (and, hence, the number of ICRs that can be used) decreases with the
page size because of the three-level linear page table in Linux. A more subtle
problem is that ICRs force a sparse access pattern, which causes the kernel to
consume significant amounts of memory to hold page tables.

To mitigate these problems, we have designed and implemented an abstrac-
tion we call xvm to provide an application process with an extended, customiz-
able virtual memory. As we are interested in ICR -based programs, we use the
extended virtual address space to allocate as many ICRs as are needed and
a customized virtual addressing scheme to reduce memory consumed by page
tables.

The first part of implementing an xvm is to increase the address space size.
Linux uses a three-level page table (PT) for translation. Borrowing Linux ter-
minology, we refer to a page table as a directory. Thus, the first, second, and
third levels of the PT are denoted L1PD, L2PD, and L3PD. The L3PD contains
entries that map the virtual page to a physical frame. In standard IA-64 Linux
(see Figure 4, largely borrowed from Mosberger and Eranian [2002]), a 4 KB
page size provides an 320-GB address space, which is far too small for any of our
benchmarks, while a 64-KB page size provides 20 PB of address space, which
is sufficient for all of our benchmarks. We modified the 4-KB kernel directory

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

512 • C. Bentley et al.

Fig. 4. Address space layout and address translation for regular processes with a three-level page
table in Linux, using 4 KB pages.

structure to allow the large virtual address space allowed by the 64-KB kernel,
while maintaining for ICRs the cache and memory benefits of the 4-KB page
size. Simply stated, we modified the L2PD and L3PD to be held in several con-
secutive pages. This means that the L2PD and L3PD directories each consume
N consecutive pages and need log2N additional bits for their index. For exam-
ple, increasing the L2PD and L3PD to 512 pages each results in an available
virtual address space of over 32 PB, which is adequate space for hundreds of
thousands of ICRs . Figure 5 shows the new scheme. The total number of bits
that we use in a virtual address is the (Itanium) hardware limit of 57, which
allows allocation of hundreds of thousands of regions. The mid- and lower-level
directories are both 18 bits wide. This allows for the minimum initial allocation
overhead among all possible partitionings of 36 bits. Furthermore, the maxi-
mum additional memory usage due to the L2PD is 128 MB, which only occurs
if all of virtual memory is used.3

The second part is customizing the virtual addressing scheme. As mentioned
above, the sparse access patterns imposed by ICRs violate the principle of lo-
cality. For example, a 4-KB page size directory contains 512 entries, so in an
extended virtual address space as described above, each L3PD contains 256 K
entries (512 pages × 512 entries per page), assumed to represent contiguous
virtual memory. Hence, one L3PD represents 1 GB (256 KB × 4 KB) of vir-
tual memory. Unfortunately, arrays placed in ICRs are at least 4 GB from one
another. This means that when using the scheme shown in Figure 5, two dif-
ferent array references require allocation of two L3PDs—even though typically
only one entry in each L3PD will be used. As a result, memory consumption
because of directories is increased considerably. This is a well-known problem

3We could also increase the number of bits in the first level, which would decrease the initial
allocation overhead, but would increase the number of L2PD and L3PD allocations.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 513

Fig. 5. Address space layout for processes using our xvm abstraction. The L2PD and L3PD are
each 512 instead of 1 page.

with extremely sparse address spaces, which are generally better served using
a hashed or clustered page table [Talluri et al. 1995].

However, ICRs exhibit regular sparse patterns; this is especially true for
multidimensional arrays, where a given dimension has vectors with identical
sizes and types. We take advantage of this by swapping bits between the L3PD
and the L2PD indices, so that the L3PD can hold many ICRs (rather than one).
Each page of the L3PD contains entries for consecutive pages, so ICRs that
have consecutive pages mapped use consecutive entries in the L3PD (up to a
limit). Our implementation significantly reduces the internal fragmentation
of the directories, leading to a reduction in memory usage by processes using
ICRs . The original and new page table indexing schemes are shown pictorially
in Figure 6. Without our customized addressing scheme, the kernel runs out
of memory as a result of the large number of directory allocations in Multigrid
and Fourier Transform. With our scheme, both programs run successfully.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

514 • C. Bentley et al.

Fig. 6. The original (left) and xvm (right) page table-indexing schemes. The fill patterns shown in
the directories correspond to the mapped pages in the ICRs .

To avoid increasing the minimum size and memory usage of processes
that do not use ICRs , an xvm is used exclusively via a new system call
enable xvm (invoked via the Java run-time library), which converts a standard
Linux three-level page table into an multipage, multilevel extended version (as
shown in Figure 5). This allows only those processes that make use of ICRs to
incur the memory overhead because of the larger directories when using xvm .

Despite a significantly lower directory memory footprint, customizing the
virtual addressing scheme incurs some performance penalties. Several Linux
routines operate on a range of virtual addresses; they look up only the start
and end address in the page table; the routine can then process all the inter-
vening directory entries using simple pointer arithmetic. With the modified
addressing scheme, this assumption is incorrect, as consecutive entries in the
L2PD and L3PD do not reference contiguous memory. As a result, each time a
new directory entry is needed, a full lookup of the virtual address is required,
which adds overhead. However, in practice, this overhead was negligible in our
benchmarks.

Also, the VHPT walker, which performs page look-ups in hardware on the
Itanium, assumes a linear or hashed page table. Our scheme is neither and,
therefore, cannot use the VHPT to update the page table for ICRs . Instead, we
handle page faults inside an xvm in such a way that after a TLB miss, the VHPT
will always incur a miss. In this way processes that do not use xvm can still use
the VHPT as normal. In practice, we found that incurring a miss in the VHPT
each time in programs using ICRs had little effect on overall execution time—
this is because our benchmark programs (and scientific programs in general)
typically have good locality.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 515

5. EXPERIMENTAL RESULTS

We examined the performance of both our new Java implementation, as well as
standard gcj on a variety of Java applications. These applications include the
Java version of the NAS Parallel Benchmark Suite 3.0 [Frumkin et al. 2002],
some simple hand-written scientific kernels, and a synthetic array program.
While the NAS programs can be executed with multiple threads, we run the
serial versions because our experimental platform is a uniprocessor. We em-
phasize that the technique used in our new Java implementation is completely
applicable to multithreaded Java programs.

Each NAS program uses Class W input size. The NAS Java programs include
CG, a conjugate gradient program; FT, a fourier transform; IS, an integer-
sorting program; LU, a regular-sparse, block triangular system solution; MG
(and MG3D), a multigrid solver; and two computational fluid dynamics sim-
ulations, BT and SP. Other than MG3D, the Java versions of the NAS suite
use linearized arrays rather than multidimensional ones; this will be discussed
later. Our hand-written kernels use multidimensional arrays and include MM,
matrix multiplication; JAC, a Jacobi iteration program; and TOM, the Tom-
catV mesh generation program from SPEC92, which we converted to Java. The
input sizes for these three programs were 896 × 896, 896 × 896, and 768 × 768,
respectively, and were chosen by finding the size that resulted in execution time
with no bounds checking taking 30 s. In addition, we include three versions of a
synthetic benchmark, S1D, S2D, and S3D, with array sizes 1M , 1000 × 1000,
and 100×100×100, respectively. The total number of elements in each of these
arrays is the same. This benchmark simply repeatedly updates each element of
an array and is used to study how ICRs and bounds checking scale with dimen-
sionality. We used maximum optimization (-O6) to compile our programs with
both Java implementations. In addition, we compiled all benchmarks directly
to executable programs rather than Java bytecodes.

We performed our experiments on a 900-MHz Itanium-2 with 1.5-GB mem-
ory, a 16-KB L1 instruction cache, 16-KB L1 data cache, 256-KB L2 cache, and
1.5-MB L3 cache. The operating system is Debian Linux version 2.4.19. We use
wall clock times for measurement; all experiments were run when the machine
was unused.

The rest of this section is organized as follows. First, we present the overall
execution times of several programs. We then further examine some of the
results through inspection of hardware-level counters.

5.1 Overall Execution Times

Figure 7 shows the execution time of each version of the NAS Java benchmarks.
The baseline version, labeled No Checks , is compiled with gcjusing a compile-
time flag to disable bounds checks. All other versions of each program are nor-
malized to this value. Full Checks is the default program produced by gcj ; all
bounds are checked via compare instructions in the code. Each access to an n-
dimensional array incurs a single upper bound check for each dimension. Both
No Checks and Full Checks are able to benefit from the VHPT walker. Finally,
Java ICRs is our new method that competes with full compiler bounds checking.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

516 • C. Bentley et al.

Fig. 7. Execution times for each program version on each of the NAS benchmarks (using linearized
arrays). All times are normalized to the No Checks version, as it is the baseline; this means that
smaller bars are better. Using Java ICRs is better than Full Checks in all programs. Note that the
benchmarks are explained at the beginning of Section 5.

Note that No Checks is not legal according to the Java language specification—
we use it only as a baseline to determine overheads.

Java ICRs is superior to Full Checks on all NAS Java benchmarks. The av-
erage normalized overhead of Full Checks is 39%, while the average overhead
for Java ICRs is only 5%. The overhead of Full Checks primarily comes from
extra instructions executed (compares) and extra cache reads (some of which
are misses) to load the bounds. One anomalous result is that CG with Java
ICRs is faster than CG with No Checks . Performance counters showed that
Java ICRs had slightly fewer memory accesses; however, we could not deter-
mine why this occurred. Certainly, No Checks should be faster (and will be, in
most instances).

As previously mentioned, the NAS benchmarks use linearized arrays. Each
multidimensional array (in the original Fortran version) is transformed into a
one-dimensional array (in the Java version). This was done intentionally by the
NAS development team to reduce the cost of bounds checking [Frumkin et al.
2002]. Because Fortran references arrays in column-major order, linearizing
arrays also avoids the need to interchange loops or transpose array dimensions
for efficient execution in a row-major environment, such as Java. Both Full
Checks and Java ICRs benefit from this conversion—the former because of fewer
bounds checks (only one total check is needed) and the latter because of lower
memory hierarchy overhead (only one total ICR per array is needed).

However, linearized arrays do not allow legitimate bounds checking. An ac-
cess beyond the bound of the first dimension may not be detected, as it may
fall in the allocated area of the array. We are currently working to delinearize
the NAS Java Suite to fully test ICRs on them and currently have results from

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 517

Fig. 8. Execution times for each program version on each of the hand-written benchmarks, as well
as MG3D. All times are normalized to the No Checks version, as it is the baseline; this means that
smaller bars are better. Using Java ICRs is better than Full Checks in all programs. Note that the
benchmarks are explained at the beginning of Section 5.

Multigrid, which we denote MG3D. This program was produced by modifying
f2java to (1) generate Java code using multidimensional arrays4 and (2) trans-
pose arrays to row-major order. Then, we modified, by hand, the main arrays
to be four-dimensional, as in the NAS C version of MG, because the Fortran
version of MG uses common blocks and f2java does not properly translate
those. Because the translation is a time-consuming task—as a straight trans-
lation using f2java does not produce completely correct code—we also tested
several representative multidimensional programs written by hand: MM, JAC,
and TOM, as well as the three synthetic programs.

Figure 8 shows the execution times of our synthetic benchmarks, our hand-
written scientific kernels, and MG3D. Notice that for the different synthetic
versions the cost of Full Checks increases much faster than Java ICRs as di-
mensionality increases. This is because of the additional checking overhead
caused by the increase in the number of dimensions. The increase in overhead
of Java ICRs is because of stress in the memory hierarchy as a result of frag-
mentation, which causes an increase in the number of cache and TLB misses.
The penalty for Full Checks on the three kernels averages 46%, while Java
ICRs averages only 6%. MG3D is the worst performing benchmark with Java
ICRs and it is still 24% better than Full Checks . This is strong evidence that
the delinearized NAS suite will perform much better with Java ICRs than with
Full Checks . Combined with the fact that the C versions of these programs (see
Section 6) perform well with ICRs relative to explicit bounds checks, we believe
that the NAS multidimensional Java programs will also perform well.

4The original f2java linearizes arrays.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

518 • C. Bentley et al.

It is important to note that the NAS multidimensional suite is almost a worst
case for our ICR technique, because the NAS programs use blocking to improve
locality. This decreases the size of each dimension, causing decreased memory
system performance (see below).

One of the reasons for the significant overhead with Full Checks is that
all checks (for all dimensions) occur in the innermost loop of a loop nest.
Theoretically, it is possible, in some cases, to hoist invariant checks out of the
innermost loop. Hence, we investigated the cause of this lack of code motion,
keeping in mind that code motion can be difficult to implement because of
aliasing. Because gcj is simply a front end to the gcc backend, we concluded
that the backend of gccusually cannot (or will not) hoist any checks in our
benchmarks—a reminder that while algorithms for code motion are mature,
in practice it can be hard to legally move code without risking modification of
program semantics.

5.2 Low-Level Performance Details

The performance of Java ICRs is better than that of Full Checks in all of our
benchmarks. However, a better understanding of the overheads caused by Full
Checks and those caused by Java ICRs will help explain why, in general, Java
ICRs performs so much better than Full Checks .

5.2.1 Performance Counters. We chose four of our test programs to exam-
ine in detail: TOM, S2D, S3D, and MG3D. For TOM and S2D, Java ICRs has
almost no overhead, while Full Checks has over a factor of 2. For S3D and
MG3D, Java ICRs has close to a 50% overhead for each, while Full Checks has
about 120 and 60%, respectively. We examined the following counters for each
program: total instructions executed, TLB misses, and all levels of cache (see
Figure 12). This clearly shows that the reason for the poor performance on TOM
for Full Checks is because of two reasons. First, there is an increase by about a
factor of 2 in instructions as a result of bounds checks. The Itanium is a VLIW
machine, creating bundles of instructions to make use of instruction-level par-
allelism (ILP). In many cases, the original code exhibited poor ILP, allowing
bounds checking to be folded into the empty slots in the bundles. However, this
was not always the case, so Full Checks still pays a heavy penalty for TOM. Sec-
ond, the Full Checks versions have significantly more L1 accesses and misses.
This is because of fetching the array length information for comparison.

While the time for Java ICRs is a vast improvement over Full Checks ,
ICRs do incur some overhead. Also shown in Figure 9 is the large increase
in TLB misses for S3D and MG3D. In general, the degradation of the TLB per-
formance when using ICRs is dependent on array size and array-access pat-
terns. In particular, small array sizes increase fragmentation because each
ICR must start on a new page. Typically, as the number of dimensions of an
array increases, the size of each dimension tends to decrease. For example,
Class W MG3D uses an array size of 64 × 64 × 64, whereas TOM uses an array
size of 768 × 768. The TLB will miss much more frequently compared to Full
Checks (which packs consecutive rows) when array sizes are small. The cache
misses do not increase significantly (other than for MG3D), mostly because of

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 519

Fig. 9. Low-level performance counter results for Full Checks and Java ICRs for TOM, S2D, S3D,
and MG3D. All times are normalized to the No Checks version.

the use of a 4 KB page—separate tests (not shown) revealed that using a 16 or
64 KB page size caused a large increase in L3 cache misses when using ICRs .
The severe fragmentation from MG3D also causes performance degradation in
all levels of the cache hierarchy. Both of these aspects are shown in Figure 9.

To further demonstrate the effect of the size of the last dimension on TLB
performance, consider S2D and S3D. For S3D, which uses an array of size
(100 × 100 × 100), Java ICRs has a 42% overhead compared to No Checks .
Notice that the number of TLB misses for S3D Java ICRs (Figure 9) is 16 times
more than No Checks and Full Checks . This is as a result of the small size
(100) of the last dimension, which causes fragmentation. Because the size of
each dimension tends to increase as the number of dimensions decreases, we
chose an array size of 1000 × 1000 for S2D. With that size, S2D has an Java
ICRs overhead of 6%. This large improvement over S3D is because of fewer TLB
misses, as there is less internal fragmentation.

In general, we see a tradeoff between Java ICRs and Full Checks ; the over-
head of the former is in memory hierarchy overhead, while the overhead of
the latter is in the increase in the number of instructions. Even with this sub-
stantial pressure on the memory hierarchy, Java ICRs significantly reduces the
average penalty for performing bounds checks in Java.

5.2.2 Effect of Memory Hierarchy Misses Versus Bounds Check. Next, us-
ing S3D, we investigate the cost of misses in the memory hierarchy versus

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

520 • C. Bentley et al.

Fig. 10. Synth results. All times are normalized to the No Checks version.

bounds check. Specifically, we ran the usual tests using Full Checks and Java
ICRs , but then added a test we call Both —this test uses both full bounds check-
ing and Java ICRs . While one would always use Full Checks or Java ICRs , this
test is useful to investigate where the overhead lies.

The results are shown in Figure 10. The overhead for Both is 166%, whereas
the overhead for Full Checks and Java ICRs is 132 and 42%, respectively. For
most of the key performance counters, it is clear that Both matches either Full
Checks or Java ICRs . The one difference is in L1 cache misses, where Both has
a greater number than Full Checks (and Java ICRs , but that is expected). This
indicates the increased memory pressure caused by Java ICRs results in some
additional L1 misses (in addition to the large number of TLB misses). However,
this does not cause any difference in L2 misses. As Synth3D is nearly a worst-
case application in terms of memory layout, we believe that Java ICRs results in
additional TLB and (though not in our benchmarks) possibly L1 misses, while
Full Checks results in additional instructions, branches, and L1 misses.

5.2.3 Effect of Array Reference Reordering. Finally, we investigate the ef-
fect of our GNU backend modifications. Recall that to avoid potentially unsafe
Java code from being generated from our modified gcj , we had to limit the ag-
gressiveness of the instruction scheduler. Specifically, we disallowed reordering
of array references.

Table V shows results of different instruction scheduling schemes for the
NAS benchmarks. The first column shows performance with a naive, yet correct,
scheme to prevent reordering of array references. Those results are produced by
completely disabling the instruction scheduler. As can be seen, this significantly
degrades performance.

The second column shows full instruction scheduling, which results in good
performance, but may result in a semantically illegal Java program. The third
column gives performance of our Java implementation. As can be seen from the
table, the degradation in performance is negligible (less than 4%) for most of

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 521

Table V. Effect of Different Instruction Scheduling Schemesa

Program No Scheduling Full Scheduling Modified Scheduling
BT 90.5 55.0 66.9
CG 7.05 6.64 6.65
FT 5.63 4.05 4.06
IS 7.17 6.90 6.90
LU 280 172 175
MG 8.44 7.29 7.29
SP 263 177 184

aTimes in seconds.

the programs. We note, however, that typical numerical workloads may have a
higher cost, especially when aggressive optimization is done. For our programs,
memory references were rarely, if at all, reordered by the instruction scheduler.
However, our implementation ensures that such reordering does not occur.

Only one NAS program, BT, significantly benefits from array-reference re-
ordering (which is only allowed in Java if it can be proved to be safe). Specifi-
cally, performance using our modified scheduler is about 20% worse than if full
scheduling is used. This is likely because of the presence of large basic blocks
containing primarily array references (e.g., the functions add and x solve),
which increases the probability that an unmodified instruction scheduler can
(illegally) reorder a subset of these references.

6. APPLICATION TO OTHER LANGUAGES

This paper focuses on our ICR-based Java implementation, but ICRs are not
specific to Java. In fact, ICRs are a general technique that can support any
language that performs (or desires to perform) array-bounds checking. Two
example languages are C# and Pascal. In addition, while not required in the
language, for reliability it may be desirable to add bounds checking to C or
Fortran; in fact, the latter has a compile-time option to do so. To demonstrate
the generality of ICRs, we adapted them to support C. This section discusses
the necessary changes to the implementation and the resulting performance.

Here we assume that if ICR technique is desired, then both ends of the array
need to be checked (unlike Java, which actually only requires one check, as
described earlier). Thus explicit bounds checks must make two, rather than
one, check for each dimension.

6.1 Changes to ICRs

The same general idea with ICRs is used to support C, except that a library pro-
cedure is added to allocate space for arrays. All arrays are allocated as vectors
of vectors, so that their memory layout are just as with Java multidimensional
arrays.

Whereas in Java with ICRs an n-dimensional array access requires zero
checks, the C version of ICRs requires one. We are able to reduce the 2n checks
to one as follows. First, we align the end of an array to a page boundary, just
as with Java ICRs; this immediately eliminates n bounds checks, one for each
dimension. As an optimization, we observe that with a vector of vectors style

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

522 • C. Bentley et al.

Fig. 11. Representation of pointers in bcc .

allocation, the values in the first n − 1 dimensions are pointers. We avoid all
bounds checks in these dimensions by zero filling all memory lying between the
start of the mapped area and the start of the vector. Any dereference that occurs
within this area will cause a NULL pointer exception. Of course, this cannot be
applied to the last dimension, because it contains arbitrary objects. Still, this
reduces the number of bounds checks to just one.

6.1.1 Restrictions. Unlike Java, the C version of ICRs has some restric-
tions. First, because the modern C standard allows array indices to be up to
264, there will exist programs (specifically, ones that make use of this feature) to
which ICRs cannot be applied. In addition, the C-based ICRs will detect bounds
violations immediately when assigning to a pointer any of the first n−1 dimen-
sions of an array (e.g., p = A[i], if p is a pointer and A is a two-dimensional
array), because until that pointer is dereferenced, there will never be a protec-
tion violation.

We believe the first issue is not a significant problem for most C programs, as
main memories on most systems are too small to make a 64-bit index practical.
While our current implementation does not do so, to use ICRs we would need to
statically prove that a 64-bit index was never used in a given array in order to
apply ICRs (otherwise, we would use standard bounds checking on that array).
For the second issue, we could explicitly issue a bounds check or generate a
dereference. Our current implementation waits until the pointer is explicitly
dereferenced to generate such an error. Such code is generally uncommon in
scientific programs (the situation did not occur in our benchmarks).

6.2 Bounds Checking C Compiler

In our experiments, we generate all bounds checks with the bounds-checking
compiler (bcc) [McGary], which is an extension to the GNU C compiler that
performs full bounds checking. We ported bcc to the IA-64 architecture. For each
pointer, bcc generates a three-member structure, which contains the memory
location pointed to, as well as a lower and upper bound for the pointer (see
Figure 11). These bounds are computed and set at allocation time by a special
version of malloc . A dereference of the pointer results in generated code that
ensures the dereferenced pointer is between the low and high bound set in the
structure. When used in conjunction with ICRs (to provide a last-dimension
check), a compiler flag is used to emit only the necessary check.

The bcc bounds checking code is efficient, as the code emitted is amenable to
optimization. As mentioned earlier, the IA-64 architecture has three instruc-
tion bundles and, in many cases, there are empty (nop) slots in these bundles.
Where possible, bccwill place bounds checking into such empty slots. Because

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 523

Fig. 12. Execution times for each program version on each benchmark. All times are normalized
to the No Checks version, as it is the baseline; this means that smaller bars are better. Using C
ICRs is better than Full Checks in all programs.

bcc changes pointers into structures, any library (e.g., glibc) that is linked
with bcc code must also be compiled with bcc to ensure proper treatment of the
pointer structures.

Our current implementation of bcc does not automatically handle statically
allocated global arrays. We have modified the benchmarks by hand to transform
such arrays into dynamically allocated arrays that are initialized at program
startup. This transformation could be performed in the compiler, which would
generate a list of arrays (and sizes) that must be allocated at startup time. Note
that we do not change the sizeof operator, in that changing static arrays to
dynamic ones will cause this operator to return the size of a pointer instead
of the size of the array. This problem could be solved by applying the work in
Dahn and Mancoridis [2003]. We note, however, that none of our benchmarks
made use of the sizeof operator.

6.3 Performance of ICR-Based C

We used the same programs as with the Java implementation, with a few ex-
ceptions. We had to hand-write LU and MM, because bccmishandles pointer
arithmetic in the NAS versions and, hence, does not produce correct output.5

Figure 12 shows execution times of all of our benchmarks for each program
version. All benchmarks run faster when using C ICRs than when using Full
Checks . (Recall that when using C ICRs , one check is needed, as opposed to no
checks with Java ICRs .) Overall, C ICRs averages 50% overhead, whereas Full
Checks averages 96% overhead. It is important to note that the code generated
by bcc for Full Checks is efficient, adding only a load, compare, and conditional

5The same bug occurred in BT and SP (the two other NAS benchmarks), but we did not hand-write
them because they were much longer.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

524 • C. Bentley et al.

Table VI. Performance of Three Different Compilers on
the NAS Suite Running on the Itanium 2, as well as

Our Hand-Written Benchmarksa

Program HotSpot JRockit gcj

BT 1508 360 82.9
CG 14.1 9.70 8.38
FT 33.5 14.6 5.49
IS 28.0 19.6 6.91
LU 7345 1790 229
MG 8.75 27.6 9.69
SP 4171 1560 222
TOM 990 121 53.4
MM 15.2 38.1 25.9
JAC 640 48.7 35.7

aTimes in seconds. HotSpot uses the -server option, JRockit
uses optimizations, and gcjuses -O3.

branch. Inspection of program counters showed that the overhead of C ICRs is,
in general, fairly evenly divided between the cost of ICRs and the cost of the
single bounds check. In the particular (worst) case of FT, C ICRs has an overhead
of 88%, compared to 96% for Full Checks . For FT, which has many small arrays,
most of this overhead is because of ICRs.

One of the reasons for the significant overhead with Full Checks is that
all checks (for all dimensions) occur in the innermost loop of a loop nest.
Theoretically, it is possible in some cases, to hoist invariant checks out of the
innermost loop. However, while algorithms for code motion are mature, in
practice it is hard to legally move code without risking modification of program
semantics.

In summary, as expected, the overhead for both Full Checks and C
ICRs increase when using C (compared to Java)—more checks are required in
both. However, the relative difference in overheads is similar.

7. DISCUSSION

This section discusses several issues arising with this work. First, and most im-
portantly, we discuss the legitimacy of using gcj , as opposed to a newer Java
implementation such as HotSpot [SUN 2002] or JRockit [BEA 2005]. We believe
that gcj compares at least equally with these compilers and especially favor-
ably on the Itanium. Table VI shows results from executing several programs
with all three compilers on the Itanium. Of note is that gcjhas bounds check-
ing enabled, whereas the other two can eliminate checks dynamically. Still,
gcj greatly outperforms both compilers for all programs except MG and MM.
Separate experiments show that gcj and HotSpot are competitive on Pentium-
based architectures. It is beyond the scope of this paper to investigate why
HotSpot and JRockit perform poorly on the Itanium, although we believe that
it is possible that the backend on the Pentium has received more attention than
its Itanium counterpart.

Second, we have discussed the advantage of using ICRs for reducing bounds-
check overhead in Java. Again, ICRs are intended purely for scientific programs;

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 525

because the OS must use our xvm abstraction along with ICRs , there is inherent
overhead (primarily because of additional TLB misses) in nonarray intensive
parts of the code. The ramifications of this are that ICRs are appropriate for
scientific codes, but not standard desktop Java applications, such as perhaps a
database system. For example, when running the raytrace benchmark from the
SPEC suite, which is not array intensive, ICRs added a 46% overhead. This is
not surprising—it is currently up to the programmer to explicitly enable ICRs ,
and this should only be done for array intensive codes. In general, it would be
possible to use static analysis to estimate when ICRs should be used. However,
this is beyond the scope of this paper.

Next, we compare our new Java implementation, which uses ICRs within
the gcj compiler to Ninja [Artigas et al. 2000]. Ninja works by creating safe re-
gions. This not only improves performance by eliminating array-bound checks,
but also allows more aggressive optimizations because an exception will not
occur within a safe region. Our modified gcj , on the other hand, does not ex-
plicitly perform other optimizations, relying instead on standard gcj to perform
those.

Several points are of note here. One is that our ICR -based technique is,
in fact, orthogonal to the techniques used by Ninja . In particular, an un-
safe region permits no aggressive optimization, including array-bound checks.
In this case, our gcjwill eliminate bounds checks. Thus, our ICRs could, in
principle, be integrated into Ninja , providing a significant performance im-
provement for the large number of programs that defy static analysis. In fact,
our manual inspection showed there were several such programs in the NAS
suite (see Section 2). This is also confirmed by the reported results of the
Ninja compiler itself, which was unable to cover a significant loop computa-
tion in TOM, resulting in poor performance [Artigas et al. 2000]. Furthermore,
more complex programs are unlikely to receive complete coverage from safe
regions.

Another issue is that our current implementation places all Java arrays in
ICRs . In fact, only multidimensional arrays that are indexed in a row-wise
manner are suitable for our technique (to avoid excessive TLB misses). We
could extend our Java implementation to handle arrays accessed in a column-
wise manner by either (1) transposing the array or (2) avoiding placing it in
an ICR and performing traditional bounds checks. However, in the benchmarks
used in this work, our current technique was sufficient.

Finally, as was discussed in Section 4, ICRs benefit from the use of a small
page size. However, other applications may desire large page sizes. For exam-
ple, some JVMs, such as HotSpot, map the heap using large pages [mic]. For-
tunately, we do not believe that ICRs preclude large page sizes. In particular,
new architectures provide multiple page sizes in hardware. An operating sys-
tem can take advantage of this to allow different applications to use different
page sizes, or even possibly different page sizes in the same application. There
already exist Linux prototypes that allow the latter [Winwood et al. 2002]. Com-
bined with our xvm , we argue that ICRs can use small page sizes with little, if
any, effect on other applications.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

526 • C. Bentley et al.

8. CONCLUSION

This paper has introduced a new technique to check array-bounds implicitly,
rather than the more traditional explicit way. We use compiler and operating
system support to remove all bounds checks in Java programs and all but one
check in C programs. The basic idea is to place each array object in a index-
confinement region (ICR), which is an isolated virtual memory region. The rest
of a ICR is unmapped and any access to that portion will cause a hardware
protection fault.

In order to obtain this improvement, it was necessary to (1) create a Java
implementation to perform special array allocations, as well as, (2) use a small
(4-KB) page size with a large virtual address space. Combined, this reduces
overhead in the cache as well as fragmentation in main memory because of
program data, as well as page table data. We created a large virtual address
space via an abstraction we called xvm , which provides an extended, customiz-
able virtual memory, with little, if any, effect on other processes. In particular,
in our Java benchmarks, ICRs average a small 9% overhead, while full com-
piler bounds checking averages nearly 63%. Overall, we believe that reducing
the penalty for array-bounds checking in Java will make it, as well as other
high-level languages, more attractive for parallel and HPC applications.

ACKNOWLEDGMENTS

We wish to thank David Mosberger for answering several questions about the
Itanium Linux design and implementation.

REFERENCES

ARTIGAS, P., GUPTA, M., MIDKIFF, S., AND MOREIRA, J. 2000. Automatic loop transformations
and parallelization for Java. In Proc. ACM International Conference on Supercomputing. 1–
10.

BAILEY, D., BARTON, J., LASINSKI, T., AND SIMON, H. 1991. The NAS parallel benchmarks. RNR-91-
002, NASA Ames Research Center.

BEA. 2005. BEA JRockit whitepaper (http://www.bea.com/content/news events/white papers/
bea jrockit wp.pdf).

BODIK, R., GUPTA, R., AND SARKAR, V. 2000. ABCD: eliminating array-bounds checks on demand.
In Proc. ACM Conference on Programming Language Design and Implementation. 321–333.

BOISVERT, R. F., DONGARRA, J. J., POZO, R., REMINGTON, K. A., AND STEWART, G. W. 1998. Optimizing
array reference checking in Java programs. Concurrency: Practice and Experience 10, 11-13,
1117–1129.

CHASE, J. S., LEVY, H. M., FEELEY, M. J., AND LAZOWSKA, E. D. 1994. Sharing and protection in a
single address space operating system. ACM Transactions on Computer Systems 12, 4 (May),
271–307.

CHIUEH, T. AND HSU, F. 2001. RAD: A compile-time solution to buffer overflow attacks. In Proc.
IEEE International Conference on Distributed Computing Systems. 409–420.

COWAN, C., PU, C., MAIER, D., WALPOLE, J., BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P., ZHANG, Q., AND

HINTON, H. 1998. StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In Proc. USENIX Security Conference. 63–78.

DAHN, C. AND MANCORIDIS, S. 2003. Using program transformation to secure c programs against
buffer overflows. In Working Conference on Reverse Engineering. 323–333.

FRUMKIN, M., SCHULTZ, M., JIN, H., AND YAN, J. 2002. Implementation of the NAS parallel bench-
marks in Java. NAS-02-009, NASA Ames Research Center.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

Implicit Array Bounds Checking on 64-bit Architectures • 527

GUPTA, R. 1993. Optimizing array-bound checks using flow analysis. ACM Letters on Program-
ming Languages and Systems 2, 1–4 (Mar.–Dec.), 135–150.

INTEL. 2006. Intel Itanium Architecture Software Developer’s Manual (http://download.
intel.com/design/itanium/manuals/24531705.pdf).

ITZKOVITZ, A. AND SCHUSTER, A. 1999. Multiview and Millipage—fine-grain sharing in page-based
DSMs. In Proc. USENIX Operating Systems Design and Implementation. 215–228.

Java hotspot vm options (http://java.sun.com/docs/hotspot/vmoptions.html).
KOLTE, P. AND WOLFE, M. 1995. Elimination of redundant array subscript range checks. In Proc.

ACM Conference on Programming Language Design and Implementation. 270–278.
LAM, L. AND CHIUEH, T. 2005. Checking array-bound violation using segmentation hardware. In

Proc. IEEE International Conference on Dependable Systems and Networks. 388–397.
MARKSTEIN, V., COCKE, J., AND MARKSTEIN, P. 1982. Optimization of range checking. In Proc. ACM

Conference on Programming Language Design and Implementation. 114–119.
MCGARY, G. Bounds-checking C compiler (http://www.gnu.org/software/gcc/projects/bp/main.html).
MIDKIFF, S. P., MOREIRA, J. E., AND SNIR, M. 1998. Optimizing array reference checking in Java

programs. IBM Systems Journal 37, 3, 409–453.
MOREIRA, J., MIDKIFF, S. P., GUPTA, M., ARTIGAS, P., AND SNIR, M. 2000. Java programming for high

performance numerical computing. IBM Systems Journal 39, 1, 21–56.
MOSBERGER, D. AND ERANIAN, S. 2002. IA-64 Linux Kernel: Design and Implementation. Prentice-

Hall, Eaglewood Cliffs, NJ.
PERENS, B. Electric Fence (http://sunsite.unc.edu/pub/linux/devel/lang/c/electricfence-2.0.5.tar.gz).
RUGINA, R. AND RINARD, M. C. 2000. Symbolic bounds analysis of pointers, array indices, and

accessed memory regions. In Proc. ACM Conference on Programming Language Design and Im-
plementation. 182–195.

SUN. 2002. The Java HotSpot virtual machine (http://java.sun.com/products/hotspot/docs/
whitepaper/java hotspot v1.4.1/jhs 141 wp d2a.pdf).

TALLURI, M., HILL, M. D., AND KHALIDI., Y. A. 1995. A new page table for 64-bit address spaces. In
Proc. ACM Symposium on Operating Systems Principles. 184–200.

WINWOOD, S., SHUF, Y., AND FRANKE, H. 2002. Multiple page size support in the linux kernel.
XI, H. AND PFENNING, F. 1998. Eliminating array-bound checking through dependent types. In

Proc. ACM Conference on Programming Language Design and Implementation. 249–257.
XI, H. AND XIA, S. 1999. Towards array-bound check elimination in Java virtual machine lan-

gauge. In Proc. Centre for Advanced Studies Conference. 110–125.
YOUNG, M., AVADIS TEVANIAN, J., RASHID, R., EPPINGER, D. G. J., CHEW, J., BOLOSKY, W., BLACK, D.,

AND BARON, R. 1987. The duality of memory and communication in the implementation of a
multiprocessor operating system. In Proc. ACM Symposium on Operating Systems Principles.
63–76.

Received May 2005; revised February 2006 and May 2006; accepted May 2006

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

