
Analyzing and Mitigating the Impact of Manufacturing
Variability in Power-Constrained Supercomputing

Yuichi Inadomi1, Tapasya Patki2, Koji Inoue1, Mutsumi Aoyagi1,
Barry Rountree3, Martin Schulz3, David Lowenthal2, Yasutaka Wada4,

Keiichiro Fukazawa5, Masatsugu Ueda1, Masaaki Kondo6, Ikuo Miyoshi7

1Kyushu University
2University of Arizona

3Lawrence Livermore National Laboratory
4Meisei University
5Kyoto University

6University of Tokyo
7Fujitsu Ltd.

Contact Email: inadomi@soc.ait.kyushu-u.ac.jp

ABSTRACT
A key challenge in next-generation supercomputing is to
effectively schedule limited power resources. Modern pro-
cessors suffer from increasingly large power variations due
to the chip manufacturing process. These variations lead
to power inhomogeneity in current systems and manifest
into performance inhomogeneity in power constrained envi-
ronments, drastically limiting supercomputing performance.
We present a first-of-its-kind study on manufacturing vari-
ability on four production HPC systems spanning four
microarchitectures, analyze its impact on HPC applica-
tions, and propose a novel variation-aware power budgeting
scheme to maximize effective application performance. Our
low-cost and scalable budgeting algorithm strives to achieve
performance homogeneity under a power constraint by de-
riving application-specific, module-level power allocations.
Experimental results using a 1,920 socket system show up
to 5.4X speedup, with an average speedup of 1.8X across all
benchmarks when compared to a variation-unaware power
allocation scheme.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems

General Terms
Algorithms, Measurement, Performance

Keywords
Power-constrained HPC, Performance Modeling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SC ’15, November 15-20, 2015, Austin, TX, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3723-6/15/11 ...$15.00.
http://dx.doi.org/10.1145/2807591.2807638.

1. INTRODUCTION
Future High-Performance Computing (HPC) systems are

expected to be significantly power constrained. For example,
the U.S. Department of Energy has set a target of achieving
an exaflop under 20 MW in the next decade [2, 4, 45]. Op-
timizing application performance under a power bound has
thus become an important research area in the semiconduc-
tor as well as supercomputing communities.

With the end of Dennard Scaling, it is difficult to improve
processor performance without affecting power [16], and the
leaps needed for achieving exascale performance with tight
power constraints are pushing technology advances to their
limit. As a consequence, the fabrication process now leads
to some processors being less power efficient than others
even when they have the exact same architectural specifica-
tions [7,14,22,52]. This trend is intensifying as we scale out.
We refer to this variation in processor power consumption
as manufacturing variability.

Because of this manufacturing variability, modules (indi-
vidual processors and associated DRAM) in current HPC
systems are already inhomogeneous from the point of view
of power. Early results on 64 processors have shown a 10%
power variation for identical workloads at equivalent perfor-
mance [41]. In power-limited systems, where enforcing hard-
ware power caps is necessary, this power variation turns into
CPU frequency variation, directly impacting application ex-
ecution times and causing performance inhomogeneity [41].
This raises several new concerns; for example, a perfectly
load balanced application will now experience load imbal-
ance, and application performance will depend significantly
on the physical processors allocated to it during scheduling.

In this paper, we first study this phenomenon of power
inhomogeneity and its impact on HPC application perfor-
mance and then propose a low-cost, variation-aware power
budgeting algorithm that improves performance under a
power constraint. We make the following contributions:

• We present a first-of-its-kind study on processor manu-
facturing variability and quantify it on four production
HPC systems with four different underlying architec-
tures (Intel Sandy Bridge and Ivy Bridge, IBM Blue-

Gene/Q, and AMD Piledriver) using three power mea-
surement techniques (Intel’s RAPL, IBM BlueGene/Q
EMON, and PowerInsight). Overall, we observe up to
23% variation in processor (CPU) power.

• We analyze HPC applications on a large-scale, 1,920-
module Intel Ivy Bridge system and show that under a
power constraint, the variation in module power (CPU
and associated DRAM) can result in up to 64% per-
formance variation across application ranks.

• We design a low-cost, scalable, variation-aware power
budgeting algorithm that improves application per-
formance under a power constraint by determining
module-level power allocations to ensure performance
homogeneity.

• We implement this algorithm and propose two pos-
sible power management strategies: one with power
capping and the other with frequency selection. The
former specifies the amount of power assigned to each
module via RAPL, whereas the latter directly controls
the CPU frequency by using CPUfrequtils.

• Our practical, large-scale experiments demonstrate
that the proposed implementations can achieve a max-
imum speedup of 5.4X and an average speedup of
1.8X on HPC applications when compared to a naive,
variation-unaware power allocation scheme.

The paper is organized as follows. Section 2 explains man-
ufacturing variability and discusses existing power manage-
ment techniques in HPC. Section 3 presents the details of
the architectures and benchmarks used in our experiments.
Section 4 analyzes the extent of power variation and its im-
pact on HPC application performance and Section 5 pro-
poses our novel power budgeting scheme. In Section 6, we
report our evaluation results and demonstrate the efficiency
of the proposed framework. Section 7 concludes this paper.

2. BACKGROUND AND RELATED WORK

2.1 Manufacturing Variability
Over the past several decades, significant processor level

performance improvements were obtained by increasing the
transistor density on a processor die (Moore’s Law). This
was accomplished by shrinking the feature size of transistors,
which involved scaling down the associated threshold volt-
age and current. Shrinking a transistor below a certain level
leads to increased subthreshold conduction, leakage currents
and heat dissipation, making it impossible to improve pro-
cessor performance without affecting its power consumption
and reliability [16, 17]. This also makes lithography chal-
lenging, as distortions in channel lengths and film thickness
may occur and can lead to threshold voltage (and eventu-
ally, CPU frequency and power) variations [8,22,52]. These
variations can be random (usually dopant variations) or sys-
tematic and can occur in a single die (within-die) or between
multiple dies (die-to-die). Other factors such as temperature
and supply voltage can cause additional variations [7, 14].
Despite the ongoing research in fabrication mechanisms and
newer technologies such as power gating, these manufactur-
ing variations in CPU frequencies and power are expected to
worsen [28, 44]. Similar variations owing to the fabrication
process are found in DRAM chips.

Most vendors address variation in CPU frequency by using
frequency binning—processors with the same performance
characteristics are placed in the same bin (typically, HPC
systems obtain all their processors from the same bin). Cur-
rently, vendors do not deploy power binning, which is why
we observe power inhomogeneity in existing large-scale su-
percomputers. However, when we start constraining power
in hardware, the variation in power translates to variation in
CPU frequencies, affecting performance drastically [41,50].

2.2 Power-constrained supercomputing
Managing power efficiently and improving performance

under a power constraint has been the focus of recent re-
search in the semiconductor industry as well as in the su-
percomputing community. The semiconductor industry is
focusing on the development of better hardware, such as
non-volatile memories, low-power interconnects [24, 37] and
more power-efficient processor architectures [10]. Another
direction for research is near-threshold voltage computing,
which currently presents performance and reliability chal-
lenges [31, 32]. In the HPC community, a key area of re-
search is hardware overprovisioning [39, 46], in which a sys-
tem is designed to have more capacity than what it can
fully power with the given overall power resource. Such
overprovisioned systems can be reconfigured dynamically
based on workload characteristics. Power-aware resource
management techniques for conventional [6, 18, 19] as well
as overprovisioned systems [40,47] are being actively devel-
oped. Additionally, selecting efficient application configu-
rations and using techniques such as dynamic concurrency
throttling are being widely studied [5,11]. Prior research in
this domain focused on energy efficiency and includes studies
to save energy by trading execution times as well as tech-
niques to achieve optimal energy savings without affecting
performance [9, 21,23,30,42,43].

More recently, runtime systems to redistribute power in-
telligently within and between applications have been pro-
posed [15, 33, 35]. However, these do not address manufac-
turing variability. Totoni et. al [51] have discussed power-
aware scheduling for process variation heterogeneity with
Integer Linear Programming on 36-core chip multiproces-
sors (CMPs) with the Charm++ [29] platform. While this
is an interesting approach, it is a simulation study on 100
CMPs and has high overhead because it involves solving
an NP-hard ILP for each scheduling decision. Additionally,
it may lead to increased resource fragmentation and unfair
sharing of the power resource in a real system [20, 40]. Our
algorithm uses a low-cost single-module test run of the appli-
cation along with manufacturing variability data from large-
scale production systems and can work in conjunction with
existing as well as future resource managers, making it more
scalable and efficient from the point of view of deployment
on real production systems.

3. SETUP FOR STUDYING VARIATION
As we move towards power limited environments, detect-

ing and balancing manufacturing variability will play an im-
portant role in the optimization of HPC application perfor-
mance. Before we can discuss the necessary mechanisms and
techniques to counteract these variations, as we will do in
Section 5, we must first understand the impact of manufac-
turing variability. We therefore begin by presenting an ex-
tensive study to determine the impact of variation in power

on HPC application performance. The following section de-
tails the techniques used to measure and control power and
describes the systems and benchmarks used in our study.

3.1 Power Measurement Techniques
Several portable vendor-specific mechanisms to measure

and manage module power have been developed. Some of
these mechanisms use sensors and some others use perfor-
mance counter based models to estimate component power.
The techniques used in our study include Intel’s Running
Average Power Limit (RAPL), Penguin Computing’s Pow-
erInsight (PI) and IBM’s Environmental Monitor (EMON).
We discuss these techniques in detail below. Currently,
RAPL is the only technique that allows us to constrain and
manage power. Table 1 summarizes these techniques and
shows the granularity of measurement available in each case.

We primarily focus on module power (CPU sockets and
DRAM) in this work, mostly because it can be controlled
dynamically in HPC systems and can be used to constrain
and manage power at a fine granularity. Other components,
such as interconnects, do not provide this dynamic control
and account for static or base power consumption.

3.1.1 RAPL
RAPL is a model-based power management interface that

was introduced with the Intel Sandy Bridge microarchitec-
ture [12, 27]. It supports on-board power measurement and
hardware power capping across two main domains—Package
(PKG or CPU) and DRAM. RAPL is implemented with the
help of programmable Machine Specific Registers (MSRs)
and we program these by using the libMSR library [49]. To
enforce a power cap using RAPL, users can specify a power
bound and a time window, and the hardware ensures that
the average power over the time window does not exceed
the specified bound in the requested power domain. Intel
also has an MSR to control its Turbo Boost feature [26],
which can be used for overclocking the processor dynami-
cally. The operating CPU frequency in Turbo mode depends
on the workload and the ambient temperature and cannot
be controlled directly in software.

Although the specification of RAPL covers DRAM power
capping, motherboards supporting this functionality rarely
exist in large-scale supercomputers. Since DRAM power is
strongly correlated with CPU performance, it can be man-
aged by capping the CPU power. We thus restrict power
capping to the CPU domain in this paper1.

3.1.2 BlueGene/Q EMON
Each rack of a BG/Q machine houses two midplanes, eight

link cards, and two service cards. Each midplane has 16
node boards, each of which has 32 compute cards (nodes)
connected by a 5D-torus. Power measurement is supported
at the node board level. A compute card has 17 active cores,
16 of which are application cores. Measurements are sup-
ported across seven different domains, the main ones being
chip cores (CPU) and chip memory.

To facilitate power measurement, each node board is con-
nected to an FPGA over the EMON bus, which in turn is
connected to two Direct-Current Assemblies (DCAs). The
DCAs have a microcontroller that periodically calculates

1Our work can be easily extended to include memory-level
power capping when it becomes available in HPC production
systems.

Table 1: Power Measurement Techniques
Technique Reported Granularity Power

Capping

RAPL Average 1 ms Yes

PowerInsight Instantaneous 1 ms (or less) No

BGQ EMON Instantaneous 300 ms No

instantaneous power [53–55] and communicates with the
FPGA over the I2C bus. The FPGA can relay data to the
BG/Q compute nodes over the EMON bus. IBM provides
an EMON API to access power consumption data.

3.1.3 PowerInsight (PI)
PI is an architecture-independent, sensor-based technique

to monitor node power [13,25]. The PI architecture consists
of three components: (1) a harness with sensor modules
for measurement; (2) a cape, or carrier board, with three
Analog-to-Digital-Converters (ADC) connected to the sen-
sor modules, and; (3) a BeagleBone core with an ARM Cor-
tex A8 processor, 256 MB of memory, and USB/Ethernet
connectivity to the primary node being measured.

Each sensor module is an Allegro ACS713 hall effect cur-
rent sensor and a voltage divider. Typically, the BeagleBone
is plugged in to the motherboard using the USB port which
provides console connectivity to the node. CPU and DRAM
power consumption data can be measured by using the ge-
tRawPower software utility, or with the PI-API.

3.2 Systems and Architectures
We use four supercomputing systems (Cab, Vulcan, Teller,

and HA8K) for our analysis in this paper, spanning four
underlying micro-architectures. The first two systems are
located at the Lawrence Livermore National Laboratory
(LLNL), and the other two are located at Sandia National
Laboratory (SNL) and Kyushu University. Vulcan is the 9th
fastest supercomputer in the world, and the HA8K system
is a part of the 49th-fastest supercomputer in the world,
QUARTETTO. Table 2 provides details about the comput-
ing resources and power measurement support in these sys-
tems. For the Cab system at LLNL, DRAM power measure-
ment was not available due to BIOS restrictions.

3.3 Benchmarks
The benchmarks used in this work are described below.

We used the MPI versions of these codes in this paper. For
the HA8K system, we used Intel compiler (version 15.0.1)
with Intel MPI (version 5.0). We used GNU compiler (ver-
sion 4.7) with OpenMPI (version 1.6) on Teller, GNU com-
piler (version 4.4.7) with BG/Q MPI on Vulcan, and the
Intel compiler (version 14.0.3) with MVAPICH2 on Cab.

3.3.1 *DGEMM and *STREAM
These two benchmarks are from the HPC Challenge

benchmark suite [34]. *DGEMM is a compute-bound, em-
barrassingly parallel matrix multiplication subroutine from
the BLAS library and is also the main kernel for the High
Performance Linpack (HPL) benchmark. We used a thread-
parallelized version of this code in the Intel Math Kernel Li-
brary with a matrix size of 12, 288×12, 288. The *STREAM
benchmark is used to measure sustainable memory band-
width and executes simple vector operations. We optimized

Table 2: Architectures Under Consideration

Site Node Micro- Total Procs. Cores CPU Memory TDP Power
Architecture Nodes Per Node Per Proc. Frequency Per Node Msrmt.

Cab (LLNL) Intel E5-2670 1,296 2 8 2.6 GHz 32 GB 115 W RAPL
Sandy Bridge

BG/Q Vulcan IBM 24,576 1 16 1.6 GHz 16 GB Unreported EMON
(LLNL) PowerPC A2 (compute) (Max 100 kW

per rack)

Teller (SNL) AMD A10-5800K 104 1 4 3.8 GHz 16 GB 100 W PI
Piledriver

HA8K (Quartetto) Intel E5-2697v2 960 2 12 2.7 GHz 256 GB 130 W RAPL
Kyushu Univ. Ivy Bridge

the original HPCC code to facilitate the use of the AVX
instructions and used OpenMP in addition to MPI. Each
vector is 24 GB and does not exceed the capacity of the
DRAM module.

3.3.2 NAS Parallel Benchmarks: EP, BT and SP
Embarrassingly Parallel (EP) is a simple kernel from the

NAS Parallel Benchmark (NPB) suite [1] that is used to
generate independent Gaussian Random variates using the
Marsaglia polar method. Block Tri-diagonal solver (BT) and
Scalar Penta-diagonal solver (SP) are two other pseudo ap-
plications from NPB. We used the MPI version with Class D
for EP, and the multizone hybrid MPI + OpenMP versions
with Class E for BT and SP.

3.3.3 MHD
Magneto-Hydro-Dynamics (MHD) simulation is used un-

derstand the global configuration and dynamics of space
plasma, which is essential for forecasting space weather.
MHD equations are derived from the moments of Vlasov and
Maxwell equations. We choose a three-dimensional MHD
code that uses the Modified Leapfrog (MLF) method to solve
partial differential equations iteratively [38].

3.3.4 mVMC
mVMC-mini (mVMC) is a mini-application included in

the FIBER benchmark suite [36] developed by the RIKEN
Advanced Institute for Computational Science. It uses
Monte Carlo sampling to analyze the structure of strongly
correlated electron systems. We use the middle-scale bench-
mark setting provided by the application developers.

4. ANALYZING VARIATIONS
In this section, we present detailed CPU power and per-

formance measurements across three HPC production sys-
tems (Cab, Vulcan and Teller) and establish that power
inhomogeneity exists irrespective of the underlying micro-
architecture. We then examine module-level (CPU and
DRAM) power variation in specific HPC applications on
HA8K. Finally, with the help of RAPL power caps, we study
the impact of module-level power variation on application
performance in power-constrained scenarios.

4.1 CPU Power Inhomogeneities
Figure 1 shows power and performance data for a single-

socket EP benchmark on the Cab, Vulcan and Teller sys-
tems. We choose single-socket EP for several reasons. First,

it is an embarrassingly parallel, CPU-bound benchmark with
no communication or synchronization overheads. Second,
most of its working set fits in cache, which allows us to an-
alyze CPU power and performance in isolation. Third, EP
exhibits no per-run noise (less than 0.5% variation over 15
iterations on the same socket), which lets us conclude that
our results depict nothing but manufacturing variability.

The performance data in Figure 1 is represented as a per-
centage slowdown compared to the fastest socket in the sys-
tem, and the power data is reported as a percentage in-
crease when compared to the most power-efficient socket.
Additionally, processors are sorted by performance charac-
teristics. Turbo Boost and Turbo Core have been enabled on
supporting architectures [3, 26]. Power caps have not been
enforced on the Cab system. Note that power capping is
not supported on Vulcan and Teller. DRAM power readings
were unavailable on Cab due to BIOS restrictions. We thus
focus only on CPU power in this subsection.

For the Cab and Vulcan systems, we use 2,386 proces-
sors (1,193 nodes) and 1,536 processors (48 node boards)
respectively and observe almost no performance variation.
Maximum variation in power on Cab is 23%, and maxi-
mum variation in power on Vulcan is 11%. As explained
in the previous subsection, this is expected when proces-
sors belong to the same frequency bin. On the Teller sys-
tem, we obtain data for 64 processors, and observe both
power and performance variation. Maximum power varia-
tion is 21%, and the maximum performance variation is 17%.
We also notice a small negative correlation between perfor-
mance and power—processors that consumed more power
performed better. We believe this could be because of a
different binning strategy that we are unaware of. Our key
observation from Figure 1 is that manufacturing variabil-
ity affects CPU power consumption significantly across dif-
ferent computing platforms and does not necessarily corre-
late with performance, making it extremely difficult to make
application-level power and performance predictions.

4.2 Module Power Inhomogeneities
From this section onward, all our results in this paper are

from the HA8K system. This is because we were able to
use CPU power capping and measure DRAM power on this
system. Additionally, we now conduct 1,920-module multi-
node experiments. Due to space limitations, we only analyze
two applications (*DGEMM and MHD) in this subsection.
We observe similar trends for other benchmarks.

Figure 2 depicts results of the 1,920-module experiments
of *DGEMM and MHD on the HA8K system with and with-

Sl
ow

do
w

n
[%

]
(C

om
pa

re
d

to
 fa

st
es

t)

Socket IDs

In
cr

ea
se

 in
 p

ow
er

 [%
]

(C
om

pa
re

d
to

 so
ck

et
 w

ith
 m

in
 p

ow
er

)

0

5

10

15

20

25

0

5

10

15

20

25

0 300 600 900 1200 1500 1800 2100

Sl
ow

do
w

n
[%

]
(C

om
pa

re
d

to
 fa

st
es

t)

Nord Board IDs

In
cr

ea
se

 in
 p

ow
er

 [%
]

(C
om

pa
re

d
to

 so
ck

et
 w

ith
 m

in
 p

ow
er

)

0

5

10

15

20

25

0

5

10

15

20

25

0 10 20 30 40

Sl
ow

do
w

n
[%

]
(C

om
pa

re
d

to
 fa

st
es

t)

In
cr

ea
se

 in
 p

ow
er

 [%
]

(C
om

pa
re

d
to

 so
ck

et
 w

ith
 m

in
 p

ow
er

)

Socket IDs

0

5

10

15

20

25

0

5

10

15

20

25

0 10 20 30 40 50 60

(A) The Cab system, LLNL (B) The Vulcan system, LLNL (C) The Teller system, SNL

Figure 1: Processor Power and Performance Variation on Cab, Vulcan and Teller Systems

Po
w

er
 [W

]

Module IDs

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

Module (CPU + DRAM) power
Average=112.8W, Standard Deviation=4.51, Vp=1.30

CPU power
Average=100.8W, Standard Deviation=0.25, Vp=1.29

DRAM power
Average=12.0W, Standard Deviation=1.50, Vp=2.84

Po
w

er
 [W

]

Module IDs

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

Module (CPU + DRAM) power
Average=96.4W, Standard Deviation=3.89, Vp=1.29

CPU power
Average=83.9W, Standard Deviation=3.55, Vp=1.28

DRAM power
Average=12.6W, Standard Deviation=1.47, Vp=2.79

CPU clock frequency in average [GHz]

CP
U

 so
ck

et
 p

ow
er

 [W
]

20

30

40

50

60

70

80

90

100

110

120

1.0 1.5 2.0 2.5

Cm (Constraint/module)=No, Vf=1.00, Vp=1.28

Cm=90W (Ccpu=77.3W), Vf=1.24, Vp=1.10
Cm=80W (Ccpu=68.3W),
Vf=1.38, Vp=1.03

Cm=70W (Ccpu=59.3W),
Vf=1.56, Vp=1.03

Cm=60W (Ccpu=50.3W),
Vf=1.76, Vp=1.06

Normalized execution time

M
od

ul
e

(C
PU

 +
 D

RA
M

)
po

w
er

 [W
]

40

50

60

70

80

90

100

110

120

130

140

0.8 1.2 1.6 2.0 2.4 2.8 3.2

Cm(Constraint/module)=No, Vt=1.00, Vp=1.30

Cm=110W (Ccpu=97.4W), Vt=1.31, Vp=1.16
Cm=100W (Ccpu=88.1W), Vt=1.27, Vp=1.14

Cm=90W (Ccpu=78.8W), Vt=1.28, Vp=1.16
Cm=80W (Ccpu=69.5W),
Vt=1.40, Vp=1.18

Cm=70W (Ccpu=60.1W), Vt=1.64, Vp=1.21

1.0

Normalized execution time

M
od

ul
e

(C
PU

 +
 D

RA
M

)
po

w
er

 [W
]

40

50

60

70

80

90

100

110

120

130

140

0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.61.0

Cm (Constraint/module)=No, Vt=1.00, Vp=1.29

Cm=90W (Ccpu=77.3W), Vt=1.00, Vp=1.19

Cm=70W (Ccpu=59.3W),
Vt=1.01, Vp=1.20

Cm=60W (Ccpu=50.3W),
Vt=1.01, Vp=1.22

Cm=80W (Ccpu=68.3W),
Vt=1.00, Vp=1.18

(i) Power characteristics (ii) Variation in CPU frequency and power (iii) Variation in module power and performance

*DGEMM *DGEMM *DGEMM

MHD MHD MHD

CPU clock frequency in average [GHz]

CP
U

 so
ck

et
 p

ow
er

 [W
]

20

30

40

50

60

70

80

90

100

110

120

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

Cm (Constraint/module)=No, Vf=1.00, Vp=1.29
Cm=110W (Ccpu=97.4W), Vf=1.20, Vp=1.08

Cm=100W (Ccpu=88.1W),
Vf=1.32, Vp=1.03

Cm=90W (Ccpu=78.6W),
Vf=1.35, Vp=1.03

Cm=80W (Ccpu=69.5W),
Vf=1.42, Vp=1.02

Cm=70W (Ccpu=60.1W),
Vf=1.40, Vp=1.00

Figure 2: Module Power and Performance Variation the HA8K System

out power capping. We summarize graph notations in Ta-
ble 3. The two graphs grouped as (i) report power con-
sumption of each module and show a breakdown of CPU
and DRAM power. Vp, or the worst-case power variation is
calculated by dividing the maximum power value with the
minimum power value in the appropriate set. We observe
that Vp values at the module level are about 1.3, which
means that there is a 30% difference in power consumption
across modules even when they are running identical codes.
For all our benchmarks, Vp values for module power ranged
from 1.2 to 1.5. We also observe that DRAM power varia-
tion was significantly higher, with Vp values of about 2.8.

4.3 Impact on Application Performance
We now analyze how variation in power affects the CPU

clock frequency when a power constraint is enforced. We
use RAPL to enforce power caps, which adjusts the aver-
age power consumption of the CPU to that of the specified
constraint for each time step (user-specified, typically 1 ms)
by internally using techniques such as dynamic voltage and
frequency scaling.

Table 3: Terminology
ID Description

Cs System-level power constraint

Cm Module-level power constraint2

Ccpu CPU power cap (determined statically)

Vp Worst-case power variation

Vf Worst-case CPU frequency variation

Vt Worst-case execution time variation

The graphs grouped as (ii) in Figure 2 depict results of
CPU frequency variation for *DGEMM and MHD. The x-
axis is the average CPU frequency for a module across all

2For a naive scheme (defined in Section 6), and for Figure
2, Cm = Cs/n, where n is the number of modules. In case
of our power budgeting algorithm though, each module will
have a unique power allocation, Pmodule based on the appli-
cation’s characteristics and the manufacturing variability in
the system, such that the average Pmodule across n modules
is Cm.

RAPL time steps during the application’s execution. The y-
axis is the CPU power consumed. Here, Cm shows the power
constraint applied to each module, and Ccpu is the CPU
power cap enforced with RAPL. We analyze the CPU and
DRAM power characteristics offline and determine Ccpu for
each scenario. Similar to Vp, Vf is the worst-case variation
in CPU frequency across the modules.

We observe that variation in power (when no power cap-
ping is enforced) translates to variation in CPU frequency
under a power cap, leading to performance inhomogeneity
in the system. This is a serious issue for HPC applications
and future power-constrained systems. We also observe that
the performance variation tends to become worse as we re-
strict power further. For instance, in *DGEMM, reducing
the module power budget from 110 W to 70 W increases
Vf from 1.20 to 1.40, indicating a 40% difference in CPU
frequencies across modules at 70 W. In MHD, applying a 60
W module power cap results in 1.75X difference in CPU fre-
quencies between the fastest and slowest CPUs. Note that
this scenario makes a perfectly load-balanced application ex-
hibit load imbalance under a power constraint. It is unclear
how naturally load-imbalanced HPC applications will react
to this phenomenon.

Finally, we consider the impact of variation in power
on actual execution time of applications. The CPU-
boundedness, memory characteristics and synchronization
characteristics of an application will determine how much
the overall performance impact will be. This is shown in
the graphs grouped by (iii) in Figure 2. The x-axis shows
the execution time of the application’s MPI processes un-
der a power constraint normalized to the execution time of
the corresponding MPI processes when power was uncon-
strained. The y-axis denotes module power. Vt denotes the
worst-case execution time variation across all MPI ranks.

There are two important observations. First, for
*DGEMM, power capping results in up to 64% variation
in per-rank performance (Cm = 70W), resulting in poor
application performance. MHD, on the other hand, shows a
different trend. There is no serious execution time variation
despite the large amount of variation in CPU frequencies
as discussed earlier. We attribute this to the periodic syn-
chronizations in MHD, which tend to hide the variation in
execution time across MPI ranks. Figure 3 shows 64-module
MHD data and we observe that constraining power indeed
affects CPU wait times and degrades performance. The x-
axis represents the cumulative time spent by each rank of
MHD in MPI_Sendrecv when exchanging data with neigh-
boring ranks. Vt values are very high because for one pro-
cess, the MPI_Sendrecv overhead is very small. For the re-
maining benchmarks, we observe that *STREAM has trends
similar to *DGEMM, while NPB-BT, NPB-SP and mVMC
are more similar to MHD.

5. VARIATION-AWARE POWER
BUDGETING

As the previous section has shown, manufacturing vari-
ability can have a significant impact on application perfor-
mance in power limited environments. We therefore need
new mechanisms that can help detect and balance power to
even out such variations. In this section, we present our
variation-aware power budgeting algorithm that addresses
this challenge. It is based on a Power Variation Table (PVT)

40

50

60

70

80

90

100

110

120

0 10 20 30 40

Cm=90W (Ccpu=77.3W), Vt=16.37, Vp=1.11

Cm (Constraint/module)=No, Vt=1.55, Vp=1.27

Cm=80W (Ccpu=68.3W), Vt=2.27, Vp=1.14

Cm=70W (Ccpu=59.3W), Vt=22.37, Vp=1.15

Cm=60W (Ccpu=50.3W),
Vt=57.29, Vp=1.16

Total time spent for synchronizations [sec]

M
od

ul
e

(C
PU

 +
 D

RA
M

)
po

w
er

 [W
]

Figure 3: Module Power and Performance Variation
in Synchronized ExecutionsFlow of Variation Aware Power
Budgeting

HPC$

Applica+on$

Source$Code$

Analysisto

Insert$PMMDs$

HPC$

Applica+on$

with$PMMDs$

PMMD:$Power$Measurement$&$Management$Direc+ves�

Test$Runs$ona

Single$Module$�

App.$

Power$

Profile$

App.$Dependent$

Power$Model$Table$

(all$modules)�

Varia+onHAware$

Power$Budge+ng$

Algorithm$

App.$level$

Power$

Constraint$

Module$

Alloca+on$

(Scheduler)$

Inputs�

Output�

ModuleH

level$Power$

Alloca+ons$

App.$Independent$

System$Power$

Varia+on$Table$

22

App.$

Input$

Data$

Final$

App.$

Runs$

Imported�

Figure 4: Framework of proposed power budgeting

that has to be constructed once per system and which then
serves as the basis to estimate power variations in any tar-
get application. Once this table is computed, our power
budgeting framework follows the workflow in Figure 4. The
inputs to this framework include an HPC application, its
associated data, an application-level power constraint im-
posed externally by the system, a list of modules (that is,
physical processors) that were allocated by the job sched-
uler to the application, and the aforementioned PVT that
describes the manufacturing variability on the given system.
The output is a module-level power allocation to be applied
to the given list of modules in order to maximize effective
performance. A summary of the steps used in the frame-
work is given below, and detailed explanations are provided
in the subsections that follow.

1) Inserting Power Directives: First, Power Measure-
ment and Management Directives (PMMDs) are inserted
in the HPC application to facilitate analysis. We use
the compiler-based instrumentation system from the TAU
toolkit [48] and define the region of interest by inserting
PMMDs just after MPI_Init and just before MPI_Finalize.

2) Single-module test run: We conduct two low-cost,
single-module test runs of the application, one at the
maximum CPU frequency and the other at the minimum
CPU frequency, and measure the CPU and DRAM power.

31

*DGEMM� MHD�

Imported�

6""
7""
8""
9""
10""
11""
12""
13""
14""

40""
50""
60""
70""
80""
90""

100""
110""
120""

1.2"" 1.4"" 1.6"" 1.8"" 2.0"" 2.2"" 2.4"" 2.6""

"M
od

ul
e"
an
d"
CP

U
"P
ow

er
"[W

]�

CPU"clock"frequency�

"D
RA

M
"P
ow

er
"[W

]�

Module"
R²"="0.999"

R²"="0.999"
CPU"

R²"="0.996"
DRAM"

8""
9""
10""
11""
12""
13""
14""
15""
16""

20""
30""
40""
50""
60""
70""
80""
90""

100""

1.2"" 1.4"" 1.6"" 1.8"" 2.0"" 2.2"" 2.4"" 2.6""

"M
od

ul
e"
an
d"
CP

U
"P
ow

er
"[W

]�

CPU"clock"frequency�

"D
RA

M
"P
ow

er
"[W

]�R²"="0.999"
Module"

R²"="0.999"
CPU"

R²"="0.991"
DRAM"

Figure 5: Power vs. CPU frequency on 64 HA8K
modules

3) Power model calibration: We use the information
from the single-module test run and a given, precom-
puted system-level PVT to create an application-dependent,
variation-aware Power Model Table (PMT).

4) Power budgeting algorithm: We use the applica-
tion’s PMT and the given module list to determine the
module-level power allocations that maximize the appli-
cation’s performance under the specified application-level
power constraint. This includes determining module-level
CPU frequencies and deciding a power constraint for each
module in order to realize that frequency.

5) Final application run: The HPC application anno-
tated with the PMMDs is executed on the given module list
by using the module-level power allocations determined by
the variation-aware power budgeting algorithm, using two
implementation strategies: Power Capping (PC) with RAPL
and Frequency Selection (FS) with cpufrequtils.

5.1 Budgeting Algorithm
In the following subsections, we detail Step 4, which is

variation-aware power budgeting. We explain how we model
power and determine the module-level power allocations
given an application-level power constraint.

5.1.1 Modeling Power
In order to assign the appropriate amount of power to

each module, we first need to develop a simple and accu-
rate model to predict the power consumption of an appli-
cation. Our model is based on the assumption that power
consumption for both CPU and DRAM is proportional to
the CPU frequency, which we have validated from the data
we gathered (see Figure 5, which shows power consumption
on y-axes and the CPU frequency on the x-axis).

Based on this assumption, for each new application, we
conduct two single-module test runs at the maximum and
the minimum CPU frequencies available (fmax and fmin).
We represent the associated CPU and DRAM power con-
sumption by P cpu

max, P cpu
min, P dram

max , and P dram
min . Then, for a

known CPU frequency, f , we can predict the CPU, DRAM
and module power (P cpu, P dram,Pmodule) as shown below.
Here, the coefficient α (0 ≤ α ≤ 1) is a key parameter that
is used to control the power-performance tradeoff.

f = α(fmax − fmin) + fmin (1)

P cpu = α(P cpu
max − P cpu

min) + P cpu
min (2)

P dram = α(P dram
max − P dram

min) + P dram
min (3)

Pmodule = P cpu + P dram (4)

5.1.2 Module-Level Power Allocation
We assume that for most HPC applications, increasing

the CPU frequency improves performance and we see this
assumption hold for the vast majority of codes. Note that
applications have already been tuned for memory perfor-
mance and scalability, because the users have to determine
the right number of modules (physical processors) to exe-
cute them when they submit their job to the scheduler. The
variation-aware power budgeting algorithm strives to max-
imize effective performance under a power constraint, and
its objective thus is:
To determine the maximum application-specific coefficient
α such that the total power consumption across all modules
does not exceed the given application-level power constraint,
Pbudget.

Given N modules and their associated module power at
the maximum and minimum CPU frequencies (Pmodule

max,i and

Pmodule
min,i), we know that:

N∑
i=1

(
α
(
Pmodule
max,i − Pmodule

min,i

)
+ Pmodule

min,i

)
≤ Pbudget (5)

Hence, the maximum α for an application becomes:

α ≤
P budget −

∑N
i Pmodule

min,i∑N
i

(
Pmodule
max,i − Pmodule

min,i

) (6)

Note that α is set to 1.0 when we do not have any power
constraints, so that we can apply the fmax frequency. Addi-
tionally, it is important to note that α is application-specific
and is common across all modules in order to ensure consis-
tent performance.

After we determine α, the optimum power budget
Pmodule
i , assigned to module i, is defined by the following

equation.

Pmodule
i = α

(
Pmodule
max,i − Pmodule

min,i

)
+ Pmodule

min,i (7)

The associated CPU power cap for the module is:

P cpu
i = Pmodule

i − P dram
i (8)

(9)

5.2 Power Model Calibration
As discussed in Section 5.1, obtaining the maximum α

under a given power constraint is the key challenge in our
power budgeting scheme. To solve the optimization problem
described in Equation (6), we need four application-specific
parameters for each module—P cpu

max,i, P
cpu
min,i, P

dram
max,i, and

P dram
min,i . The parameters depend on both application charac-

teristics and manufacturing variability.
Because it is impractical to execute the application on all

installed modules to obtain this information, we derive this
information by using a previously measured, system-level
Power Variation Table (PVT) and two single-module appli-
cation runs. We refer to this step as power model calibration.

Figure 6 depicts this step. The PVT consists of N en-
tries, each of which stores variation scales associated with
the CPU and DRAM in each module in order to represent
the degree of inter-module variation. The PVT is gener-
ated when the system is installed by executing representative
microbenchmarks on each module. The power parameters,
P cpu
max,i, P

cpu
min,i, P

dram
max,i, and P dram

min,i are measured for each
module, and the variation scales are obtained by dividing

Power Model Calibration

Module'
ID

Power'on'

Max.'CPU'Freq.

Power'on'

Min.'CPU'Freq.

CPU DRAM CPU DRAM
k 120 30 70 20

Module'
ID

Power'on'

Max.'CPU'Freq.

Power'on'

Min.'CPU'Freq.

CPU DRAM CPU DRAM
1� 0.9� 0.8� 0.8� 0.8�

2� 1.1� 1.1� 1.3� 1.2�

k� 1.2� 1.1� 1.4� 1.3�

N� 0.8� 0.9� 1.1� 1.2�

N : #of modules for product
runs
n : #of modules for profiling
 (n << N)

Power&Varia*on&Table:&Generated&by&usingµ9
benchmarks&at&a&boot&*me&(now&we&use&only&Star&STREAM)�

47

Applica*on9independent&
Power&Varia*on&Table&(PVT)�

Measured&power&on&
a&module&

Applica*on9dependent&&
Power&Model&Table&(PMT)�

Module'
ID

Power'on'

Max.'CPU'Freq.

Power'on'

Min.'CPU'Freq.

CPU DRAM CPU DRAM
1� 90� 22� 40� 12�

2� 110� 30� 65� 18�

k� 120� 30� 70� 20�

N� 80� 24� 55� 18�

To&be&imported�

Freq.�

Po
w
er
�Module91�

CPU�

DRAM�

Module92�

Module93�

Module9N�CPU!
• Max.&Freq.:&100&W&(120&W&/&1.2)&
• Min.&Freq.&:&&&50&W&(70&W&/&1.4)&

DRAM&
• Max.&Freq.:&27&W&(30&W&/&1.1)&
• Min.&Freq.&:&15&W&(20&W&/&1.3)�

Average&power&
&predicted&by&module9k!

Figure 6: Power model calibration

each of these module power values by the respective aver-
age. For example, Module-k in Figure 6 has a variation scale
of 1.2 for P cpu

max,i. This indicates that Module-k consumes 1.2
times more maximum CPU power than the average across
all modules. As the PVT is generated only once when the
system is installed, it does not incur any overhead in the
variation-aware power budgeting algorithm.

In order to generate the application-dependent Power
Model Table (PMT), two single-module test runs are exe-
cuted at the maximum and minimum CPU frequencies. We
can then predict the four parameters for all modules by first
determining the system-level average values for the parame-
ters from the single-module tests, and then multiplying these
average values with the variation scales from the PVT. For
example, in Figure 6, if Module-k is used for the application
test runs, and the measured CPU power with the maximum
CPU frequency is 120 W, we first determine that the system-
level average for the same is 100 W (because the variation
scale for Module-k is 1.2), and then predict P cpu

max,i for all
modules by multiplying the average by the corresponding
variation scale. In this case, Module-1’s P cpu

max,1 will be 90
W (100 W × 0.9). Once we have the PMT, we can derive
module-level power constraints by using Equation 9.

5.3 Implementation and Accuracy
After we obtain module-level power allocations and CPU

frequencies, we use the PMMDs to manage HPC applica-
tion power. We have two simple implementations—Power
Capping (PC) and Frequency Selection (FS). As explained
earlier, our goal is to apply the best common CPU frequency
that maximizes the application’s performance under a given
power constraint. PC attempts to indirectly control the CPU
frequency by directly limiting the CPU power consumption.
It is guaranteed that PC will never exceed the CPU power
constraint because RAPL enforces strict power caps.

RAPL attempts to dynamically optimize the CPU fre-
quency when a power cap is enforced, leading to CPU fre-
quency throttling. This dynamic behavior does not guar-
antee consistent performance across modules, and may in-
troduce load balancing concerns by itself. To address this
issue, we propose the FS implementation, where a static
frequency as determined by Equation (1) is applied to the

Table 4: Power constraints on HA8K
Cs [KW] 211 192 173 154 134 115 96

Ave. Cm [W] 110 100 90 80 70 60 50

*DGEMM X X X X X – –
*STREAM • X X X – – –

MHD • • X X X X –
NPB-BT • • • X X X X
NPB-SP • • • X X X X
mVMC • • • X X X –

modules. FS directly applies the determined CPU frequency
by using cpufrequtils, and indirectly manages power con-
sumption. While this guarantees consistent performance, it
has the potential to violate the derived CPU power cap.

In our experiments, we use *STREAM as a microbench-
mark to generate the PVT. The primary reason for choos-
ing *STREAM was that it exhibited both memory and
CPU boundedness, and consumed relatively large amounts
of memory as well as CPU power. This allows us to capture
power characteristics for both components in a fair man-
ner at the same time with a single benchmark. For most
of our benchmarks, the prediction error between the gen-
erated application-specific PMT and the measured power
consumption for that application across all modules is un-
der 5%. The exception was NPB-BT, which has a prediction
error of about 10%.

6. EVALUATION
For our evaluation, we assume that the HPC applica-

tions under consideration are running on a dedicated system
(HA8K with 1,920 modules) under different global power
constraints without any other interference. This allows us
test the limits of proposed variation-aware budgeting algo-
rithm. Even though our framework supports multiple ap-
plications, determining what fraction of system power each
application should be allocated is an orthogonal problem,
which is part of our future work. Table 4 shows the appli-
cations and the system-level power constraints (Cs) that we
consider. As discussed in Section 4, Cm is the expected aver-
age power constraint per module (and not the actual derived
module-level power constraint), presented here to help read-
ers understand the degree of variation-aware power capping
intuitively. We had limited allocated time on HA8K, so we
focused on specific, interesting scenarios in our experiments,
which are marked with check-marks (“X”) in Table 4. The
entries with bullet-marks (“•”) represent scenarios which are
not sufficiently power constrained from the point of view of
the application’s power profile resulting in no performance
improvements (as no power capping is required), and the en-
tries with hyphens (“–”) indicate scenarios where the system
is extremely power limited and the modules under consid-
eration cannot be operated even with the minimum CPU
frequency (fmin). We consider the following power alloca-
tion schemes in our evaluation.

• Näıve : This is an application-independent, variation-
unaware power budgeting scheme that distributes power
uniformly across all modules. For the PMT, the P cpu

max,i

and P dram
max,i entries are the TDP values based on the ar-

chitecture (130 W and 62 W respectively for our system).

113

*DGEMM� MHD�

NPB*BT� NPB*SP� mVMC�

To#be#imported�

0.0##
0.5##
1.0##
1.5##
2.0##
2.5##
3.0##

173#KW##############154#KW############134#KW#############115#KW�

0.0##
1.0##
2.0##
3.0##
4.0##
5.0##
6.0##

154#KW############134#KW#############115#KW################96#KW� 0.0##

1.0##

2.0##

3.0##

4.0##

5.0##

154#KW############134#KW#############115#KW##############96#KW� 0.0##
0.5##
1.0##
1.5##
2.0##
2.5##
3.0##
3.5##

154#KW######################134#KW####################115#KW#�

0.0##

0.5##

1.0##

1.5##

2.0##

192#KW#####################173#KW#######################154#KW#�

*STREAM�

0.0##

0.5##

1.0##

1.5##

2.0##

211#KW#######192#KW########173#KW#######154#KW#######134#KW�

Sp
ee
d1
U
p�

Naïve&&&&&Pc&&&&&&VaPcOr&&&&&&VaPc&&&&&&&VaFsOr&&&&&&VaFs�

Power#Constraint#(Cs)#�

Figure 7: Speedup Compared to the Näıve Budgeting Scheme

30

40

50

60

70

80

90

100

110

120

130

0.8 1.2 1.6 2.0 2.4 2.8 3.2
Normalized execution time

M
od

ul
e

(C
PU

 +
 D

RA
M

)
po

w
er

 [W
] Cm(Constraint/module)=No, Vt=1.00, Vp=1.30

Cs=211KW (Cm=110W), Vt=1.14, Vp=1.29
Cs=192KW (Cm=100W), Vt=1.15, Vp=1.30

Cs=173KW (Cm=90W), Vt=1.14, Vp=1.32
Cs=154KW (Cm=80W), Vt=1.13, Vp=1.38

Cs=134KW (Cm=70W),
Vt=1.12, Vp=1.41

1.0
40

50

60

70

80

90

100

110

120

0 10 20 30 40

Cm=90W (CPU freq.=2.4GHz), Vt=1.67, Vp=1.24

Cm (Constraint/module)=No, Vt=1.55, Vp=1.27

Cm=80W (CPU freq.=2.1GHz), Vt=1.63, Vp=1.23

Cm=70W (CPU freq.=1.7GHz), Vt=1.76, Vp=1.26

Cm=60W (CPU freq.=1.4GHz), Vt=1.65, Vp=1.32

Total time spent for MPI synchronizations [sec]

M
od

ul
e

(C
PU

 +
 D

RA
M

)
po

w
er

 [W
]

(i) Power-performance characteristics (ii) Synchronization overhead

*DGEMM MHD MHD
(64 modules)

30

40

50

60

70

80

90

100

110

120

130

0.8 1.2 1.6 2.0 2.4 2.8 3.2
Normalized execution time

M
od

ul
e

(C
PU

 +
 D

RA
M

)
po

w
er

 [W
]

1.0

Cm(Constraint/module)=No, Vt=1.00, Vp=1.29
Cs=173KW (Cm=90W), Vt=1.00, Vp=1.30

Cs=154KW (Cm=80W), Vt=1.00, Vp=1.33
Cs=134KW (Cm=70W), Vt=1.00, Vp=1.40

Cs=115KW (Cm=60W),
Vt=1.01, Vp=1.47

Figure 8: Detailed Power and Performance Results for the VaFs Budgeting Scheme

The P cpu
min,i and P dram

min,i entries are determined empirically.
We note that for all our benchmarks, rapid degradation in
performance occurs when the power allocated to the CPU
goes below the threshold of 40 W. We assume this to be
P cpu
min,i. P dram

min,i is determined by measuring and averag-
ing the DRAM power consumed at P cpu

min,i, which in our
case is 10 W. We use these values as input to Equation
6 to determine the appropriate α. Näıve is the baseline
scheme in our evaluation.

• Pc : This is an application-dependent, variation-unaware
scheme implemented via RAPL Power Capping (PC). In
this case, we use the application-specific average values
across all modules for to generate the PMT. As a result,
power is distributed uniformly among the modules.

• VaPc : This is the application-dependent, variation-aware
scheme implemented with PC using RAPL, as discussed
in Section 5.

• VaPcOr : This is the same as VaPc except that we as-
sume a perfect model calibration (oracle calibration). We
obtain the PMT based on a complete execution of the
HPC application on all modules.

• VaFs : This is the application-dependent, variation-aware
scheme implemented with Frequency Selection (FS) using
cpufrequtils, as discussed in Section 5.

• VaFsOr : This is the same as VaFs except that the model
has a perfect calibration of CPU frequencies.

6.1 Performance Results
Figure 7 reports the speedup of all the aforementioned

schemes when compared to Näıve. The FS-based scheme,
VaFs, performs better than the other schemes in general.
However, as discussed in Section 5.3, it may not adhere
strictly to the derived CPU power constraint. With VaFs,
we see a maximum performance improvement of 5.40X (for
the NPB-BT benchmark with 96 KW), and an average im-
provement of 1.86X across all benchmarks. For VaPc, which
strictly adheres to the given CPU power constraint, the max-
imum performance improvement is 4.03X (for NPB-SP at 96
KW), and the average improvement across all benchmarks
is 1.72X.

VaFs almost always does better than VaPc, except for
*STREAM with a 154 KW constraint and mVMC with a
115 KW constraint. Note that VaPc also outperforms the
oracle results from VaPcOr in these two cases. We believe
this can be attributed to the dynamic behavior of RAPL,
which seems to be optimizing for performance in some way
differently when different power caps are enforced. Another
possible reason could be power and frequency mispredictions
from our algorithm. Detailed analysis for these two cases is
part of our ongoing work.

Figure 8 (i) shows the power-performance characteristics
after applying VaFs. First, we compare the results for
*DGEMM in Figure 8 (i) with Figure 2 (iii) from Section 4.
We can observe that VaFs reduces the variation in execution
time (V t) by increasing the variation in power consumption
(V p), which is expected from this scheme. For instance, if
we focus on the 70 W module power constraint, Vt and Vp

123

*DGEMM� MHD�

NPB*BT� NPB*SP� mVMC�

To#be#imported�

173$KW$$$$$$$$$$$$$$154$KW$$$$$$$$$$$$134$KW$$$$$$$$$$$$$115$KW�0$

50$

100$

150$

200$

154$KW$$$$$$$$$$$$134$KW$$$$$$$$$$$$$115$KW$$$$$$$$$$$$$$$96$KW�0$

50$

100$

150$

200$

0"

50"

100"

150"

200"

154"KW"""""""""""""134"KW""""""""""""""115"KW"""""""""""""""96"KW� 154$KW$$$$$$$$$$$$$$$$$$$$$$134$KW$$$$$$$$$$$$$$$$$$$$$$115KW�0$

50$

100$

150$

200$

192$KW$$$$$$$$$$$$$$$$$$$$$173$KW$$$$$$$$$$$$$$$$$$$$$$$154KW�
0$

50$

100$

150$

200$

250$ *STREAM�
To

ta
l&P
ow

er
&[K

W
]�

Naïve&&&&&Pc&&&&&&VaPcOr&&&&&&VaPc&&&&&&&VaFsOr&&&&&&VaFs�

211&KW&&&&&&&192&KW&&&&&&&&173&KW&&&&&&&154&KW&&&&&&&134&KW�
Power&Constraint&(Cs)&�

0&

50&

100&

150&

200&

250&

Constraint&(Cs)�

Figure 9: Total Power Consumption for All Budgeting Schemes

change from 1.64 to 1.12 and from 1.21 to 1.41, respectively.
Figure 8 (i) also shows the results for MHD, where we can
see a similar trend. Figure 8 (ii) depicts the cumulative syn-
chronization time of each MPI process executed with VaFs
on 64 modules, and we see that the variation problem in
terms of synchronization overhead as explained in Figure 3
has been addressed, resulting in better performance.

Next, we compare the variation-aware schemes VaPc and
VaFs to the variation-unaware conventional approach Pc.
Except for *DGEMM, the proposed variation-aware ap-
proaches result in better performance. Pc does not work
well when tight power constraints are imposed, particularly
for NPB-BT and NPB-SP with power limitation of 96 KW.
As explained in Section 4, tightening power restriction wors-
ens the power variation problem, and Pc cannot address this
issue as it is variation-unaware.

Finally, we discuss the effect of prediction-based power
model calibration by comparing the proposed scheme VaPc
to the oracle VaPcOr. We observe that VaPc can achieve
similar performance improvements except for NPB-BT and
*DGEMM with the 134 KW power constraint. Recall from
Section 5.3 that NPB-BT is the worst benchmark in terms
of the power prediction accuracy. The mispredictions di-
rectly affect the power cap enforced by VaPc, thus impact-
ing the CPU frequency and performance. In this paper we
used only one microbenchmark (*STREAM) to generate the
application-independent PVT. An approach to improve the
prediction accuracy is to use micro-benchmarks with dif-
ferent characteristics to generate several PVTs, and then
choose a suitable PVT based on the test runs.

6.2 Power Results
Figure 9 shows the total average power consumption mea-

sured via RAPL. The red lines in each graph show the en-
forced power constraint. We have confirmed that all schemes
adhere to the power constraint in our results, except the
Näıve scheme for *STREAM. The main reason why Näıve
cannot meet the power constraint is because it underesti-
mates DRAM power as it does not take the application char-
acteristics into account.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we first presented a detailed study of man-

ufacturing variability on four production systems spanning
different underlying architectures and established that vari-

ation in power can lead to up to 64% performance vari-
ation across HPC application ranks in power-limited envi-
ronments. Then, we designed a low-cost, scalable, variation-
aware power budgeting framework and implemented it using
two techniques: power capping and frequency selection. Our
experimental results on a large-scale, 1,920 module produc-
tion system show up to 5.4X improvement in HPC applica-
tion performance under a power constraint, and an average
improvement of 1.8X across all benchmarks when compared
to a variation-unaware, naive power allocation scheme.

In our present work, we focused on HPC applications exe-
cuting on a dedicated 1,920-module system. Future research
includes analyzing multiple applications under a system-
level power constraint and optimizing for overall system
throughput. This involves integrating our work with a
power-aware resource manager such as RMAP [40], which
can determine application-level power constraints and phys-
ical node allocations in a fair yet intelligent manner by us-
ing hardware overprovisioning [39,46]. We also want explore
dynamic reallocation of power within and between HPC ap-
plications by analyzing their phase behavior in order to im-
prove system throughput and power efficiency further.

8. ACKNOWLEDGMENTS
We extend our thanks to Livermore Computing and RIIT

of Kyushu University for providing us the resources and sup-
port to conduct the large-scale power measurements pre-
sented in this paper. We also want to thank Timothy Meyer
and Neha Gholkar for their initial help with gathering data
on the Teller and Vulcan systems. Part of this work was per-
formed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 (LLNL-CONF-669812). This mate-
rial was also based upon work supported by National Sci-
ence Foundation under Grant No. 1216829. Additionally,
this work was supported by the Japan Science and Technol-
ogy Agency (JST) CREST program, A Power Management
Framework for Post Peta-Scale Supercomputers.

9. REFERENCES
[1] NASA Advanced Supercomputing Division, NAS

Parallel Benchmark Suite v3.3. 2006. http:
//www.nas.nasa.gov/Resources/Software/npb.html.

[2] 2013 Exascale Operating and Runtime Systems.
Technical report, Advanced Science Computing

Research (ASCR), February 2013.
http://science.doe.gov/grants/pdf/LAB13-02.pdf.

[3] AMD. AMD Turbo CORE Technology.
http://www.amd.com/us/products/desktop/

processors/phenom-ii/Pages/

phenom-ii-key-architectural-features.aspx.

[4] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins,
D. Crawford, J. Dongarra, D. Kothe, R. Lusk,
P. Messina, T. Mezzacappa, P. Moin, M. Norman,
R. Rosner, V. Sarkar, A. Siegel, F. Streitz, A. White,
and M. Wright. The Opportunities and Challenges of
Exascale Computing. 2010.

[5] P. Bailey, D. Lowenthal, V. Ravi, B. Rountree,
M. Schulz, and B. de Supinski. Adaptive
Configuration Selection for Power-Constrained
Heterogeneous Systems. In International Conference
on Parallel Processing, ICPP ’14, 2014.

[6] D. Bodas, J. Song, M. Rajappa, and A. Hoffman.
Simple Power-aware Scheduler to Limit Power
Consumption by HPC System Within a Budget. In
Proceedings of the 2nd International Workshop on
Energy Efficient Supercomputing, pages 21–30. IEEE
Press, 2014.

[7] S. Borkar. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability
and Degradation. Micro, IEEE, 25(6):10–16, Nov
2005.

[8] S. Borkar, T. Karnik, S. Narendra, J. Tschanz,
A. Keshavarzi, and V. De. Parameter Variations and
Impact on Circuits and Microarchitecture. In
Proceedings of the 40th annual Design Automation
Conference, pages 338–342, June 2003.

[9] K. W. Cameron, X. Feng, and R. Ge.
Performance-constrained, Distributed DVS Scheduling
for Scientific Applications on Power-aware Clusters. In
Supercomputing, November 2005.

[10] N. P. Carter, A. Agrawal, S. Borkar, R. Cledat,
H. David, D. Dunning, J. B. Fryman, I. Ganev, R. A.
Golliver, R. C. Knauerhase, R. Lethin, B. Meister,
A. K. Mishra, W. R. Pinfold, J. Teller, J. Torrellas,
N. Vasilache, G. Venkatesh, and J. Xu. Runnemede:
An Architecture for Ubiquitous High-Performance
Computing. In 19th IEEE International Symposium
on High Performance Computer Architecture, HPCA
2013, Shenzhen, China, February 23-27, 2013, pages
198–209, 2013.

[11] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos,
and D. S. Nikolopoulos. Prediction-Based
Power-Performance Adaptation of Multithreaded
Scientific Codes. IEEE Trans. Parallel Distrib. Syst.,
19(10):1396–1410, Oct. 2008.

[12] H. David, E. Gorbatov, U. Hanebutte, R. Khanna,
and C. Le. RAPL: Memory Power Estimation and
Capping. In Proceedings of the 16th ACM/IEEE
international symposium on Low power electronics and
design, ISLPED ’10, pages 189–194, 2010.

[13] D. DeBonis, J. H. Laros III, and K. Pedretti.
Qualification for PowerInsight Accuracy of Power
Measurements.

[14] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob,
K. Bowman, J. Howard, J. Tschanz, V. Erraguntla,
N. Borkar, V. De, and S. Borkar. Within-Die

Variation-Aware Dynamic-Voltage-Frequency-Scaling
With Optimal Core Allocation and Thread Hopping
for the 80-Core TeraFLOPS Processor. Solid-State
Circuits, IEEE Journal of, 46(1):184–193, Jan 2011.

[15] D. A. Ellsworth, A. D. Malony, B. Rountree, and
M. Schulz. POW: System-wide Dynamic Reallocation
of Limited Power in HPC. June 2015.

[16] H. Esmaeilzadeh, E. Blem, R. S. Amant,
K. Sankaralingam, and D. Burger. Power Challenges
May End the Multicore Era. Commun. ACM,
56(2):93–102, Feb. 2013.

[17] H. Esmaeilzadeh, E. Blem, R. St. Amant,
K. Sankaralingam, and D. Burger. Dark Silicon and
the End of Multicore Scaling. In Proceedings of the
38th Annual International Symposium on Computer
Architecture, ISCA ’11, pages 365–376, New York, NY,
USA, 2011. ACM.

[18] M. Etinski, J. Corbalan, J. Labarta, and M. Valero.
Optimizing Job Performance Under a Given Power
Constraint in HPC Centers. In Green Computing
Conference, pages 257–267, 2010.

[19] M. Etinski, J. Corbalan, J. Labarta, and M. Valero.
Linear Programming Based Parallel Job Scheduling
for Power Constrained Systems. In International
Conference on High Performance Computing and
Simulation, pages 72–80, 2011.

[20] D. Feitelson, U. Schwiegelshohn, and L. Rudolph.
Parallel Job Scheduling - A Status Report. In In
Lecture Notes in Computer Science, pages 1–16.
Springer-Verlag, 2004.

[21] R. Ge, X. Feng, W. Feng, and K. W. Cameron. CPU
MISER: A Performance-Directed, Run-Time System
for Power-Aware Clusters . In International
Conference on Parallel Processing, 2007.

[22] L. R. Harriott. Limits of lithography. Proceedings of
the IEEE, 89(3):366–374, 2001.

[23] C. Hsu and W. Feng. A Power-Aware Run-Time
System for High-Performance Computing. In
Supercomputing, November 2005.

[24] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E.-M.
Sha. Towards Energy Efficient Hybrid On-chip Scratch
Pad Memory with Non-volatile Memory. In Design,
Automation & Test in Europe Conference &
Exhibition (DATE), 2011, pages 1–6. IEEE, 2011.

[25] J. H. L. III, P. Pokorny, and D. Debonis. PowerInsight
- A commodity power measurement capability. In
IGCC’13, pages 1–6, 2013.

[26] Intel. Intel Turbo Boost Technology 2.0.
http://www.intel.com/content/www/us/en/

architecture-and-technology/turbo-boost/

turbo-boost-technology.html.

[27] Intel. Intel-64 and IA-32 Architectures Software
Developer’s Manual, Volumes 3A and 3B: System
Programming Guide. 2011.

[28] S. Jilla. Minimizing The Effects Of Manufacturing
Variation During Physcial Layout. http:
//chipdesignmag.com/display.php?articleId=2437.

[29] L. Kalé and S. Krishnan. CHARM++: A Portable
Concurrent Object Oriented System Based on C++.
In Proceedings of OOPSLA’93. ACM Press,
September 1993.

[30] N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just

In Time Dynamic Voltage Scaling: Exploiting
Inter-Node Slack to Save Energy in MPI Programs.
Journal of Parallel and Distributed Computing,
68:1175–1185, 2008.

[31] T. Karnik, M. Pant, and S. Borkar. Power
management and delivery for high-performance
microprocessors. In The 50th Annual Design
Automation Conference 2013, DAC ’13, Austin, TX,
USA, May 29 - June 07, 2013, page 159, 2013.

[32] H. Kaul, M. Anders, S. Hsu, A. Agarwal,
R. Krishnamurthy, and S. Borkar. Near-threshold
Voltage (NTV) Design: Opportunities and Challenges.
In The 49th Annual Design Automation Conference
2012, DAC ’12, June 2012.

[33] Z. Liu, J. Lofstead, T. Wang, and W. Yu. A case of
system-wide power management for scientific
applications. In Cluster Computing (CLUSTER), 2013
IEEE International Conference on, September 2013.

[34] P. Luszczek, D. Bailey, J. Dongarra, J. Kepner,
R. Lucas, R. Rabenseifner, and D. Takahash. HPC
Challenge Benchmark Suite.
ttp://icl.cs.utk.edu/pcc/index.html.

[35] A. Marathe, P. Bailey, D. K. Lowenthal, B. Rountree,
M. Schulz, and B. R. de Supinski. A Run-time System
for Power-constrained HPC Applications. In In
International Supercomputing Conference (ISC, July
2015.

[36] N. Maruyama, S. Suzuki, K. Mikami, Y. Komuro,
S. Takizawa, and M. Matsuda. Fiber Miniapp Suite.
fiber-miniapp.github.io.

[37] S. Miwa, S. Aita, and H. Nakamura. Performance
Estimation of High Performance Computing Systems
with Energy Efficient Ethernet Technology. Computer
Science - Research and Development, 29:161–169,
August 2014.

[38] T. Ogino, R. J. Walker, and M. Ashour-Abdalla. A
Global Magnetohydrodynamic Simulation of the
Magnetopause when the Interplanetary Magnetic
Field is Northward. IEEE Transaction on Plasma
Science, 20:817–828, December 1992.

[39] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz,
and B. R. de Supinski. Exploring Hardware
Overprovisioning in Power-constrained, High
Performance Computing. In International Conference
on Supercomputing, pages 173–182, 2013.

[40] T. Patki, A. Sasidharan, M. Maiterth, D. Lowenthal,
B. Rountree, M. Schulz, and B. de Supinski. Practical
Resource Management in Power-Constrained, High
Performance Computing. In High Performance
Parallel and Distributed Computing (HPDC), June
2015.

[41] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K.
Lowenthal, and M. Schulz. Beyond DVFS: A First
Look at Performance under a Hardware-Enforced
Power Bound. In IPDPS Workshops (HPPAC), pages
947–953. IEEE Computer Society, 2012.

[42] B. Rountree, D. Lowenthal, B. de Supinski, M. Schulz,
V. Freeh, and T. Bletch. Adagio: Making DVS

Practical for Complex HPC Applications. In
International Conference on Supercomputing, June
2009.

[43] B. Rountree, D. Lowenthal, M. Schulz, and
B. de Supinski. Practical Performance Prediction
Under Dynamic Voltage Frequency Scaling. In
International Green Computing Conference, July 2011.

[44] S. Samaan. The Impact of Device Parameter
Variations on the Frequency and Performance of VLSI
Chips. In Computer Aided Design, 2004.
ICCAD-2004. IEEE/ACM International Conference
on, pages 343–346, Nov 2004.

[45] V. Sarkar, W. Harrod, and A. Snavely. Software
Challenges in Extreme Scale Systems. In Journal of
Physics, Conference Series 012045, 2009.

[46] O. Sarood. Optimizing Performance Under Thermal
and Power Constraints for HPC Data Centers. PhD
thesis, University of Illinois, Urbana-Champaign,
December 2013.

[47] O. Sarood, A. Langer, A. Gupta, and L. V. Kale.
Maximizing Throughput of Overprovisioned HPC
Data Centers Under a Strict Power Budget. In
Supercomputing, Nov. 2014.

[48] S. Shende and A. D. Malony. The Tau Parallel
Performance System. IJHPCA, 20(2):287–311, 2006.

[49] K. Shoga, B. Rountree, and M. Schulz. Whitelisting
MSRs with msr-safe. November 2014.

[50] R. Teodorescu and J. Torrellas. Variation-Aware
Application Scheduling and Power Management for
Chip Multiprocessors. In Computer Architecture,
2008. ISCA ’08. 35th International Symposium on,
pages 363–374, June 2008.

[51] E. Totoni, A. Langer, J. Torrellas, and L. Kale.
Scheduling for HPC Systems with Process Variation
Heterogeneity. January 2015.

[52] J. Tschanz, J. Kao, S. Narendra, R. Nair,
D. Antoniadis, A. Chandrakasan, and V. De. Adaptive
Body Bias for Reducing Impacts of Die-to-die and
Within-die Parameter Variations on Microprocessor
Frequency and Leakage. Solid-State Circuits, IEEE
Journal of, 37(11):1396–1402, Nov 2002.

[53] S. Wallace, V. Vishwanath, S. Coghlan, Z. Lan, and
M. E. Papka. Measuring power consumption on IBM
Blue Gene/Q. In Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW),
2013 IEEE 27th International, pages 853–859. IEEE,
2013.

[54] S. Wallace, V. Vishwanath, S. Coghlan, J. Tramm,
Z. Lan, and M. Papkay. Application power profiling on
IBM Blue Gene/Q. In Cluster Computing
(CLUSTER), 2013 IEEE International Conference on,
pages 1–8. IEEE, 2013.

[55] K. Yoshii, K. Iskra, R. Gupta, P. Beckman,
V. Vishwanath, C. Yu, and S. Coghlan. Evaluating
power-monitoring capabilities on IBM Blue Gene/P
and Blue Gene/Q. In Cluster Computing
(CLUSTER), 2012 IEEE International Conference on,
pages 36–44. IEEE, 2012.

