
The MHETA Execution Model for Heterogeneous Clusters
�

Mario Nakazawa
Dept. of Mathematics and Computer Science

Berea College
Berea, Kentucky 40404

mario nakazawa@berea.edu

David K. Lowenthal and Wendou Zhou
Dept. of Computer Science

University of Georgia
Athens, GA 30602-7404� dkl,zhou � @cs.uga.edu

ABSTRACT
The availability of inexpensive “off the shelf” machines increases
the likelihood that parallel programs run on heterogeneous clusters
of machines. These programs are increasingly likely to be out of
core, meaning that portions of their datasets must be stored on disk
during program execution. This results in significant, per-iteration,
I/O cost.

This paper describes an execution model, called MHETA, which
is the key component to finding an effective data distribution on
heterogeneous clusters. MHETA takes into account computation,
communication, and I/O costs of iterative scientific applications.
MHETA uses automatically extracted information from a single it-
eration to predict the execution time of the remaining iterations.

Results show that MHETA predicts with on average 98% accuracy
the execution time of several scientific benchmarks (with and with-
out prefetching) and one full-scale scientific program that utilize
pipelined and other communication. MHETA is thus an effective
tool when searching for the most effective distribution on a hetero-
geneous cluster.

Keywords
Data Distribution, I/O, Modeling Parallel Execution

1. INTRODUCTION
Parallel computing can achieve dramatic improvements in the per-
formance of applications. Due to the increasing availability of a va-
riety of “off-the-shelf” machines, an important platform is a cluster
of workstations with potentially different processor speeds, mem-
ory capacities and I/O latencies. Designing a program to run ef-
ficiently in this environment has many problems that can be over-
whelming to computational scientists. These difficulties include
distributing data, performing I/O, and handling communication that
itself may involve I/O.

�
This research was funded in part by NSF grants CCF-0429643

and CCF-0234285.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC|05 November 12–18, 2005, Seattle, Washington, USA
Copyright 2005 ACM 1-59593-061-2/05/0011 ...$5.00

Many researchers have noted that a key obstacle to efficient parallel
programs is finding an efficient data distribution [14]. The problem
is challenging on a heterogeneous cluster for two primary reasons.
First, different processor speeds make balancing the load difficult.
Second, I/O will more likely need to be considered due to differ-
ing memory capacities between nodes. While the first problem has
previously been researched, the second has not been widely stud-
ied. This is despite I/O becoming an important factor—scientific
programmers commonly design large-scale simulations to explain
complex phenomena, requiring larger (and growing) data sets that
may not fit into main memory.

Our goal is to develop a runtime system that will automatically
determine the best data distribution for iterative scientific applica-
tions on this architecture. The key component of this system is
a computational model we developed called MHETA (Model of
HETerogeneous Architectures). This model takes as input a data
distribution and predicts the execution time for an application run-
ning with that distribution. A separate component of the runtime
system uses MHETA to evaluate all candidate distributions as part
of a search algorithm. We call this algorithm GBS, for Generalized
Binary Search; a separate paper describes the design, implementa-
tion, and performance of GBS [26].

This paper details how we implemented MHETA as a general pur-
pose model that consists of a system of parameterized equations.
The structure of the application determines how these equations
are put together, and instrumented measurements of costs incurred
during one iteration of the program are used to set the parameter
values. This strategy provides the flexibility to model any appli-
cation running on a given heterogeneous cluster and to accurately
predict the execution of the remaining iterations given possible al-
ternative distributions. Instrumenting programs with manually in-
serted timers and other functions is tedious and error-prone. We au-
tomated a portion of this process and made it transparent to the pro-
grammer through a combination of micro-benchmarks and a data
collection tool called MPI-Jack [1].

We tested MHETA on a range of benchmarks: Conjugate Gradient
from the NAS benchmark suite [3], Jacobi iteration, and a pipelin-
ing benchmark based on RNA pseudoknots [5]. We also used one
full-scale application, the Lanzcos iterative method for solving lin-
ear systems of equations. Our results show that this model accu-
rately predicts execution times for both benchmarks with a sim-
ple structure like Jacobi, complex pipelined structure in RNA, as
well as a full-scale application like Lanzcos. MHETA is on av-
erage �����	�
����� accurate in predicting execution times for all
applications without prefetching, and ����� on Jacobi iteration with

prefetching. MHETA is thus an effective evaluation function when
searching for an efficient distribution. This is important, as the
difference between execution times (in our experiments) given the
best and worst distributions was as much as a factor of 4, and which
distribution results in poor performance cannot in general be known
statically. Because MHETA runs efficiently (about 5.4ms per dis-
tribution), it can be used on the fly.

The rest of this paper is organized as follows. Sections 2 and 3
cover related work and our framework, respectively. They are fol-
lowed by Section 4, which provides details of MHETA. Section 5
discusses performance and Section 6 summarizes and describes fu-
ture work.

2. RELATED WORK
There is a significant amount of related work to this paper, which
we broadly divide into four categories: modeling, data distribution,
out-of-core parallel programming, and heterogeneous computing.
This section discusses each of these in turn and compares them to
our work.

2.1 Modeling
Several have developed models of parallel programs. The most
popular models are the Bulk Synchronous Parallel model (BSP)
[38] and LogP [8]. The BSP model uses supersteps, allowing lim-
ited communication in each step. LogP models parallel programs
using only latency, overhead, gap, and number of processors. The
two-level memory model [40] used in TPIE models data moving
from multiple disks to memory.

Unlike previous computational models, MHETA incorporates I/O
because our target applications are out of core. Our model also
measures actual computation times, whereas the LogP model as-
sumes there is a constant amount of work, and we also support
finer-grained parallelism than BSP. The main focus of TPIE is to
design efficient parallel, high-level coordination of data movement
between disk and memory; we use MHETA to estimate execution
times with the ultimate goal to find efficient data distributions.

2.2 Data Distribution
One way to distribute data is to provide language annotations and
allow the programmer to choose the distribution using application-
specific knowledge. This is the approach taken by HPF [17], which
was motivated by many others’ work (e.g., [15]). Compiler tech-
niques to distribute (and possibly redistribute) data have also been
studied extensively (e.g., [2, 14, 32, 20, 11, 30]). The basic idea
behind compiler-based systems is to analyze the source code to de-
termine the communication pattern and then choose a BLOCK- or
CYCLIC-based distribution that balances the load. Another key
idea is tiling, an optimization to rewrite loops to keep data in cache
as long as possible [12, 16]. Approaches employing a run-time
system, such as CHAOS [18], AppLeS [35], SUIF-Adapt [23],
and CRAUL [33] can use run-time information to find an efficient
data distribution. This is especially effective in cases where work-
load and communication characteristics of a program change at run
time.

The work described above on the data distribution problem ad-
dresses the data distribution problem, not the heterogeneous data
distribution problem; the latter problem allows processor speed,
memory size, and I/O speed to all differ. This requires a trade-
off between balancing load, minimizing communication, and mini-

mizing I/O. The tiling optimizations cited above are compiler trans-
formations that seek a particular tile shape to minimize execution
time; our work is to find a data distribution problem at runtime.
Further, systems like AppLeS always avoid using a processor if its
memory is relatively small, even if that processor could perform
useful work.

2.3 Out-of-core Parallel Programming
Many researchers have studied out-of-core parallel applications,
where data structures must primarily reside on disk. Generally,
these projects fall into the following categories: using virtual mem-
ory, high-level interfaces, compiler and run-time analysis to gen-
erate efficient out-of-core programs, prefetching support, and col-
lective I/O. Out-of-core parallel programs can be written just as in-
core ones, using the virtual memory system for all I/O [6]. TPIE is a
high-level libraries used to coordinate data movement between disk
and memory efficiently, and it is also used to design efficient algo-
rithms to manipulate data on disk. Compiling out-of-core codes
is described in, for example, [19, 4, 29, 36], one basic idea is to
extend the data parallel model to out-of-core programs.

One technique to avoid disk latency is prefetching, which has been
studied extensively. Mowry et al. [24] use a virtual memory model
augmented with prefetching inserted via the compiler. Others mon-
itor access patterns in the operating system and use the results to
prefetch data [22, 13]. Finally, in [31], applications advise the
OS of their future access patterns. One run-time approach, called
SMARTS, schedules work dynamically to help reduce disk accesses
[37]. Several have worked on file systems that support parallel ac-
cess patterns through collective I/O, including Panda [34], PAS-
SION [7], and Disk-directed I/O [21]. The idea behind collective
I/O is to avoid several small disk requests due to a different layout
of in-memory data than on-disk data.

Our work is orthogonal to techniques to improve out-of-core par-
allel programming. We start from an efficient user program, which
can be developed by hand or by the above models.

2.4 Heterogeneous Computing
Several researchers have studied various parallel computing prob-
lems on heterogeneous clusters. These problems include gang sch-
eduling, compiling, and message passing libraries. Gang schedul-
ing is a scheme whereby multiple parallel jobs execute concur-
rently, but the entire machine is given to one job at a time (e.g.,
[9]). Nikolopoulos et al. [28] also manage the trade-off between
paging and gang scheduling on a multiprogrammed cluster. There
has also been work done in compiling for heterogeneous machines
[41]. Finally, Grid MPI is an extension of MPI that enables an MPI
program to use grid services [10].

Gang scheduling is expensive to implement and is most often im-
plemented on supercomputers. Also, [28] involves modifying the
OS. Our work is focused on the runtime system.

3. FRAMEWORK
This section first discusses our computational model, followed by
the assumed execution environment.

3.1 Computational Model
We use a computational model that is similar to BSP [38]. The pro-
grams we support are iterative scientific applications. We define
a parallel section as code in between either a nearest neighbor or

while reduce_value < threshold {
 for i := 1 to n−1 {
 for j := 1 to n {

 }
 }

 for j := 1 to n {
 C[i] := g(B[i−1][j])
 }
 }
 for i := 1 to n
 reduce_value := f(C[i])
}

 for i := 2 to n {

 B[i][j] := f(A[i+1][j])

 for NB := 1 to numberOfBlocksRead

 if needed, read next block of data

 for i := (start to end+1) of this block {

 for j := 1 to n

 }

 if necessary, write out result

 B[i][j] := f(A[i+1][j])

 for NB := 1 to numberOfBlocksRead

 if needed, read next block of data

 for i := (start+1 to end) of this block

 for j := 1 to n

 C[i] := f(B[i−1][j])

while not reduce_value < threshold

DISTRIBUTE THE DATA

SECTION

 EXCHANGE BOUNDARIES

SECTION
STAGE

 GLOBAL REDUCTION on reduce_value

STAGE

STAGE
CALCULATE LOCAL reduce_value from C

Figure 1: A sample conversion of a sequential program into a parallel
one with sections and stages. Note the dependencies of array B from
one loop to another necessitate the exchange of boundary information;
array A is read only, so the necessary rows can be replicated.

reduction communication pattern, at which point a node can send
at most one message to another node. A parallel section consists
of a set of one or more tiles; pipelined applications have multiple
tiles per parallel section. A tile is further divided into one or more
stages, which are bounded explicitly by an outermost loop over a
multidimensional array or implicitly by the end of a tile. MHETA
can support the case where iterations take a nonuniform amount of
time; however, in this paper we discuss only those whose time is
uniform—which covers many, if not most, applications1. We as-
sume the applications make explicit calls to read and write from
disk and are constructed so that data passes through memory as
few times as possible. However, note that our model uses stages to
handle the case where there need be multiple disk reads and pos-
sibly writes in a parallel section. An example of parallel sections
and stages are illustrated in Figure 1. The stages measure the dura-
tion to perform the computation and I/O in a program and a parallel
section sums these before including the communication cost.

We adopt the terminology for out-of-core applications from [4]. An
application is considered to be in core when all disk accesses for
primary data sets are only compulsory, and the data sets remain in
its local memory for the duration of the program.We call the subset
of the input and working data that is stored locally on a machine its
Local Array (LA). An application is necessarily out of core if the
dataset is larger than total aggregate memory, if a particular data
distribution results in at least one node whose LA cannot fit into
its memory. If either is the case, the LA is called the Out-of-Core
Local Array (OCLA), and the subset that fits into memory is called
the In-Core Local Array (ICLA). A node whose local array is too
large needs to read and process the entire OCLA in ICLA-sized
pieces. An in-core application incurs a single disk read for each of
its local arrays, whereas an out-of-core application incurs multiple
reads (and possibly writes) for each local array. Note that the prob-
lem of determining which arrays are out of core is orthogonal to
our research—we currently use a simple heuristic and are primar-
ily interested in creating a model that finds an effective partitioning
of data and computation to each node.

1Primarily, this simplifies the implementation, as per iteration data
needs to be collected for nonuniform iterations.

S
0 S

1

Memory
Size: M

0

C
0

CPU
Speed:

Memory
Size: M

1

CPU
Speed:

C
1

Memory
Size: M

n−1

CPU
Speed:

C
n−1

S
n−1

Local Disk

I/O Latency:

Local Disk Local Disk

Node 1Node 0

I/O Latency:I/O Latency:

Network

Node n−1

Figure 2: The composition of the heterogeneous architecture emulated
for our experiments. Note that the memory capacities, I/O speeds, and
processor speeds between any two machines can differ. The sizes of
the boxes in the figure for memory and CPUs represent relative storage
capacity and CPU power.

We assume that a one-dimensional data distribution is used, and
the data is divided into variable-sized blocks (called GEN BLOCK
in HPF [17]); each node receives its block and stores it on its local
disk. We use the owner computes [15] and the Local Placement [4]
rules, in which nodes update data elements that reside in their local
disk, but can reference other elements.

3.2 Execution Environment
Figure 2 displays the heterogeneous cluster of workstations we em-
ulated to test our model. The cluster consists of � nodes, num-
bered

�
to � ��� , each of which has a local disk. Processor speeds

can differ between nodes, so we define relative CPU power, for
each node, based on processor speed. The memory capacity is how
much physical memory is available for the application, and the I/O
latency is the duration required to read and write data from disk.
Note we assume a commodity cluster, as opposed to a RAID sys-
tem or global disk used by all the processors—but our basic model
could be extended to support either. At present, we assume a dedi-
cated computing environment—this is a problem we will consider
in the future.

4. MODELING PROGRAM EXECUTION
We implemented MHETA as a series of parameterized equations
for each parallel section and stage. Some parameter values, such as
communication start-up cost, are derived from microbenchmarks.
We additionally take measurements during an instrumented itera-
tion (one out of many) of the program. These measurements cap-
ture the costs to perform (1) computation, (2) I/O and (3) commu-
nication that are specific to the behavior of the application and the
characteristics of the architecture. MHETA calculates the total exe-
cution time of a single iteration of the application from these instru-
mented values along with an arbitrary data distribution. We first
describe how some of this instrumentation is done in Section 4.1,
followed by details of MHETA’s construction in Section 4.2.

4.1 Extracting MHETA Components
MHETA requires knowledge of a program’s structure and runtime-
specific information—such as the costs to perform I/O, commu-
nication and computation—to calculate its execution time. Some
information is extracted via static analysis and uses microbench-
marks, while other information requires an instrumented run of a

pre−hook

post−hook

(...implementation of
MPI_File_read...)(...implementation of

MPI_File_read...)

MPI_File_Read(arr_name, ...)

Using MPI−Jack

MPI_File_Read(arr_name, ...)

Without MPI−Jack

Get VID: index of variable to be read

start timer
Get SID: current stage #
Get TID: current tile #
Get PID: current parallel section #

from parameter (i.e. <arr_name>)

Our Hook Functions

stop timer
record duration to read VID in

stage SID, tile TID in parallel
section PID

Figure 3: A graphical example of how MPI-Jack is used to extract tim-
ing information for an MPI File read call. Invoking a MPI-Jack func-
tion essentially calls the pre and post hook functions before calling the
actual MPI function. On the left, these hook functions are undefined
and no timing information is recorded. The right implementation has
code defined to extract the variable ID involved in the I/O and timers
to record the latency to read the array.

single iteration of the application. We currently analyze the appli-
cation source code manually to determine the number and relation-
ship between the parallel sections, tiles, and stages in the program
as well as which variables they use. We store this information in
a file read by MHETA. We use microbenchmarks to measure some
basic communication costs, such as send and receive overheads and
send latency per byte between nodes. We assume these values are
relatively constant in our dedicated environment and store and ref-
erence them when needed.

The instrumented iteration outputs computation and I/O costs as
well as the participants in communication at the beginning or end of
each parallel section. Section 4.1.1 details how we automated some
of the measurement of the costs of computation and I/O. Some dis-
cussion of extracting the identities of nodes (nIDs) during a com-
munication pattern is detailed in Section 4.1.2.

4.1.1 Measuring Runtime Costs
This section starts with details of how we measure synchronous
and then asynchronous I/O costs. The difficulty in measuring com-
putation durations is discussed next, as this measurement requires
knowledge of when a stage begins and ends. This is hard to detect
in general. MHETA targets applications that use explicit I/O, so
these programs have explicit function calls to read and write data.
For program that use MPI function calls to perform I/O, we use
our MPI-Jack tool [1], an interface that exploits PMPI, the profil-
ing layer of MPI. MPI-Jack enables a user transparently to intercept
any MPI call and execute arbitrary code before and/or after an in-
tercepted call. These are called pre and post hooks. An example of
an MPI read operation is shown in Figure 3. The seek overheads
for reading and writing (��� and ���) to local disk are the same
regardless of the variable involved, so they are measured and out-
put as node-specific data. The corresponding latencies (� ���	��
 and
� ���	��
), in contrast, are specific to the variable � . The instrument-
ing code extracts the variable ID from the function’s parameters to
associate the latencies with the corresponding variable. The run-
time system computes the latencies (
 �	��
 and � �	��
) for a single
element of � and stores them and the overhead costs into an inter-
nal MHETA file.

Note that given a data distribution for the instrumented execution,
the node specific portion of � may in fact be in core, and no I/O
occurs. The instrumenting code thus would not have any I/O cost
information for � . However, if a different and more efficient dis-
tribution is discovered, it may assign more of � to the node that it

Compute
Process

Disk

Overlapping
Computation

Effective
Latency

����������
����������������
��������������������

������������������������

��

��

Case 1: Precise Prefetch Measurement

Read Latency

Overhead

WaitIssue Overlapping Computation

Read Latency + Overhead

Compute
Process

Disk

Overlapping
Computation

����������
���������������� !�!

"�"�"�"�"�"�"�"�"�"�"#�#�#�#�#�#�#�#�#�#�#Case 2: Imprecise Prefetch Measurement

Read Latency

Overhead

Issue

? WaitRead Latency + Overhead

Partially Overlapping Computation

Figure 4: Problems when trying to instrument prefetching code. Case
1 shows how instrumenting prefetching can be precise and accessi-
ble from our wrapper functions. We can measure $&% from when the
prefetch issue returns right before the wait function is invoked, and ' �
+ $ ��(*),+ from the beginning of the prefetch issue to the end of the wait
function. If, however, $&%.-/$ ��(*),+ as shown in case 2, we cannot
measure $ �0(*),+ + ' � correctly via timers in the wrapper functions.

Compute
Process

Disk

Computation

Issue

1�1�12�2�2
3�3�3�3�34�4�4�4

5�5�5�5�5�5�56�6�6�6�6�6

7�78�8
Read Latency

Overhead

Wait

Transforming Prefetch Instrumentation

Overlapping Computation
Formerly

+ Overhead
Read Latency

Figure 5: Instrumenting prefetching by forcing issues to be blocking
reads, and transforming “wait” functions into no-ops. The read latency
and overhead can now be precisely measured, as well as the computa-
tion that was formerly overlapping the latency.

can store in memory, thereby causing I/O to occur. MHETA must
therefore have I/O costs for � to address this situation; all nodes
are forced to perform I/O during the instrumented execution for any
distributed variables.

Unlike synchronous I/O, asynchronous I/O allows overlap of com-
putation and I/O costs, so predicting the cost of prefetching requires
a combination of � �9�	��
 and the duration of the overlapping com-
putation (� %). Figure 4 shows that � % is the time from the prefetch
issue until the entry to the wait function, and this duration can be
measured using timers. The difficulty arises when we try to mea-
sure the duration of � ���	��
 . If � %;: � �9�	��
 , � ���	��
 is measured
from the start of the prefetch issue to when the wait function re-
turns. Otherwise, there are no timers the runtime system can use to
determine when the I/O operations finish.

Our approach to solve this problem cleanly divides the operations
by forcing (1) all prefetch issues to be the same as a synchronous
read and (2) wait functions to be no-ops, as shown in Figure 5. This
technique is simpler to implement than polling or inserting timers
in the operating system, and yet it accurately measures the dura-
tions of � % and � ���	��
 . We assume only one iteration is instru-
mented (out of many), so the higher latencies experienced using
this technique are amortized over the remaining iterations that do
standard prefetching.

Measuring the computation time for a stage (a separate duration

from � %) depends on knowledge of stage boundaries. The user
or preprocessor can insert functions in the source code to indicate
when stages begin and end. Only computation and I/O occur within
a stage, so by measuring its duration, the computation time can be
calculated as the total time for the stage minus time to perform I/O.

4.1.2 Extracting Communication Participants
Communication events involve sending and receiving messages to
and from various nodes. MHETA requires information about the
sender and recipient nIDs. The node IDs are obtainable from the
parameters of the MPI send and receive calls. Therefore, via the
pre hooks in MPI-Jack, we can get this information, making this
transparent to the programmer.

4.2 MHETA Implementation
We present here a brief description of the construction of MHETA.
We start developing MHETA’s structure by considering the execu-
tion of a single parallel section on one node, first with single, then
multiple stages. We detail calculating both synchronous and asyn-
chronous I/O in a particular stage. Next, we consider the factors
involved in communication of pipelined and nearest neighbor mes-
sage passing when the program is distributed between two nodes.
Space limitations prevent us from detailing reduction, or extensions
of the equations for communication between more than two nodes.
For more details, we direct the reader to [25].

4.2.1 Single node and parallel section
First, we describe how MHETA will generate the predicted time
to perform only computation and I/O in a single stage in a single
parallel section. Let ��� be the time spent in computation given�

, the amount of work assigned to it by a distribution � during
the instrumented run of the program. For a new distribution ��� that
assigns work

� � , calculating ����� is the original time, multiplied
by the ratio of

� � and
�

: � ���
 �	� ��� � � � ��
 �
 .

Accurately calculating I/O costs involves 1) determining which vari-
able � is out-of-core and 2) computing its ICLA size, ��
 �	��
 , as
well as the number of times the disk is accessed to completely read
and write � , ��� �	��
 . MHETA currently uses a simple heuristic
to determine if � is out of core for a given ��� . MHETA calcu-
lates its ��
 �	��
 based on the memory capacity of the node and its
OCLA size (��� �	��
) assigned to the node by ��� . ��� �	��
 can then
be calculated by taking the ceiling of dividing its OCLA size by
its ICLA size: ��� �	��
 ��� � � �	��

 �
 �	��
�� . Any time the node
reads data from disk, there is a corresponding write to disk if the
results of the computation are stored, such as in our Jacobi appli-
cation. For the Conjugate Gradient and Lanzcos applications, the
array is read-only, and no writes are performed.

The total time spent performing synchronous I/O for an out-of-core
array � in this stage, ��� �	��
 , is the time to perform the reads and
writes of its ICLAs (including both overheads and latencies) mul-
tiplied by ��� �	��
 :

��� �	��
 � � � �	��
���� � � � � ���	��
 � � �!� � ���	��
�" (1)

where � � �	��
 �
 �	��
#� ��
 �	��
 and � � �	��
 � � �	��
#� �$
 �	��
 .
If � is in core, then ��� �	��
 � � , and if it is read-only, � � �
� ���	��
 � � .
Programmers and/or compilers can insert synchronous read calls
with prefetching to hide some of � �9�	��
 . A typical technique is
to slightly unroll a loop (see Figure 6) over ICLAs that involves a

 Read ICLA(1)

 for i := 2 to last {

 }

 Process ICLA(last)

 if necessary, write ICLA(last)

 Prefetch ICLA(i)

 Process ICLA(i−1)

 Wait for ICLA(i)

 if necessary, write ICLA(i−1)

STAGE
Unrolled Loop

 }

 if necessary, write ICLA(i)

 Process ICLA(i)

 for i := 1 to numberOfICLAs {

 Read ICLA(i)

STAGE
Original Loop

Figure 6: A sample transformation of a loop over ICLAs to enable
prefetching. The stage boundary of course gets extended as necessary.

read, followed by computation on that ICLA, and finally a possible
write-back of the results to disk. The program can now prefetch
the ICLA for the % � �'&)(iteration while performing computation
on the ICLA for the %�&)(iteration. The first ICLA read incurs the
full latency, whereas the remaining ��� �	��
 ��� read latencies can
be mitigated using prefetching. The effective read latency, �+* �	��
 ,
is calculated as � ���	��
 minus � % , the time the node spends com-
puting between the prefetch issue and when the data is needed. If
the overlap computation is greater than or equal to the read latency,
� %-, � ���	��
 , it has been effectively masked: � * �	��
 � � . Equa-
tion 1 adjusted to take into account prefetching is:

��� �	��
 � � ��� �	��
+� � � �.� � % � � �/� � ���	��

�"� � �9�	��
 � � � �0� �	��
 � �
+� � * �	��
�" (2)

Prefetching can be more expensive than regular synchronous reads,
as the extra overhead (� %) is incurred regardless of whether the
attempt was successful. Note that with no prefetching, Equation 2
reduces to Equation 1 because � * �	��
 � � ���	��
 and � % � � .
The total amount of time spent in computation and I/O for this
stage (�21) is therefore ��� (the time for computation) plus I/O costs:

� 10� ��� �43�57698 � ��� �	��
�: . In a single parallel section with � 1
stages, the time a node spends in the parallel section (��;) perform-

ing computation and I/O is: � ;<� 5>=�?@BA�C � 1 �)D
 .
4.2.2 Extension to nodes E+F and E�G

When considering multiple nodes, MHETA needs to include com-
munication costs. Given a message H on node EIF , the communica-
tion cost for a parallel section, �+J � %
 , is calculated as a combination
of three components:

K �ML � H
 - the overhead incurred when sending,

K � ��� %ONPH
 - the time E+F spends when potentially waiting for a
message, and

K �MQ � H
 - the overhead when a node processes the incoming
message.

An example of the relationship between these parts is shown in
Figure 7. The value �ML � H
 is a combination of two costs. There is
always the fixed overhead to prepare and actually copy the message
into a system buffer. If the message is generated from an out-of-
core array, the node needs to read it from disk; the same modeling
is done here as described for I/O above. � L � H
 is thus the sum of
the fixed overhead plus the time to read the message from disk, if
necessary.

���
��������������������������� �������������������� 	�	�	�	�	�		�	�	�	�	�	
�
�
�
�
�

�
�
�
�
�

������������������������������
�

�
������ ������������ �� ��
����������������������������

��
Transfer Transfer

Time

Node 0

Transfer

Node 0

Node 1

Transfer

Time

Node 1

Computation

Overhead

Blocked Time

Figure 7: A graphical representation of possible blocked scenarios.
The left figure shows when node 1 is blocked waiting for node 0 to send
its message, and the right shows the situation when node 0 waits for
node 1’s message, and node 1 waits for node 0’s response.

We now detail how MHETA computes the value of � ��� %ONPH
 , first
for nearest neighbor and then for pipelined communication. Nodes
participating in non-pipelined applications generally start to block
after performing its stages. Thus, the time E C spends waiting for
message H to arrive from E � is non-zero if it finishes its stages be-
fore H arrives:

� ��� ��NOH
 �"!$#&% '() � N
� ; � �
 � � L � H
 � �*� L C � H

� � � ; � �
 � � L � H

+ ,- (3)

Note that Equation 3 is symmetric between E � and E C in this case.
We now distinguish � ; between nodes because a node’s blocked
time depends on the execution of the sending node.

Pipelined applications have the property that there are potentially
many tiles in a parallel section (i.e. the number of tiles, � F. ,
�), and nodes start to wait before they execute the stages of each
tile. We now expand � � � � NOH N0/
 to distinguish between tiles. As-
suming that the pipeline starts from E � , E1� does not block at all
(� ��� � NOH N0/
 � � for all tiles). However, E C blocks at the start of its/�&)(tile if H arrives any time after it had finished all / ��� previous
tiles. The duration of a tile for E � consists of the time to process
the stages plus the send overhead (� ; � � N2/
 � � L � H
), so H for the/�&)(tile is on route after E3� completes all / tiles. E C first blocks,
incurs receive overhead and then spends � ; � ��N0/
 time in computa-
tion for each tile. Thus the wait time for E C at the beginning of its/ &)(tile is the total time before H is on route, plus transfer time over
the network, minus the total time for E C to have finished / � � tiles:

� ��� ��NPH�N0/
 � 3 5 G @BA � � ; � � N D
 � ��4L � : � �*� L C � H
 �
3 5 G65 C@BA � � ��� ��NPH�N D
 � ��4Q � � � ; � ��N D
 : (4)

Note that if � � � ��NPH�N0/
87 � , then � � � ��NOH N0/
 � � because E C does
not block.

We next use the specific communication pattern to calculate the
duration the nodes spend in communication (denoted � FJ). Assum-
ing that both nodes perform their sends before blocking in nearest
neighbor communication, the value of � FJ is the sum of the send
and receive overheads and the time spent waiting for the message:

��J � %
 � � L � H
 � � ��� %PNOH
 � � Q � H
 (5)

In pipeline communication, E � has no receives and E C has no sends.
��J � %
 uses the cost � ��� %ONPH�N0/
 from Equation 4 and � ��� � NPH�N0/
 �

�
,

��J � %
 � =89:;
G A � < � ��� %ONPH�N0/
 �>= � Q � H
 if % � �

� L � H
 else ?
The total execution time for node E F in a parallel section, �3@ � %
 ,
is from when the parallel section starts until it unblocks from the
communication at the end: � @ � %
 � � ; � %
 � ��J � %
 . For details
on how reduction is modeled and how � @ � %
 is calculated when
considering more than two nodes, we direct the reader to [25].

4.2.3 Overall MHETA model
The total execution time for a single iteration on node EIF is the sum
of all its � @ � %
 parallel sections:

�1A � %
 � = BDC FFE;
G A�C � �1@ � /

5. PERFORMANCE
We tested MHETA on an emulated heterogeneous architecture with
three scientific benchmarks: Jacobi iteration (Jacobi), a pipelin-
ing application (RNA) similar to RNA pseudoknots, and Conju-
gate Gradient (CG) from the NAS benchmark suite. In addition,
we experimented with one full-scale application, a Lanzcos iter-
ative method for solving a linear system GIH �KJ , where A is a
symmetric, positive definite, �ML � dense matrix, and H and J
are column vectors. We chose these applications because of their
iterative nature. Finally, we also tested MHETA on Jacobi with
prefetching. Our experiments were designed to evaluate the effec-
tiveness of MHETA in two respects. First, we determined for each
application how accurately MHETA predicted the actual execution
time over a set of data distribution candidates. MHETA is on av-
erage more than 97% accurate in predicting execution times for all
four programs and at least 98% accurate when taking into account
prefetching in Jacobi. Second, we focused on the usefulness of
MHETA when used in conjunction with a data distribution select-
ing algorithm.

Our measurements show that evaluating a single distribution in
MHETA takes about 5.4 ms. This efficiency is important because
we intend to eventually use it within a new MPI-based runtime sys-
tem that will choose a distribution during runtime.

Section 5.1 describes the setup of the experiments, followed by
Section 5.2, which measures the accuracy of MHETA. Finally, Sec-
tion 5.3 discusses the importance of choosing an effective data dis-
tribution on a heterogeneous cluster and how we intend, in the fu-
ture, to use MHETA for this purpose.

5.1 Experimental Setup
The underlying architecture we used is a cluster of eight Dell Quad
servers running Solaris 2.8. We only make use of one out of four
processors per node. We emulated a configurable heterogeneous
architecture on top of this cluster so that the environment is as de-
scribed in Figure 2—each node potentially has a different memory
size, relative CPU power and I/O latency. We emulate (1) a slower
CPU by forcing the process to do extra work, (2) a smaller main
memory by placing a limit on the size of memory that applications
can use to store their ICLAs, and (3) differing I/O speeds by arti-
ficially increasing or decreasing the ICLA sizes read or written to
local disk.

In−Core and
Balanced (I−C/Bal)

Potentially
Unbalanced

I/O−Aware

I/O Oblivious

Block (Blk)

In−Core (I−C)

Balanced (Bal)
Balanced

Figure 8: The spectrum of data distributions that we tested.

All applications were compiled with -02, and for all message pass-
ing we used LAM-MPI [27]. We currently assume that a program’s
structural information (the number of parallel sections and stages
as well as variable usage information) is available and input to
MHETA. When MHETA is integrated with our MPI-based runtime
system in the future, structural information will be automatically
obtained by static analysis.

Figure 8 shows the distributions we tested, which ranged in two di-
mensions: (1) how well the load is balanced and (2) to what degree
I/O costs are considered. The simplest distribution, “Block” (Blk),
allocates data evenly across nodes without regard for I/O cost or
load balance. A “Balanced” distribution (Bal) focuses on balanc-
ing the load on the nodes and ignores I/O costs. The “In-Core”
(I-C) distribution in contrast ignores load and focuses on only
minimizing I/O costs. The “In-Core and Balanced” (I-C/Bal)
distribution first maximizes the number of nodes that have exclu-
sively in-core datasets and then balances the load as much as possi-
ble. We start testing the performance of MHETA with Blk and pro-
gressively generate distributions that move throughI-C, I-C/Bal,
Bal, and back to Blk. For architectures when the relative CPU
power of the nodes is identical, a Blk distribution already bal-
ances the load, so we only vary the distribution between Blk and
I-C. A similar simplification is done when the computing envi-
ronment has no nodes with memory restrictions (so I/O is not a
concern), where we vary the distribution only from Blk to Bal.
The MHETA model extends to two-dimensional data distributions,
but such distributions are problematic for run-time data distribu-
tion systems because the search space increases greatly. Hence, we
focus in this paper on only one-dimensional distributions.

We performed the instrumented iteration of each application us-
ing Blk. Once these costs were placed into MHETA, we tested
MHETA’s accuracy by running both the application and MHETA
on each of our emulated architectures with identical distributions
for 100, 10, 5 and 10 iterations for Jacobi, CG, Lanzcos, and RNA
respectively. The number of iterations was chosen to obtain com-
parable execution times.

We tested MHETA on seventeen and twelve emulated architecture
configurations for non-prefetching and prefetching applications, re-
spectively. We give a general summary of its accuracy in Sec-
tion 5.2. We also focus on four of these configurations as described
in Table 1, where we vary the architecture between those where
only the relative CPU power varies (DC, for “different CPUs”),
those where only emulated disk speeds vary (IO, for “I/O-induced”),
and those where both vary (HY, for “hybrid configurations”). We
select two hybrid configurations (HY1 and HY2) to determine the
trade-off between balancing load and bringing the data in core.
An algorithm searching for a data distribution between I-C and
I-C/Bal can use MHETA to determine which point results in the

Name Description
DC Two nodes have a lower relative CPU power, and

two other nodes have higher relative CPU power.
The rest are unchanged.

IO Half of the nodes have high I/O latency and small
memories, but all nodes have equal relative CPU
power.

HY1 Four nodes have varying relative CPU powers and
the other four have low I/O latencies and small
memories.

HY2 Four nodes have varying relative CPU power and
two nodes have high I/O latencies. The other two
have large memories.

Table 1: Four sample configurations of the emulated architectures
that are explained in detail.

lowest execution time. A discussions of general analysis and limi-
tations will follow in Section 5.3 and Section 5.4, respectively.

5.2 Comparison of Predicted and Actual Exe-
cution Times

Below, we first present the overall numbers averaged over all the
different architectures we emulated. Then, we discuss the four spe-
cific architectures described in Table 1.

5.2.1 Overall results
The results of comparing MHETA predicted execution times and
the actual run times are shown in Figure 9. These graphs show the
maximum, average, and minimum percentage difference between
MHETA, where the percentage is computed as the absolute differ-
ence divided by the minimum of each application’s predicted and
actual execution times. The top left graph shows that in all sev-
enteen emulated architectures, MHETA is on average 98% accu-
rate for all four programs without prefetching. The top right graph
shows the accuracy of our model for Jacobi with prefetching en-
abled in a subset of twelve architectures, also at on average 98%.
The bottom graphs show the average best-case (RNA) and worst-
case (CG) examples. Most errors in MHETA are due to three in-
herent limitations of our modeling approach, discussed below in
Section 5.4. In addition, there can be slight inaccuracies due to
perturbations introduced when running the instrumented iteration.
(For example, perturbations cause MHETA to have up to a 1% error
predicting the running time using a block distribution, even though
the instrumented iteration is done using a block distribution.) How-
ever, even with unexpected results given these limitations, MHETA
still is in general very accurate. These results show MHETA’s po-
tential for use by algorithms that find efficient data distributions.

5.2.2 Specific Architectures
Figures 10 and 11 show results using configurations DC, IO, HY1
and HY2. The graphs show both predicted and actual execution
times in seconds. We see in Figure 10 that MHETA performed
very well predicting execution times of all four applications in con-
figuration DC, and when predicting Jacobi, Lanzcos, and RNA
execution times in IO. MHETA did slightly overestimate the ex-
ecution time for these applications right before the I-C distribu-
tion in IO due to better than expected I/O performance of the re-
maining iterations. This effect diminishes as the distribution ap-
proaches I-C because a majority of the application execution times
are spent performing computation, which are more accurately mod-
eled. MHETA did not fair as well in configuration IO in predicting
CG’s execution time as shown by the two dashed circled points in

Percent Difference of Actual and Predicted

Execution Times for All Applications without

Prefetching

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

B
lk

I-
C

I-
C
/B
a
l

B
a
l

B
lk

Data Distribution

P
e

rc
e

n
t

D
if

fe
re

n
c

e

MIN

AVERAGE

MAX

Percent Difference of Actual and Predicted

Execution Times for Prefetching Jacobi

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

B
lk

I-
C

I-
C
/B
a
l

B
a
l

B
lk

Data Distribution

P
e

rc
e

n
t

D
if

fe
re

n
c

e

MIN

AVERAGE

MAX

Percent Difference of Actual and Predicted

Execution Times for RNA

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

B
lk

I-
C

I-
C
/B
a
l

B
a
l

B
lk

Data Distribution

P
e
r
c
e
n

t
D

if
fe

r
e
n

c
e

MIN

AVERAGE

MAX

Percent Difference of Actual and Predicted

Execution Times for CG

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

B
lk

I-
C

I-
C
/B
a
l

B
a
l

B
lk

Data Distribution

P
e
r
c
e
n

t
D

if
fe

r
e
n

c
e

MIN

AVE

MAX

Figure 9: The minimum, average and maximum percentage difference between the predicted and actual execution times for all applications, and
then specifically Jacobi with prefetching, RNA, and then CG. We added lines between the discrete data points for ease of readability.

the bottom left graph; however, note their difference is only 10%.
This inaccuracy results because our algorithm to determine if a
variable is out-of-core is too simplistic, and MHETA has difficul-
ties with sparse arrays for CG, as explained in Section 5.4. Finally,
MHETA predicted all test applications accurately on HY1 and HY2
in Figure 11.

5.3 Analysis
This section discusses first the importance of choosing a data dis-
tribution on a heterogeneous cluster, the role of MHETA in the se-
lection process, and finally the limitations of MHETA.

Figures 10 and 11 show that, given the worst data distributions, the
execution times for RNA on DC and Lanzcos on HY1 are almost
4 and 3 times as slow, respectively, as when given the best distri-
bution. It may be possible to determine which distribution is best
statically on a simpler architecture such as DC (if one knew the rel-
ative powers of each processor), but in general this determination
is nontrivial. For example, due to the low I/O costs and relatively
high load imbalances in configuration HY1, one would expect the
best data distribution to be Bal. While this is the case for Lanz-
cos, the best distribution for Jacobi is instead between I-C/Bal
and Bal. Importantly, this distribution is significantly better (28%)
than Bal. Furthermore, for different architectures that have varied
I/O costs and load imbalances on the nodes, it becomes harder to
predict which distribution will be best—thus a “guess” may end up
far from the best choice, which as stated above can result in a dou-
bling or tripling of execution time. MHETA is able to accurately
predict execution times on average 98% of the time, so it can be an
effective tool to use when searching for effective distributions. A

companion paper describes different data distribution search strate-
gies; MHETA is used as part of four different algorithms (genetic,
simulated annealing, generalized binary search, and random) to de-
termine an effective distribution [26].

5.4 Limitations
When MHETA performs poorly, it is in general due to three inher-
ent limitations of our modeling approach. The first limitation is that
although the instrumented iteration does in fact capture cache ef-
fects, MHETA does not explicitly model the behavior of the memory-
cache hierarchy. MHETA therefore occasionally cannot accurately
predict when interactions with the cache and main memory given
a different distribution cause the computation time on a node to
grow or shrink. Because out-of-core parallel programs have large
datasets that can easily swamp the cache, the likelihood of this error
occurring is small.

The second limitation in MHETA is that its algorithm to determine
which variables are out of core is not sophisticated, occasionally
placing what should be an out-of-core variable in the in-core vari-
able set. MHETA calculates the time spent performing I/O as zero
when this error occurs, hence under-predicting execution time. As
the data distribution shifts such that more nodes become in core,
the effect of this limitation decreases.

Finally, MHETA (along with most data distribution systems) lacks
the ability to deal with sparse datasets. Because there is not a
simple correlation between number of rows and number of ele-
ments per row, resulting in slight load imbalances in CG that our
model did not predict. We have found that despite these problems,

Predicted and Actual Execution Times for

CG (C) and Jacobi (J) - Configuration DC

0

10

20

30

40

50

60

70

80

90

100

110

Bal Blk

Data Distribution

E
x

e
c

u
ti

o
n

 T
im

e
s

 (
s

e
c

s
)

C-Actual

C-Predicted

J-Actual

J-Predicted

Predicted and Actual Execution Times for

Lanczos (L) and RNA (R) - Configuration DC

0

10

20

30

40

50

60

70

80

90

100

110

Bal Blk

Data Distribution

E
x

e
c

u
ti

o
n

 T
im

e
s

 (
s

e
c

s
)

L-Actual

L-Predicted

R-Actual

R-Predicted

Predicted and Actual Execution Times for

CG (C) and Jacobi (J) - Configuration IO

0

10

20

30

40

50

60

70

80

90

100

110

Blk I-C

Data Distribution

E
x

e
c

u
ti

o
n

 T
im

e
s

 (
s

e
c

s
)

C-Actual

C-Predicted

J-Actual

J-Predicted

Predicted and Actual Execution Times for

Lanczos (L) and RNA (R) - Configuration IO

0

10

20

30

40

50

60

70

80

90

100

110

Blk I-C

Data Distribution

E
x

e
c

u
ti

o
n

 T
im

e
s

 (
s

e
c

s
)

L-Actual

L-Predicted

R-Actual

R-Predicted

Figure 10: Actual vs. predicted execution times for configurations DC (top) and IO (bottom) for all four applications. The left graphs show times
for Jacobi and CG, while the right show times for Lanzcos and RNA. We show the predicted and actual execution times, indicated for example as
“L-Predicted” and “L-Actual” respectively for Lanzcos. The best distributions in the set investigated for each are circled; where they match, there is
only one circle, and where they do not, the predicted time has a dashed circle.

MHETA is very effective in practice.

6. SUMMARY AND FUTURE WORK
This paper has developed a model called MHETA for predicting ex-
ecution time for out-of-core applications on a heterogeneous clus-
ter. The model takes as input a data distribution and considers the
effects of computation, communication and I/O in its prediction.
Experiments show that MHETA accurately predicts total execution
time; the average difference from the actual execution time for all
applications are on average range from 2%, to 5%.

We are currently implementing more applications (including Multi-
grid) to further increase the types of applications to test MHETA
with a wider range of relative communication, computation, and
I/O costs. Finally, we are starting development of our new MPI
system that will determine the MHETA inputs, use a search algo-
rithm based on MHETA to select a distribution (quickly), and then
effect that distribution on the fly. In this way we believe that we can
provide an infrastructure for efficient support of out-of-core paral-
lel programs on heterogeneous clusters.

7. REFERENCES
[1] Impie: Interposed message passing interface executor. North

Carolina State University website:
http://fortknox.csc.ncsu.edu/proj/impie/.

[2] J. Anderson and M. Lam. Global optimizations for
parallelism and locality on scalable parallel machines. In
Proceedings of the SIGPLAN ’93 Conference on Program

Language Design and Implementation, pages 112–125, June
1993.

[3] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS
parallel benchmarks. RNR-91-002, NASA Ames Research
Center, Aug. 1991.

[4] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koebel, and
M. Paleczny. A model and compilation strategy for
out-of-core data parallel programs. In Principles and
Practice of Parallel Programming, pages 1–10, July 1995.

[5] L. Cai, R. L. Malmberg, and Y. Wu. Stochastic modeling of
rna pseudoknotted structures: A grammatical approach. In
Proceedings of ISMB’03 and Bioinformatics 19(s1), pages
i66–i73, 2003.

[6] E. Caron, O. Cozette, D. Lazure, and G. Utard. Virtual
memory management in data parallel applications. In HPCN
Europe, pages 1107–1116, 1999.

[7] A. Choudhary, R. Thakur, R. Bordawekar, S. More, and
S. Kutipidi. PASSION: Optimized I/O for parallel
applications. IEEE Computer, 29(6):70–78, June 1996.

[8] D. E. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
LogP: Towards a realistic model of parallel computation. In
Principles and Practice of Parallel Programming, pages
1–12, May 1993.

Predicted and Actual Execution Times for

CG (C) and Jacobi (J) - Configuration HY 1

0

20

40

60

80

100

120

140

160

180

B
lk

I-
C

I-
C
/B
a
l

B
a
l

B
lk

Data Distribution

E
x

e
c

u
ti

o
n

 T
im

e
s

 (
s

e
c

s
)

C-Actual

C-Predicted

J-Actual

J-Predicted

Predicted and Actual Execution Times for

Lanczos (L) and RNA (R) - Configuration HY 1

0

20

40

60

80

100

120

140

160

180

B
lk

I-
C

I-
C
/B
a
l

B
a
l

B
lk

Data Distribution

E
x

e
c

u
ti

o
n

 T
im

e
s

 (
s

e
c

s
)

L-Actual

L-Predicted

R-Actual

R-Predicted

Predicted and Actual Execution Times for

CG (C) and Jacobi (J) - Configuration HY 2

0

20

40

60

80

100

120

140

160

180

B
lk

I-
C

I-
C
/B
a
l

B
a
l

B
lk

Data Distribution

E
x

e
c

u
ti

o
n

 T
im

e
s

 (
s

e
c

s
)

C-Actual

C-Predicted

J-Actual

J-Predicted

Predicted and Actual Execution Times for

Lanczos (L) and RNA (R) - Configuration HY 2

0

20

40

60

80

100

120

140

160

180

B
lk

I-
C

I-
C
/B
a
l

B
a
l

B
lk

Data Distribution

E
x

e
c

u
ti

o
n

 T
im

e
s

 (
s

e
c

s
)

L-Actual

L-Predicted

R-Actual

R-Predicted

Figure 11: Actual vs. predicted execution times for configurations HY1 (top) and HY2 (bottom) running Jacobi and CG (left) and Lanzcos and RNA
(right). The best data distribution is circled.

[9] D. Feitelson. A survey of scheduling in multiprogrammed
parallel systems. Technical Report RC 19790 (87657), IBM
T. J. Watson Research Center, October 1994.

[10] I. Foster and N. Karonis. A grid-enabled MPI: Message
passing in heterogeneous distributed computing systems. In
Proceedings of SC’98. ACM Press, 1998.

[11] J. Garcia, E. Ayguade, and J. Labarta. Dynamic data
distribution with control flow analysis. In Supercomputing
’96, Nov. 1996.

[12] G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris.
Automatic parallel code generation for tiled nested loops. In
SAC ’04: Proceedings of the 2004 ACM symposium on
Applied computing, pages 1412–1419. ACM Press, 2004.

[13] J. Griffioen and R. Appleton. Reducing file system latency
using a predictive approach. In Proceedings of the USENIX
Summer 1994 Technical Conference, pages 197–208, June
1994.

[14] M. Gupta and P. Banerjee. Demonstration of automatic data
partitioning techiniques for parallelizing compilers on
multicomputers. IEEE Transactions on Parallel and
Distributed Systems, 3(2):179–193, Mar. 1992.

[15] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling
Fortran D for MIMD distributed-memory machines.
Communication of the ACM, 35(8):66–80, Aug. 1992.

[16] K. Hogstedt, L. Carter, and J. Ferrante. Selecting tile shape
for minimal execution time. In ACM Symposium on Parallel
Algorithms and Architectures, pages 201–211, 1999.

[17] High Performance Fortran Language Specification, Nov.
1994.

[18] Y. Hwang, B. Moon, S. D. Sharma, R. Ponnusamy, R. Das,
and J. H. Saltz. Runtime and language support for compiling
adaptive irregular programs on distributed-memory
machines. Software—Practice and Experience,
25(6):597–621, June 1995.

[19] M. Kandemir, J. Ramanujam, and A. Choudhary. Improving
the performance of out-of-core computations. In
International Conference on Parallel Processing, Aug. 1997.

[20] K. Kennedy and U. Kremer. Automatic data layout for
distributed-memory machines. ACM Transactions on
Programming Languages and Systems, 20(4):869–916, 1998.

[21] D. Kotz. Disk-directed I/O for MIMD multiprocessors. In
Proceedings of the 1994 Symposium on Operating Systems
Design and Implementation, pages 61–74. USENIX
Association, 1994.

[22] D. Kotz and C. S. Ellis. Practical prefetching techniques for
multiprocessor file systems. Journal of Distributed and
Parallel Databases, 1(1):33–51, Jan. 1993.

[23] D. G. Morris and D. K. Lowenthal. Accurately computing
redistribution cost in distributed shared memory systems. In
Principles and Practice of Parallel Programming, pages
62–71, June 2001.

[24] T. C. Mowry, A. K. Demke, and O. Krieger. A
compiler-inserted I/O prefetching for out-of-core

applications. In Operating Systems Design and
Implementation, pages 1–17, Oct. 1996.

[25] M. Nakazawa. I/O Considerations in Heterogeneous Data
Distributions. PHD dissertation, Department of Computer
Science, University of Georgia, May 2005.

[26] M. Nakazawa, D. K. Lowenthal, and F. Lowenthal. Efficient
data distributions for heterogeneous clusters. Technical
report, University of Georgia, available at
http://www.cs.uga.edu/ñakazawa/index.html#reports, Feb.
2004.

[27] N. J. Nevin. The performance of LAM 6.0 and MPICH
1.0.12 on a workstation cluster. Technical Report
OSC-TR-1996-4, Ohio Supercomputing Center, Columbus,
Ohio, 1996.

[28] D. S. Nikolopoulos and C. D. Polychronopoulos. Adaptive
scheduling under memory pressure on multiprogrammed
clusters. In Proceedings of CCGrid ’02, Apr. 2002.

[29] M. Paleczny, K. Kennedy, and C. Koebel. Compiler support
for out-of-core arrays on data parallel machines. In
Proceedings of the Fifth Symposium on the Frontiers of
Massively Parallel Computation, pages 110–118, Feb. 1995.

[30] D. J. Palermo and P. Banerjee. Automatic selection of
dynamic data partitioning schemes for distributed-memory
multicomputers. In Proceedings of the 8th Workshop on
Languages and Compilers for Parallel Computing, Aug.
1995.

[31] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefetching and caching. In SOSP,
pages 79–95, Dec. 1995.

[32] J. Ramanujam and A. Narayan. Automatic data mapping and
program transformations. In Workshop on Automatic Data
Layout and Performance Prediction, June 1995.

[33] U. Rencuzogullari and S. Dwarkadas. Dynamic adaptation to
available resources for parallel computing in an autonomous
network of workstations. In Principles and Practice of
Parallel Programming, pages 72–81, June 2001.

[34] K. E. Seamons. Panda: Fast Access to Persistent Arrays
Using High Level Interfaces and Server Directed
Input/Output. PhD thesis, University of Illinois at
Urbana-Champaign, May 1996.

[35] G. Shao, R. Wolski, and F. Berman. Modeling the cost of
redistribution in scheduling. In Eighth SIAM Conference on
Parallel Processing for Scientific Computation, Mar. 1997.

[36] R. Thakur, A. Choudhary, and G. Fox. Runtime array
redistribution in HPF programs. In Proceedings of Scalable
High Performance Computing Conference 94, pages
309–316, May 1994.

[37] S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger,
A. Malony, S. Shende, R. Oldehoeft, and S. Smith.
SMARTS: Exploiting temporal locality and parallelism
through vertical execution. In International Conference on
Supercomputing, pages 302–310, June 1999.

[38] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, August 1990.

[39] D. E. Vengroff and J. S. Vitter. I/O efficient scientific
computation using TPIE. In Proc. Goddard Conference on
Mass Storage Systems and Technologies, pages 553–570,
1996.

[40] J. S. Vitter and E. A. M. Shriver. Algorithms for Parallel
Memory I: Two-level memories. Algorithmica,
12(2/3):110–147, 1994.

[41] G. Weaver, K. McKinley, and C. Weems. Score: A compiler
representation for hetergeneous systems. In The
Hetergeneous Computing Workshop, pages 10–23, Apr.
1996.

