
An Integrated Compiler/Run-Time System for Global Data
Distribution in Distributed Shared Memory Systems∗

Gregory M.S. Howard†

David K. Lowenthal‡

Department of Computer Science
The University of Georgia

Athens, GA 30602

Abstract

A software distributed shared memory (DSM) provides
the illusion of shared memory on a distributed-memory
machine; communication occurs implicitly via page
faults. For efficient execution of DSM programs, the
threads and their implicitly associated data must be
distributed to the nodes to balance the computational
workload and minimize communication due to page
faults. The focus of this paper is on finding effec-
tive data distributions in DSM systems both within and
across all computational phases. Our model takes into
account data redistribution between phases. We have
designed and implemented an integrated compiler/run-
time system called SUIF-Adapt. The compiler, which
is an extended version of SUIF, divides the program
into phases, analyzes each, and communicates impor-
tant information to the run-time system. We use an
extended version of Adapt, a run-time data distribu-
tion system, to take measurements on an iteration of a
loop consisting of one or more phases. It then finds the
global data distribution for the loop (over a reasonable
set of distributions) that leads to the best completion
time. Performance results indicate that programs that
use SUIF-Adapt can outperform programs with pre-
determined data distributions when phase behavior is
dependent on run-time values of input data; in such
cases, statically determining an effective data distri-
bution requires (generally unavailable) prior knowledge
of run-time behavior of an application.

∗This research was supported by NSF CAREER Grant CCR-
9733063.

†Current address: Silicon Graphics Inc., 655F Lone Oak
Drive, Eagan, MN 55121. Email: ghoward@sgi.com

‡Corresponding Author. Email: dkl@cs.uga.edu

1 Introduction

Distributed shared memory (DSM) systems eliminate
explicit internode communication by providing the ab-
straction of shared variables. Although a DSM trans-
parently manages communication, good performance
still depends on balancing the computational load and
minimizing communication. In a page-based DSM sys-
tem, threads perform the computation and cause com-
munication (page faults) when they reference nonlo-
cal data. Hence, in a DSM system, the distribution
of threads corresponds to the general data distribu-
tion problem, which is to distribute data such that
communication is minimized and the computational
load is balanced. Unfortunately, finding effective data
distributions statically is not possible for applications
whose data access patterns or workload characteristics
exhibit unpredictable or dynamic behavior.

This paper presents an integrated compiler and run-
time approach to the global data distribution problem
in DSM systems, which is to find a series of data dis-
tributions for program phases that minimizes overall
completion time, including any time required to redis-
tribute data. We define a phase as a section of applica-
tion code between two barrier synchronization points.
We have extended the SUIF parallelizing compiler
[HAA+96] with passes that (1) locate groups of phases
and possible redistribution points, (2) choose an ini-
tial data distribution for each phase, and (3) generate
code with calls into the run-time system at appropri-
ate points. Our run-time system uses a multiple-phase
model to calculate efficient global data distributions.
It extends the single-phase model of Adapt [LA96],
which finds effective local distributions in DSM sys-
tems.

Performance results indicate that programs that use
SUIF-Adapt perform comparably with programs that
use predetermined (“hand-coded”) data distributions.



This includes static and dynamic applications. In all
cases, the execution time of the program using SUIF-
Adapt was always within 7% of the best hand-coded
version. Further, when a phase’s workload charac-
teristics change dynamically, SUIF-Adapt can per-
form considerably better than the hand-coded pro-
gram. Also, it is important to note that some of the
hand-coded programs make use of prior knowledge of
run-time behavior of an application; in general, such
information is unavailable statically.

The remainder of this paper is organized as follows.
Section 2 describes our framework. Section 3 provides
details on the implementation of our SUIF-Adapt sys-
tem. Section 4 presents the results of performance
tests of four different programs, while Section 5 dis-
cusses areas of current research. Section 6 discusses
previous work in this area, and Section 7 gives some
concluding remarks.

2 Framework

In this section we describe the computational model
upon which our system is based and the data distri-
bution strategies that our system uses.

2.1 Computational Model

Our computational model is Single Program Multiple
Data (SPMD) [HKT92], in which each node executes
the same code but references a different subset of the
data elements. The applications we currently address
use regularly-accessed arrays and are divisible into one
or more phases, which are sections of application code
between two barrier synchronization points. We also
only consider data distributions where the first dimen-
sion is distributed. This is because in our DSM sys-
tem, distributing more than one dimension requires
significant array restructuring. Furthermore, we as-
sume the existence of a loop that directly encloses one
or more phases; we call this a phase cycle. A sample
application (Jacobi iteration) is presented in Figure 1.

Although any node can potentially update any data el-
ement, we assume the owner-computes rule [HKT92].
Under this rule, each node is exclusively responsi-
ble for updating a distinct subset of data elements;
the number of threads (and hence data elements)
each node owns therefore determines the time a node
spends computing. On the other hand, the time a
node spends on internode communication is deter-
mined by the number of DSM page faults incurred.
The key for a good data distribution is avoiding large
variances in completion times between nodes while
also minimizing the number of page faults. This
should be done such that the total execution time

of the slowest node is minimized, because each phase
is terminated with a barrier synchronization point—
no node can continue until all have arrived. In other
words, the goal is to minimize the maximum execution
time of any node.

2.2 Distribution Strategies

For problems with regular arrays, two common types
of distributions are variable block and striped. A vari-
able block distribution distributes a contiguous set of
data elements to each node, where block sizes vary
in order to balance the workload. For applications
with regular, nearest-neighbor access patterns, such as
Jacobi iteration, a block-based scheme requires com-
munication only on block boundaries. (Note that if
the block sizes are equal, this distribution is referred
to as BLOCK [FHK+90].) The other type of distribu-
tion, where data is striped across the nodes, is called
CYCLIC [FHK+90]; it is good for applications with in-
creasing or decreasing amounts of work per iteration
and a distribution-independent communication pat-
tern, such as LU decomposition.

These distributions apply to a single phase; we seek a
series of such local distributions that will provide good
performance for the entire phase cycle. Consider an
outline of a flame simulation shown in Figure 2. There
are two phases, with nearest-neighbor communication
in the first and no communication in the second. The
workload is uniform in the first phase, so a BLOCK dis-
tribution for all arrays is desired; our compiler can
infer this. However, the best distribution for the sec-
ond phase must be determined dynamically because
the workload of AdaptiveSolver depends on the value
of x[i]; it will be some variable-block distribution. For
the phase cycle, we must decide between using one of
the best local distributions for both phases, a less ef-
fective distribution for both phases, or the most effec-
tive distribution in each phase with a redistribution.
The first two avoid data redistribution at the cost of
executing one or more phases in a suboptimal distri-
bution. The latter choice ensures that each phase ex-
ecutes with its own most effective distribution at the
cost of a redistribution.

3 Implementation

Our integrated SUIF-Adapt system is composed of
two subsystems: a modified version of the SUIF com-
piler [HAA+96] and an extended multiple-phase ver-
sion of Adapt [LA96], a run-time data distribution
system. The Adapt system runs on top of Filaments
[LFA96]. Filaments provides a simple model for writ-
ing or generating efficient, portable parallel programs.



for step := 1 to numsteps {

for i := 1 to N

for j := 1 to N

y[i] = 0.25 * (x[i-1][j] + x[i+1][j] +

x[i][j-1] + x[i][j+1]);

for i := 1 to N

for j := 1 to N

x[i] := y[i];

}

Figure 1: Jacobi iteration outline. Each (entire) for i loop is a phase (barrier synchronization is required after
each loop, but not within the loop bodies); the for step loop is a phase cycle.

for time := 1 to timesteps {

for i := 1 to N

x[i] := x[i] + F(y[i-1],y[i],y[i+1],z[i+1])

for i := 1 to N

z[i] := AdaptiveSolver(x[i])

}

Figure 2: Flame simulation outline. The AdaptiveSolver function has a workload that is dependent on the value
of its parameter. Again, each for i loop is a phase.

To achieve this goal, it provides efficient fine-grain par-
allelism and a multithreaded DSM. However, in this
work we do not overlap communication and computa-
tion. The Filaments DSM provides causal consistency,
which is slightly weaker than sequential consistency.
However, it does not allow a write-shared protocol;
we use write-invalidate in this work, which makes the
avoidance of false sharing important. Adapt requires
the following features from a DSM: an accessible page
table, facilities to measure the time of each row, and
access to the barrier synchronization mechanism. Fil-
aments provides all of these items.

3.1 Modifications to SUIF

We have modified SUIF to find phase cycles (it al-
ready finds phases), perform lightweight analysis of
the workload and communication characteristics of
each phase, and generate Adapt and DSM-compatible
code. The first SUIF modification, finding phase cy-
cles, is straightforward and done by searching for se-
quential loops that contain phases.

Our lightweight phase analysis attempts to detect
common communication patterns, classifying each
phase as nearest neighbor, broadcast, no communica-
tion, or unknown based on shared array accesses and
loop indices. Our compiler does not do comprehensive

dependence analysis; rather, it looks for commonly
occurring characteristics of the above patterns. If it
misses an opportunity to detect a pattern, Adapt will
detect it at run time.

Nearest-neighbor is detected in a phase when (1) the
phase contains a read to an array, (2) a different phase
contains a write to the array, (3) the index expressions
differ by a constant, and (4) the loop bounds in each
phase are the same. Two phases are marked as broad-
cast when the first is a sequential phase that contains
a write to a shared array, and the second is a parallel
phase where all nodes read the data that was written
in the first phase. Finally, phases that operate only
on local data are marked as no communication.

This pass also characterizes workload uniformity on
the basis of nested loop bound interdependencies. A
loop whose lower or upper bound is an affine func-
tion of the index variable of the phase cycle causes
the inner loop to be marked as having an increasing
(or decreasing) workload [GB92]. If the loop bounds
are uniform, the interior of the loop is checked for con-
ditional statements. If there are none, the loop itself
is uniform.

Finally, our modified compiler inserts calls to the
Adapt and Filaments run-time systems. These include



run-time analysis routines (as described below) at the
end of each phase and phase cycle, calls that choose
the initial distribution for each phase, and a barrier
between each phase. The initial distribution is chosen
in a similar way as done in [GB92] and is based on the
phase analysis described above.

3.2 Adapt

The Adapt run-time system [LA96, Low98] monitors
program execution and, if necessary, chooses and im-
plements new local (per-phase) and global data distri-
butions at run-time. This section first describes the
monitoring of each phase to choose an effective per-
phase distribution and then describes the method used
to choose an effective global data distribution.

3.2.1 Instrumentation and Local Selection

Initially each phase uses the compiler-chosen distri-
bution (BLOCK or CYCLIC). Adapt generally measures
the computation time of each row of the array being
updated on the second phase cycle iteration in order
to ensure that execution time measurements are not
skewed by page faults effecting the initial distribution.
If the compiler can guarantee that the data is already
distributed on entrance to a phase cycle, monitoring
takes place on the first iteration.

As described below, Adapt in most cases selects a dis-
tribution for each phase based on the results of run-
time monitoring of execution times and the commu-
nication pattern inferred by the compiler; however,
for phases whose communication pattern is unknown,
Adapt will also attempt to infer the communication
pattern using the pattern of faults in the page table
(for details, see [LA96]).

After gathering computation and (possibly) commu-
nication information for each phase, Adapt selects an
effective local distribution for that phase. When the
pattern is nearest-neighbor, Adapt chooses a distribu-
tion of consecutive rows to each node (variable blocks)
so that the estimated total time on the node is as close
as possible to T/P , where T is total computation time
and P is the number of nodes. When the communica-
tion pattern is broadcast, Adapt chooses a cyclic dis-
tribution so that the load will be balanced, since the
amount of communication in such phases is constant
(over all row-based distributions).

3.2.2 Global Data Distribution

When the first iteration of the phase cycle is complete,
the information gathered for each phase along with the

cost of page faults in the Filaments DSM is used to
find the most effective global distribution. Adapt com-
putes projected execution times for each phase in each
(row-based) best local distribution (since we have the
time for each row, this can be done by summing over
all rows that would be assigned to a node). It uses
these times as well as the communication costs associ-
ated with redistribution to arrive at the most effective
global distribution. This is accomplished by represent-
ing the phase cycle as a graph that we call the run-time
data distribution graph, or RDDG (very similar to the
decomposition graph described by Kennedy and Kre-
mer [KK98]). An example RDDG for the flame simu-
lation is shown in Figure 3. In the case that each phase
represents a distribution for every array, the problem
can be solved by finding the shortest path [KK98].
Otherwise, the problem is NP-complete; we use a sim-
ple greedy heuristic, where the shortest path between
two phases is computed based on the arrays accessed
in the destination phase. All arrays not accessed in
the phase are determined to be in the same distribu-
tion as they were in the source phase. After the best
distribution in each phase is found, each node modifies
its loop bounds in each phase to effect the new global
distribution (via DSM page faults).

Further Details

Our SUIF-Adapt system contains both static and dy-
namic analysis. One challenge is for our system to be
as efficient as a static-only system on very regular ap-
plications. However, the dynamic nature of our system
presents opportunities to make several improvements
over a static-only, compiler-based system. Several of
these improvements are briefly discussed below and
shown in Figure 4; space limitations prevent further
discussion.

First, we support applications that require periodic
rebalancing, such as particle simulation. Once a new
global distribution is chosen, Adapt continues coarse-
grain monitoring, where only the time per node is mea-
sured. If the load becomes unbalanced, a new global
distribution is found by reapplying the steps outlined
in Section 3.2. This is necessary to support applica-
tions like particle simulation. Second, situations may
arise where the cost of redistributing data in a “better”
global distribution might actually outweigh the cost of
running the program to completion with no redistri-
bution. SUIF-Adapt avoids this situation when the
number of phase cycle iterations is static by maintain-
ing the number of remaining iterations and augment-
ing the RDDG with a new “start row” representing



VARBLOCK

Phase 2

Phase 1

BLOCK

Phase 1

VARBLOCK

Phase 2

BLOCK

BLOCK VARBLOCK

Final Final

B1+R(B,VB)

B1

Figure 3: RDDG for flame simulation. An edge between two nodes represents the cost of executing the phase
represented by the source node in the given distribution plus the cost, if any, of redistributing to the phase
represented by the destination node. For example, B1 denotes the time to perform phase 1 using BLOCK. R(B, V B)
denotes the time to redistribute from BLOCK to VARBLOCK. For clarity, most of the edge weights are omitted. The
shortest path through this graph is the best global distribution.

VARBLOCK

Phase 2

Phase 1

BLOCK

Phase 1

VARBLOCK

Phase 2

BLOCK

BLOCK VARBLOCK

Final Final

Phase 1

Phase 2

Final

SEQUENTIAL

SEQUENTIAL

SEQUENTIAL

Cur. Distribution Cur. DistributionCur. Distribution

(B1+R(B,SEQ)) * I

B1*I

R(Cur,B)

Figure 4: Improved RDDG for the flame simulation. In this figure I denotes the number of remaining iterations,
and B1 denotes the time to perform phase 1 using BLOCK. R(Cur, B) denotes the time to redistribute from the
current distribution to BLOCK, and R(B, SEQ) from BLOCK to sequential. Again, most of the edge weights are
omitted and the shortest path through this graph is the best global distribution.



the current distribution. Third, speedup in a phase
can sometimes be so poor that it is best to sequen-
tialize the phase. We add a sequential node per phase
to our RDDG as well as appropriate edges to consider
this possibility

4 Performance

This section reports the performance of our SUIF-
Adapt system on four programs: Jacobi iteration, LU
decomposition, particle simulation, and flame simu-
lation. The latter two require run-time support to
achieve efficient execution. For each application we
developed a program using our SUIF-Adapt system.
For an accurate comparison, we also developed pro-
grams that use a statically chosen (hand-coded) distri-
bution. They use only the Filaments DSM, not SUIF-
Adapt; this isolates the difference between the SUIF-
Adapt program and the hand-coded program to only
the choice of data distribution. In our experiments,
it is this difference that we are interested in; absolute
speedups of all SUIF-Adapt and hand-coded programs
are relatively poor. This is due to current limitations
of the quality of Filaments code that our code genera-
tor produces. Below, we present the results of runs on
1, 2, 4, and 8 200 MHz Pentium Pros connected by a
100Mbs Fast Ethernet. The cumulative cost of a page
fault, page request, and page transfer on our cluster
is 1.7 milliseconds; about 1/3 of this time is overhead
within the DSM system.

4.1 Static Applications

The execution times for the two single-distribution ap-
plications are shown in Figure 5. Each is statically an-
alyzable; the compiler chooses BLOCK for Jacobi itera-
tion (nearest-neighbor communication, uniform work-
load) and CYCLIC for LU decomposition (broadcast
communication, decreasing workload). As a result,
both SUIF-Adapt programs are competitive with their
hand-coded counterparts. Note that in these cases it is
possible for the compiler to generate code that avoids
any monitoring at all, as a good static distribution
is precisely determined. However, we do not do this,
because in general we want our system to be able to
adapt to load that could potentially be present in a
multiuser environment.

4.2 Adaptive Applications

Our particle simulation is based on MP3D from the
Splash suite [PWG91]; results are shown in Figure 5.
There are three phases and the initial particle posi-
tions were evenly divided throughout the grid. How-
ever, the particles tend to collide and move toward the
upper region of the grid. Although the hand-coded

program uses a BLOCK distribution to initially balance
the load, when the particles move, the load becomes
unbalanced. On the other hand, the SUIF-Adapt pro-
gram performs periodic redistributions over the course
of the simulation to rebalance the load and hence per-
forms much better. The speedup tapers off at eight
nodes because a perfect balance of the number of par-
ticles requires the distribution of partial rows. How-
ever, distributing partial rows would cause thrashing
in our underlying DSM system. Instead, our minimum
unit of distribution is a single row.

Our version of flame simulation resembles the code
fragment given in Figure 2. The program contains two
phases; the first performs a simple nearest-neighbor
calculation, and the second is dependent only on local
points. Each has a different best local distribution.
Both phases contain parameterizable delay loops so
that we could experiment with differing phase execu-
tion times.

Figure 6 shows the performance of our modified flame
simulation. We ran tests with three different delay
loops; all were such that in the second phase, the
work was concentrated in the top quarter of the grid.
The first test weighted the second phase heavily, while
the other tests weighted both phases evenly. The sec-
ond test contained a small amount of work in each
phase, while the third contained a large amount in
each. The best distributions for the first two tests were
variable block in both phases (first test) and block in
both phases (second test). The best distribution for
the third test depends on the number of nodes used.
With two and four nodes, it is more effective to choose
block/variable block with redistribution; this avoids
having one node do all the work in the second phase.
However, on eight nodes it is better to choose block
in both phases, as (1) two nodes actually have work
to do in the second phase (because the work is con-
centrated in the top quarter of the grid), and (2) the
cost of redistribution when using eight nodes is higher
than when using two and four nodes.

For all tests, the run-time analysis of Adapt suc-
cessfully found these distributions with small over-
head compared to the best version of the hand-
coded programs—that is, Adapt performs comparably
against programs coded using prior knowledge, which
the programmer or compiler does not normally have.
For example, it is difficult in general for a programmer
or compiler to pick one distribution for two and four
nodes and another for eight nodes.

Finally, Figure 7 shows the potential benefit of using
the number of remaining loop iterations in a phase cy-



Number of Nodes 1 2 4 8

Jacobi: SUIF-Adapt Time (sec) 226 144 97.5 78.2

Jacobi: Hand-coded Time, BLOCK (sec) 226 142 97.1 76.9

LU: SUIF-Adapt Time (sec) 192 110 66.1 53.7

LU: Hand-coded Time, CYCLIC (sec) 192 109 65.7 52.7

Particle Simulation: SUIF-Adapt Time (sec) 201 134 89.0 77.5

Particle Simulation: Hand-coded Time, BLOCK (sec) 201 153 129 132

Figure 5: Performance of Jacobi iteration, LU Decomposition, and particle simulation. Jacobi iteration uses an
800× 800 grid for 500 iterations. LU decomposition uses an 800× 800 grid. Particle simulation performs 40 time
steps using a grid of 64 × 64 with 128 particles.

Number of Nodes 1 2 4 8

Flame (1): SUIF-Adapt Time (sec) 206 144 97.6 77.1

Flame (1): BB/BV/VV (sec) 206 198/265/142 181/268/97.2 96.3/273/76.9

Flame (2): SUIF-Adapt Time (sec) 211 137 86.6 53.1

Flame (2): BB/BV/VV (sec) 211 137/341/198 86.0/345/178 51.8/350/169

Flame (3): SUIF-Adapt Time (sec) 218 138 85.9 49.2

Flame (3): BB/BV/VV (sec) 218 141/138/196 92.2/85.8/173 48.6/63.0/162

Figure 6: Performance of 3 versions of our flame simulation, size 1024× 1024. BB indicates that each phase used
BLOCK, BV indicates that the first phase used BLOCK and the second used variable-sized blocks, and VV indicates
both phases used (the same) variable-size blocks.

cle along with the current distribution. It is a test of
flame simulation (1) on eight nodes for just five iter-
ations. Although the best distribution is to use vari-
able sized blocks in each phase, a global redistribution
would be necessary to achieve this. Because there are
so few iterations remaining, it is more time-efficient
to leave the data distributed in the initial distribution
(BLOCK).

5 Discussion and Current Research

We view our work as encouraging, but only a first step;
currently, our system supports applications where loop
bounds need to be shifted. Our current research is
aimed at supporting two additional types of applica-
tions.

First, we are investigating applications, such as ADI
integration and implicit hydrodynamics codes, for
which data dependencies require either a complete
data reorganization or software pipelining [PW86].
While pipelining can often give better performance
than transposition in explicit message passing pro-
grams, it will almost always cause either thrashing or
unnecessary two-way communication in current DSM
systems. In separate work we have integrated support
for pipelining into DSM systems, so we are well posi-
tioned to handle this problem [BL99]. Furthermore,
we hope to augment SUIF-Adapt to compare trans-

position to pipelining on the fly and choose the more
efficient one. Finally, if pipelining is chosen, we plan
to extend SUIF-Adapt to find the most effective block
size [LJ99].

Second, we are examining extensions to our model
that will allow dynamic sequentialization between
phase cycles. Such extensions would allow more effi-
cient execution of multigrid methods, where (1) phase
cycles are themselves executed within a loop, and (2)
a smaller data set is accessed on each such iteration.
At some point, the cost of executing phases within
a phase cycle in parallel outweighs the benefit. We
would like to be able to dynamically sequentialize
phase cycles when profitable. We currently assume
that phase cycles are outermost loops. Instead, we will
need to allow phase cycles to be nested within other
(sequential) loops; then, we will make phase cycle se-
quentialization decisions after one complete execution
of the enclosing loop.

6 Related Work

Compiler techniques to distribute data within phases
have been studied extensively (e.g., [LC90, BFKK91,
O’B93, GB93, RN95]). To find global distributions at
compile time, Kennedy and Kremer [KK98] use a “de-
composition graph”, which was similar to the “com-
munication graph” originally described by Anderson



Number of Nodes 8

Flame(2) [5 iterations]: SUIF-Adapt Time without redistribution (sec) 13.2

Flame(2) [5 iterations]: Time with redistribution (sec) 31.2

Figure 7: Performance of flame simulation for 5 iterations, size 1024 × 1024, using 8 nodes. SUIF-Adapt takes
into account the current distribution and the number of remaining iterations. It does not redistribute, and the
savings in time is significant.

and Lam [AL93]. Our RDDG is based on both of
these approaches. Others that take a similar approach
include [PB95, GAL96]. Unfortunately, if even one
phase is unanalyzable, the compiler cannot infer an
effective global distribution.

Approaches employing a run-time system, such
as ALEXI [Who91], CHAOS [HMS+95], AppLeS
[SWB97], and Adapt [LA96], can find an efficient lo-
cal data distribution even in cases where workload and
communication characteristics of a program change at
run time. However, a pure run-time system does not
necessarily know when phases or phase cycles begin
or end, and hence might be unable to choose an ap-
propriate point in the program for data redistribution.
Our SUIF-Adapt system tightly integrates a compiler
with a run-time system and so can efficiently solve the
global data distribution problem.

One project similar to ours has been undertaken by
Ioannidis and Dwarkadas [ID98]; they are also investi-
gating balancing load and minimizing communication
in DSM systems. However, their work primarily con-
cerns local (single phase or two adjacent phases) data
distribution. Finally, many have studied integrated
compiler/DSM systems with a focus on elimination of
as many consistency actions as possible using compiler
information. [KT97, LCD+97, CDLZ97].

7 Summary

We have described the design and implementa-
tion of an integrated compiler/run-time system for
global data distribution in distributed shared memory
(DSM) systems. The SUIF-Adapt system efficiently
supports a larger class of applications than previous
compiler-only approaches. The compiler parallelizes
the code where possible, divides the program into
phases, chooses an initial data distribution for each,
and inserts calls to the run-time system at appropri-
ate points in the program. The run-time system mon-
itors program execution and finds effective local and
global data distributions such that completion time in
our framework is minimized. Our SUIF-Adapt system
is flexible, as it determines effective distributions even
when the phases of an application exhibit vastly differ-

ent and statically unanalyzable computational char-
acteristics. Performance of our system on several ap-
plications was always within 7% of the program that
used the best statically determined distribution and
outperformed static distributions when phase behav-
ior changes. Further, many of the statically chosen
distributions used prior knowledge generally unavail-
able at compile time.

References

[LA96] David K. Lowenthal and Gregory R. An-
drews. An adaptive approach to data
placement. In Proceedings of the 10th In-
ternational Symposium on Parallel Pro-
cessing, pages 349–353, April 1996.

[O’B93] Michael O’Boyle. A data partioning al-
gorithm for distributed memory compila-
tion. Technical Report UMCS-93-7-1, Uni-
versity of Manchester, Computer Science
Department, July 1993.

[RN95] J. Ramanujam and A. Narayan. Auto-
matic data mapping and program transfor-
mations. In Workshop on Automatic Data
Layout and Performance Prediction, June
1995.

[Who91] Skef Wholey. Automatic Data Mapping
for Distributed-Memory Parallel Comput-
ers. PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, May 1991.

[HAA+96] Mary W. Hall, Jennifer M. Anderson,
Saman P. Amarasinghe, Brian R. Mur-
phy, Shih-Wei Liao, Edouard Bugnion, and
Monica S. Lam. Maximizing multiproces-
sor performance with the SUIF compiler.
IEEE Computer, 29(12):84–89, December
1996.

[HKT92] Seema Hiranandani, Ken Kennedy, and
Chau-Wen Tseng. Compiling Fortran D
for MIMD distributed-memory machines.
Communication of the ACM, 35(8):66–80,
August 1992.



[FHK+90] Geoffrey Fox, Seema Hirandani, Ken
Kennedy, Charles Koelbel, Ulrich Kremer,
Chau-Wen Tseng, and Min-You Wu. For-
tran D language specification. Technical
Report CRPC-TR90079, Rice University,
December 1990.

[LFA96] David K. Lowenthal, Vincent W. Freeh,
and Gregory R. Andrews. Using fine-
grain threads and run-time decision mak-
ing in parallel computing. Journal of Par-
allel and Distributed Computing, 37:41–54,
November 1996.

[GB92] Manish Gupta and Prithviraj Banerjee.
Demonstration of automatic data parti-
tioning techiniques for parallelizing com-
pilers on multicomputers. IEEE Transac-
tions on Parallel and Distributed Systems,
pages 179–193, 3 1992.

[Low98] David K. Lowenthal. Local and global
data distribution in the Filaments pack-
age. In Proceedings of the 4th Interna-
tional Conference on Parallel and Dis-
tributed Processing Techniques and Appli-
cations, pages 33–41, July 1998.

[KK98] Ken Kennedy and Ulrich Kremer. Auto-
matic data layout for distributed-memory
machines. ACM Transactions on Program-
ming Languages and Systems, 20(4):869–
916, 1998.

[PWG91] Jaswinder Pal Singh, Wolf-Dietrich We-
ber, and Anoop Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory.
Technical Report CSL-TR-91-469, Depart-
ment of Electrical Engineering and Com-
puter Science, Stanford University, April
1991.

[PW86] David Padua and Michael Wolfe. Ad-
vanced compiler optimizations for super-
computers. Communications of the ACM,
29(12):1184–1201, 12 1986.

[BL99] Karthikeyan Balasubramanian and
David K. Lowenthal. Efficient support for
pipelining in distributed shared memory
systems (submitted to Parallel and Dis-
tributed Computing Practices). August
1999.

[LJ99] David K. Lowenthal and Michael James.
Run-time selection of block size in

pipelined parallel programs. In Proceed-
ings of the 2nd Merged IPPS/SPDP, pages
82–87, April 1999.

[LC90] J. Li and M. Chen. Index domain align-
ment: Minimizing cost of cross-referencing
between distributed arrays. In Fron-
tiers90: The 3rd Symposium on the Fron-
tiers of Massively Parallel Computation,
pages 424–432, October 1990.

[BFKK91] V. Balasundaram, G. Fox, K. Kennedy,
and U. Kremer. An static performance
estimator to guide data partitioning deci-
sions. In Proceedings of the Third ACM
SIGPLAN Symposium on Principles and
Practices of Parallel Programming, pages
213–223, April 1991.

[GB93] M. Gupta and P. Banerjee. PARADIGM:
A compiler for automated data distribu-
tion on multicomputers. In Proceedings of
the 1993 ACM International Conference
on Supercomputing, pages 357–367, July
1993.

[AL93] J. Anderson and M. Lam. Global opti-
mizations for parallelism and locality on
scalable parallel machines. In Proceedings
of the SIGPLAN ’93 Conference on Pro-
gram Language Design and Implementa-
tion, pages 112–125, June 1993.

[PB95] Daniel J. Palermo and Prithviraj Banerjee.
Automatic selection of dynamic data par-
titioning schemes for distributed-memory
multicomputers. In Proceedings of the 8th
Workshop on Languages and Compilers
for Parallel Computing, August 1995.

[GAL96] Jordi Garcia, Eduard Ayguade, and Jesus
Labarta. Dynamic data distribution with
control flow analysis. In Supercomputing
’96, November 1996.

[HMS+95] Yuan-Shin Hwang, Bongki Moon,
Shamik D. Sharma, Ravi Ponnusamy, Raja
Das, and Joel H. Saltz. Runtime and lan-
guage support for compiling adaptive ir-
regular programs on distributed-memory
machines. Software—Practice and Expe-
rience, 25(6):597–621, June 1995.

[SWB97] Gary Shao, Rich Wolski, and Fran
Berman. Modeling the cost of redistribu-



tion in scheduling. In Eighth SIAM Con-
ference on Parallel Processing for Scien-
tific Computation, March 1997.

[ID98] Sotiris Ioannidis and Sandhya Dwarkadas.
Compiler and run-time support for adap-
tive load balancing in software distributed
shared memory systems. In Proceedings of
the Fourth Workshop on Languages, Com-
pilers, and Run-Time Systems for Parallel
Computing, pages 107–122, May 1998.

[KT97] Pete Keleher and Chau-Wen Tseng. En-
hancing software DSM for compiler-
parallelized applications. In Proceedings of
the 11th International Parallel Processing
Symposium, April 1997.

[LCD+97] Honghui Lu, Alan L. Cox, Sandhya
Dwarkadas, Ramakrishnan Rajamony, and
Willy Zwaenepoel. Compiler and dis-
tributed shared memory support for irreg-
ular applications. In Sixth ACM SIGPLAN
Symposium on Principles and Practice of
Parallel Programming, pages 48–56, June
1997.

[CDLZ97] Alan L. Cox, Sandhya Dwarkadus,
Honghui Lu, and Willy Zwanapoel. Eval-
uating the performance of software dis-
tributed shared memory as a target for
parallelizing compilers. In Proc. of the 11th
International Parallel Processing Sympo-
sium, pages 474–482, April 1997.


