
New Methods for Passive Estimation of TCP

Round-Trip Times

Bryan Veal, Kang Li, and David Lowenthal

Department of Computer Science
The University of Georgia
Athens, GA 30602, USA

{veal,kangli,dkl}@cs.uga.edu

Abstract. We propose two methods to passively measure and monitor
changes in round-trip times (RTTs) throughout the lifetime of a TCP
connection. Our first method associates data segments with the acknowl-
edgments (ACKs) that trigger them by leveraging the TCP timestamp
option. Our second method infers TCP RTT by observing the repeating
patterns of segment clusters where the pattern is caused by TCP self-
clocking. We evaluate the two methods using both emulated and real
Internet tests.

1 Introduction

Round-trip time (RTT) is an important metric in determining the behavior of
a TCP connection. Passively estimating RTT is useful in measuring the the
congestion window size and retransmission timeout of a connection, as well as
the available bandwidth on a path [1]. This information can help determine
factors that limit data flow rates and cause congestion [2]. When known at a
network link along the path, RTT can also aid efficient queue management and
buffer provisioning. Additionally, RTT can be used to improve node distribution
in peer-to-peer and overlay networks [3].

Our work contributes two new methods to passively measure RTT at an inte-
rior measurement point. The first method works for bidirectional traffic through
a measurement point. It associates segments from the sending host with the
ACK segments that triggered their release from the sender. Our method uses
TCP timestamps to associate data segments with the acknowledgments that
trigger them. Since the other direction is easy—associating acknowledgments
with the data segments they acknowledge—we can obtain a three-way segment
association. Thus, we have a direct and simple solution that can collect many
RTT samples throughout the lifetime of the connection.

There is no guarantee that the network route is symmetric, so only one
direction of flow may be available to the measurement point. We introduce a
second method to monitor a data stream and detect cyclical patterns caused
by TCP’s self-clocking mechanism. Because of self-clocking, a TCP connection’s
segment arrival pattern within one RTT is very likely to repeat in the next RTT.



We use algorithms that employ autocorrelation to find the period of the segment
arrival pattern, which is the RTT. As with our previous method, we can take
samples throughout the lifetime of a TCP session.

We show both methods to be accurate by evaluating them using both emu-
lated and real network traces. For the emulated traces, we tested RTT estimates
with network delays ranging from 15ms to 240ms, as well as with competing
traffic over a bottleneck link using 0–1200 emulated Web users. The average
RTT estimate for each delay tested was always within 1ms of the average RTT
reported by the server. The maximum coefficients of variation (standard devi-
ation/mean) were 3.79% for the timestamp based method and 6.69% for the
self-clocking based method. Average RTT estimates for the tests with compet-
ing traffic were all within 1ms for the timestamp based method and 5ms for the
self-clocking based method.

We also tested our RTT estimation methods with downloads from Internet
FTP servers. Out of seven servers, the maximum coefficient of variation was
0.11% for the timestamp based method. For five of those servers, all RTT esti-
mates for each server were within 1ms of each other using the self-clocking based
method, and their average estimates were within 2.2ms of the average estimates
from the timestamp based method.

2 Related Work

The method [4] uses segment association during the three-way handshake that
initiates a TCP connection, as well as during the slow start phase. This takes
advantage of the fact that the number of data segments sent can be easily pre-
dicted in advance. However, during the congestion avoidance phase, it is hard to
predict the RTT based on the number of segments. Our method can associate a
data segment with the ACK that triggered it, and thus it can follow changes in
the RTT throughout the lifetime of a TCP session.

There is a method [5] to associate, throughout the lifetime of a session (includ-
ing during congestion avoidance), a data segment with the ACK segment that
triggered it. This method first generates a set of all possible candidate sequences
of ACKs followed by data segments. Sequences that can be determined to violate
basic TCP properties are discarded. The method then uses maximum-likelihood
estimation to choose from the remaining possible sequences. This method is com-
plex and would be cumbersome to implement as a passive estimation method at
a device such as a router. Our method of using TCP timestamps to associate
segments is simpler and more direct.

A previous work [6] introduces a method to passively measure RTT by mim-
icking changes in the sender’s congestion window size. The measurement point
must accurately predict the type of congestion control used: Tahoe, Reno, or
NewReno. The accuracy of the estimate is affected by packet loss, the TCP win-
dow scaling option, and buggy TCP implementations. Our method avoids these
difficulties by directly detecting the associations between segments.



3 TCP Timestamps

Both our RTT estimation methods use the TCP timestamp option. The original
purpose of the option was to estimate the RTT at the sender for the purpose
of deriving the retransmission timeout. The option adds two fields to the TCP
header: timestamp value (TSval) and timestamp echo reply (TSecr). TSval is
filled with the time at which the segment was sent, and TSecr is filled with the
TSval of most recently received segment, with some exceptions. If a segment is
received before a segment previous to it in the sequence arrives, leaving a hole,
then the timestamp of the segment previous to the hole in the sequence is echoed.
When this hole is filled by an out-of-order segment or a retransmission, the
timestamp of the segment that fills the hole is echoed rather than the timestamp
of a segment later in the sequence.

3.1 Timestamp Deployment

For timestamps to be useful for passive RTT measurement, the option should
have a wide deployment and its implementation should be consistent across
different hosts. We have developed a tool that can test the timestamp option
on remote Web servers. This tool was run on 500 servers taken from the Alexa
Global 500 list [7]. Of these, 475 servers responded to HTTP requests from our
tool.

The tool tests for timestamp deployment by sending SYN segments with the
timestamp option enabled and checking the SYN/ACK response for timestamps.
Of the 475 responding servers, 76.4% support the TCP timestamp option. We ex-
pect timestamp deployment to increase over time. Furthermore, the self-clocking
based RTT estimation method does not have to rely on TCP timestamps as the
time unit used to associate segments into clusters. Other time units are possible,
such as arrival time at the measurement point. We will address this possibility
in future work.

3.2 Implementation Consistency

The tool also tests for implementation consistency. It tests the exceptions to
echoing the most recent timestamp, described above. The tool sends three data
segments with the last two out of order in sequence. The server should indicate
the hole by sending a duplicate ACK with the timestamp of the first segment.
When the client sends the last segment that fills the hole, the server should echo
its timestamp. Of the servers tested that support TCP timestamps, 100% echoed
the correct timestamp in both cases.

Another possible implementation error is to echo the timestamps of only
data segments, disregarding ACKs that carry no data. Our tool tests for this
possibility by sending an HTTP request to the server, receiving a data segment,
sending an acknowledgment, and receiving more data. The congestion window
is throttled to one byte to ensure that one segment is sent at a time. The second
data segment from the server should echo the timestamp of the ACK and not



the timestamp of the HTTP request. Of the servers tested, 99.4% correctly echo
the timestamp of the the ACK.

3.3 Timestamp Granularity

The granularity chosen for TCP timestamps is implementation dependent. A fine
granularity increases the accuracy and usefulness of both our RTT estimation
methods, as shall be explained in later sections. Our tool tests granularity by
sending data segments to the server at a known interval and then measuring the
difference between the timestamps of the ACKs the server sends in response.
Table 1 shows the distribution of timestamp granularity across the servers tested
that support the timestamp option.

Table 1. Distribution of timestamp granularity

Granularity Percent of Servers

500ms 0.6%
476ms 0.6%
100ms 36.9%
10ms 54.8%
1ms 7.2%

4 RTT Estimation Using Timestamps

Our first RTT estimation method method requires finding associations between
TCP segments at an interior point along the route between the sender and
receiver. The first segment in an association is a data segment from the sending
end of a TCP connection. The second is the ACK segment from the receiving
end that acknowledges receipt of the data segment. The third segment in the
association is the next data segment from the sender, which is triggered when it
receives the ACK. This assumes that the sender always has enough data ready
to fill the congestion window as soon as more room becomes available.

Since multiple data and ACK segments may be in transmission concurrently,
it is not obvious at an interior point which segments from one host have been
triggered by the other. For the interior point to recognize an association, a
segment must carry identification of the segment that triggered it. For the case
of a data segment triggering an ACK, the acknowledgment number carried by
the ACK is derived from the sequence number of the data segment. Thus the
interior point can associate the two segments. However, the sequence numbers of
ACK segments remain constant as long as the receiver sends no data. Because
of this, it is impossible to use the acknowledgment number of a data segment to
identify the ACK that triggered it.

The measurement point may use TCP timestamps instead of sequence num-
bers to associate segments. Timestamps are used only for association and not



for calculating the RTT. Both the sender and receiver of a TCP session echo
the most recently received timestamp, with minor exceptions in the cases of loss
and segment reordering. The measurement point records the timestamps, their
echoes, and arrival times of segments in each direction to estimate the RTT.

Figure 1 provides an example. The sender transmits a segment at time s1. It
arrives at the interior measurement point at time m1. The receiver responds with
an ACK at time r1 and echoes the sender’s timestamp, s1. The measurement
point recognizes s1 in both segments and makes an association. Upon receiving
the ACK, the sender transmits more data at time s2 and echoes the receiver’s
timestamp, r1. The measurement point receives this segment at time m2. It
recognizes r1 in both segments and forms an association. Having associated all
three segments, the measurement point estimates the RTT to be m2 − m1 .

r1

m1

m2

(s1, −)

(s2,r1)

s1

s2

ReceiverSender

(r1,s1)

Measurement Point

Fig. 1. Association of segments using TCP timestamps

4.1 Constraints

Timestamp Granularity. The granularity of timestamps depends upon the
TCP implementation of the sender. Even with a granularity as fine as 1ms, a
burst of segments sent in a short interval may carry the same timestamp. The
receiver may acknowledge parts of the burst at different times, but all the ACKs
would carry the same timestamp echo. It would be difficult for the interior point
to determine which data segments caused which ACKs. Since the first segment
carrying a timestamp may be associated safely with the first segment carrying
its echo, the algorithm only considers the first arriving segment with a particu-
lar timestamp and others with identical timestamps are discarded. However, a
coarser timestamp granularity increases the the number of segments with iden-
tical timestamps, and thus allows for fewer measurements to be taken.

A side effect of preventing associations with ACKs containing old timestamps
is that later ACKs containing the same timestamp echo as the discarded segment



may be used to make an association, leading to an overestimate. To prevent this
situation, only the first ACK with any particular timestamp echo is used to make
associations.

Packet Loss. When the receiver is missing data due to packet loss, it sends
duplicate ACKs. Since timestamp echoes are not updated when the receiver is
missing data, this problem is automatically eliminated by discarding associations
with ACKs that contain old timestamp echoes. However, when selective acknowl-
edgments are enabled, overestimates can still occur. This problem is avoided by
not considering selective ACK segments (which are only produced when loss is
present), when making associations.

Interactive Sessions. This algorithm does not consider situations where the
sender has no new data available when it receives and ACK. Such sessions are
typically for interactive applications, such as ssh or telnet. Though not imple-
mented here, it should be possible to obtain RTT estimates for interactive ses-
sions based on some simple application heuristics. For example, in a typical
session, when a user types a key, the character is sent to the server. Then the
server echos the character back to the client to be displayed on the terminal. The
client then responds with an ACK. An interior measurement point could take
advantage of this to make an association for the three segments and estimate
the RTT.

It is still possible that the sender has some delay in sending more data during
a bulk transfer which could lead to an inflated RTT estimate at the measurement
point. To filter such measurements, we have devised a method that tracks current
maximum RTT for the session between the measurement point itself and each
of the two hosts. These RTTs would be taken for only data-ACK pairs to avoid
any possibility of sender delay. Any RTT estimates greater than the current sum
of the two maximum delays would be discarded as an inflated estimate. We plan
to evaluate this method as future work.

Asymmetric Routing. Though the RTT estimation algorithm requires both
data and ACKs, there is no guarantee that both directions of traffic will follow
the same route. However, it is still possible to obtain estimates using the second
algorithm described in the next section.

5 RTT Estimation Using Self-Clocking Patterns

Our second algorithm detects patterns in a bulk data stream caused by a mech-
anism in TCP known as self-clocking. Capturing ACKs from the receiver is
not required, so this algorithm maybe used for either asymmetric or symmetric
routes. With self-clocking, the bulk data sender produces more data each time
it receives an ACK, and the receiver sends an ACK each time it receives more



data. Because of this, the the spacing between bursts of segments is likely pre-
served from one round trip to the next. Although packet losses and competing
traffic could change the spacing and cause bursts to split or merge, the changes
do not always happen frequently, and the bursts tend to persevere for at least
a few round trips after each change. There may be multiple bursts of segments
per round trip, and their size and spacing generally repeat every RTT. This al-
gorithm detects the repetition of these burst-gap patterns to find the RTT. An
example of such a pattern is shown in Fig. 2.

 0

 2

 4

 6

 8

 10

 250  300  350  400  450  500

N
um

be
r 

of
 S

eg
m

en
ts

Time (ms)

Fig. 2. Burst-gap pattern caused by self-clocking

Discrete autocorrelation measures how well a data set is correlated with itself
at an offset determined by the lag (l). If the correlation is strong, then the data
matches its offset closely. Figure 3 shows the autocorrelation strengths for the
data in Fig. 2. The strong correlation at 61ms corresponds closely to the RTT
(which is 60ms).

Our algorithm uses autocorrelation to make RTT estimates. The algorithm
repeats the RTT estimation once per measurement interval, T , which is supplied
as a parameter. During this interval, the number of packets that arrive with
timestamp t is stored in array P [t] ranging from 0 to T − 1. Once the count is
complete, the discrete autocorrelation A[l] is computed for each lag l from 1 to
l/2. The RTT estimate is computed as max(A).

This process is repeated to produce multiple estimates throughout the ses-
sion. The number of estimates depends upon the duration of the measurement
interval and the duration of the session. However, more estimates may be taken
by allowing measurement intervals to overlap.



-1

-0.5

 0

 0.5

 1

 0  20  40  60  80  100  120

C
or

re
la

tio
n

Lag (ms)

Fig. 3. Autocorrelation for self-clocking pattern

5.1 Constraints

Timestamp Granularity. According to a theoretical limit known as the Ny-

quist period, it is only possible to measure RTTs at least twice the TCP times-
tamp granularity. For instance, if the granularity is 10ms, we can only detect
RTTs of at least 20ms. This is a problem with timestamp granularities of 100ms
or more. Although we do not explore it in this paper, a possible solution is to
use arrival times at the measurement point rather than TCP timestamps from
the sender.

Harmonic Frequencies. A consequence of a burst-gap pattern that repeats
every RTT is a strong autocorrelation at multiples of the RTT that is sometimes
stronger than that of the actual RTT. Rather than assuming that the strongest
correlation corresponds to the RTT, the algorithm starts with the lag at the
strongest correlation, s, and compares it to A[ s

2
], A[ s

3
], A[ s

4
], . . ., until a certain

limit is reached. If the correlation at the fractional lag is at least a certain
percent of the actual lag, then that lag is considered the RTT instead. The limit
of fractional lags and the percent of the maximum correlation are both provided
as parameters to the algorithm.

Measurement Interval. The measurement interval chosen places an upper
bound on the maximum RTT that can be measured. Autocorrelation becomes
unreliable at a lag of half the measurement interval, since two complete round
trips are needed to fully compare one round trip with its offset.



Delay Variation. While a smaller measurement interval may miss large RTTs,
a larger measurement interval decreases the amount RTT variation that can be
detected. If multiple strong correlations exist at different lags, this may indicate
different RTTs at different times within a measurement interval. Our algorithm
can report multiple candidate RTT estimates within an interval along with their
correlation strengths.

Noise Effects on Self-Clocking Patterns. Congestion caused by competing
traffic or other network conditions may disrupt the burst-gap pattern caused by
self-clocking. One consequence of this is a high correlation at very small lags.
This problem can be corrected by allowing a lower bound on the RTT to be
specified as a parameter. We evaluate the effects of competing traffic on our
algorithm in the next section.

6 Evaluation of RTT Estimation Methods

To evaluate these two passive RTT estimation methods, we have implemented
them in a toolkit called TCPpet (TCP Passive Estimation Toolkit). Our imple-
mentations take traces captured by tcpdump and generate RTT estimates. The
implementation of the timestamp method takes a trace with bidirectional TCP
traffic and generates as many RTT estimates as the timestamp granularity will
allow.

The implementation of the self-clocking method can use a trace with bidirec-
tional or unidirectional traffic. Harmonic frequency detection is enabled for all
experiments. If 1

2
, 1

3
, or 1

4
of the lag having the strongest correlation has at least

75% of that correlation, it is taken as the RTT measurement. Note that 75%
is measured from the minimum correlation in the measurement interval, which
may be negative, instead of from zero. These values were chosen for good overall
performance with the FTP downloads described later. Additionally, RTTs are
assumed to be at least 10ms. Lags less than 10ms are not considered in order
to correct for strong autocorrelations caused by noise effects. Note that if the
Nyquist period is higher than 10ms, it becomes the minimum instead.

6.1 Emulation Test with a Single Flow

We have evaluated both RTT estimation methods with different network delays
over an emulated network. The network consists of four machines: a sender,
a receiver, and two routers, creating a three-hop route between the sender and
receiver. Both the sender and receiver have timestamp granularities of 1ms. NIST
Net [8] was used to add delay along the route by adding delay to both directions
of traffic on each of the two routers. Thus, there are a total of four sources
of delay along the route. If, for instance, a total round trip delay of 100ms is
desired, then a delay of 25ms is added to each of the four points.

Traces were taken with tcpdump on the router closest to the sender. These
traces were taken from the network interface that connects to the receiver’s



router, so that segments from the sender are delayed both before and after being
recorded by tcpdump.

TCP data transfers were generated by the ttcp utility, which has been in-
strumented to report RTT estimates from the server’s TCP implementation. All
transfers were 16MB of data generated by ttcp.

Figure 4 shows all the RTT estimates for a network trace with a 60ms delay.
Although the trace is longer, we only show the first 2 seconds for clarity. It
includes estimates made by the server as well those made by the two passive
estimation methods. A 250ms measurement interval was heuristically chosen for
the self-clocking method. We plan to find a general default measurement interval
as future work. As shown in the figure, nearly all the RTT measurements are
close to those reported by the server. Note that the first few estimates for the
server were influenced by preexisting state in the TCP implementation. After
the 1s mark, the server estimates level off throughout the duration of the trace.

 56

 58

 60

 62

 64

 0  0.5  1  1.5  2  2.5  3

R
T

T
 E

st
im

at
e 

(m
s)

Time (s)

Server RTT
Timestamp Method

Self-Clocking Method

Fig. 4. RTT estimates for an emulated network trace with a 60ms delay

RTT estimates were taken for traces with 15, 30, 60, 120, and 240ms delays.
Figure 5 shows the average of all the RTT estimates reported by each method for
each trace. Here, a 500ms measurement interval was chosen for the self-clocking
estimation method to accommodate possible RTTs up to 250ms. As shown in
the figure, the averages are nearly identical. The largest coefficients of variation
(standard deviation/mean) occurred for the 15ms delay trace, which were 3.79%
for the timestamp based method and 6.69% for the self-clocking based method.



 10

 100

 1000

 10  100  1000

A
ve

ra
ge

 R
T

T
 E

st
im

at
e 

(m
s)

Network Delay (ms)

Server RTT
Timestamp Method

Self-Clocking Method

Fig. 5. Emulated network traces with varying delay

6.2 Emulation Test with Competing Flows

While the previous experiments show that our methods work well with different
delays, real networks have conditions such as bottlenecks and competing traffic.
The emulated network used previously was modified using NIST Net to limit
the segments sent from the sender to the receiver to 10mb/s with a queue length
of 13 packets. Delay was only added to the receiver side router, and it was set
to 30ms for either direction of traffic. Thus, there was a total 60ms delay for the
round trip.

To generate competing traffic, an Apache web server was run on the sender.
Surge [9] was run on the receiver to generate HTTP requests to be served by
the sender. Surge was configured with the default settings based on analyses
in [10]. Traces were generated with ttcp while Surge was concurrently generating
traffic. The traces were captured by tcpdump as described previously. A 250ms
measurement interval was chosen for the self-clocking based method.

Figure 6 shows average RTT estimates when Surge is generating requests
from 0, 200, 400, 600, 800, 1000, and 1200 emulated Web users. The error bars
show the standard deviation of each set of estimates. Note that the initial 1s
period of server RTT estimates for each trace is discarded because the initial
estimates were influenced by preexisting state in the TCP implementation.

The average RTT estimates from the timestamp based method are all within
1ms of that of the server. They are all within 5ms for the self-clocking method.
High loss and retransmission rates were the principle causes of variation in the
estimates, especially in the traces with 200 and 400 emulated users. In fact, for
the self-clocking based method, 9.7% of the 250ms measurement intervals could
not produce RTT estimates because no segments arrived during that time. Other



 0

 20

 40

 60

 80

 100

 120

120010008006004002000

A
ve

ra
ge

 R
T

T
 E

st
im

at
e

Number of Clients

Server RTT
Timestamp Method

Self-Clocking Method

Fig. 6. RTT estimates with competing traffic from emulated Web users

intervals had one or two segments–too few to produce accurate estimates. We
are currently investigating why traces with more than 600 emulated users had
lower loss rates. Considering the severity of the effects of congestion, our average
RTT estimates were very accurate.

6.3 Real Network Tests

To evaluate our RTT estimation methods on real networks, we performed FTP
downloads from seven sites (Table 2). Traces were captured for the FTP data
streams on the client with tcpdump. A measurement interval of 500ms was cho-
sen for the self-clocking based method to accommodate possible RTTs up to
250ms. Note that RTT estimates for the servers’ TCP implementations are not
available since we do not have access to these machines. ICMP ping times were
captured for reference at a later date than the traces. The RTT for the Sun
server appears to have changed after the traces were taken. For the Intel server,
the 100ms timestamp granularity was too coarse, so no valid RTT estimate could
be produced. The Intel server also did not respond to ping requests.

The estimates for the self-clocking based method were very accurate. With
the exception of one trace, the minimum and maximum estimates differed by
at most 1ms. The maximum difference between the average self-clocking based
estimate and the average timestamp based estimate was 2.2ms for the Sun trace,
which had a high 10ms timestamp granularity. The 150ms estimate for JRiver
trace from the self-clocking based method was caused by a single missed har-
monic frequency. Similarly, the low 40ms was caused by two consecutive mea-
surements during a series of half-RTT bursts.



Table 2. RTT estimates in ms for FTP downloads

Site Ping Timestamps Method Self-Clocking Method
Avg. Min. Max. Avg. Min. Max.

ftp10.us.freebsd.org 97.6 98.7 97.9 134.5 98.1 98.0 99.0
ftp.cs.washington.edu 59.7 62.0 60.7 87.0 60.0 60.0 60.0
ftp.cs.stanford.edu 62.4 65.3 64.0 99.9 65.1 65.0 66.0
ftp.jriver.com 60.5 75.3 60.6 101.6 75.7 40.0 150.0
docs-pdf.sun.com 90.7 52.2 51.7 61.4 50.0 50.0 50.0
ftp.cs.uiuc.edu 20.7 21.5 21.2 24.4 20.0 20.0 20.0
download.intel.com — 110.6 98.2 127.1 — — —

Despite some of the high maximum estimates for the timestamp based meth-
od, the number of large estimates were few. The highest coefficient of variation
was only 0.11% for the JRiver trace. While many of the other RTT estimates
from the timestamp based method are affected by a few outliers, estimates for
this trace have a more scattered distribution in both directions from the mean.
This suggests that our method is detecting actual small-scale variations in RTT
caused by conditions in the network route.

Figure 7 shows the passive RTT estimates for the FTP download from Stan-
ford as an example. Note that the timestamp based method is able to take many
samples, while samples from the self-clocking based method are limited by the
size of the measurement interval. All the estimates from the self-clocking based
method are either 65 or 66ms. Nearly all the estimates from the timestamps
based method are within 5ms of the average self-clocking estimate. Only two
estimates larger than 70ms exist, which were likely caused by sender delay.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

R
T

T
 E

st
im

at
e 

(m
s)

Time (s)

Timestamp Method
Self-Clocking Method

Fig. 7. RTT estimates for Stanford FTP download



7 Conclusions

We have presented two new methods for passive estimation of round-trip times
for bulk TCP transfers. These RTT estimations can be made at an interior point
along the network route. One method uses TCP timestamps to locate segments
from a bulk data sender that arrive one RTT apart, while the other detects
patterns caused by self-clocking that repeat every RTT. Both methods can be
used throughout the lifetime of a TCP session. The timestamp based method
can be used for symmetric routes, while the self-clocking based method works
for both symmetric and asymmetric routes.

References

1. Jain, M., Dovrolis, C.: End-to-end available bandwidth: measurement methodol-
ogy, dynamics, and relation with tcp throughput. In: SIGCOMM, ACM (2002)

2. Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and origins
of Internet flow rates. In: SIGCOMM, ACM (2002)

3. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Topologically-aware overlay
construction and server selection. In: INFOCOM, IEEE (2002)

4. Jiang, J., Dovrolis, C.: Passive estimation of TCP round-trip times. ACM Com-
puter Communication Review 32 (2002)

5. Lu, G., Li, X.: On the correspondency between tcp acknowledgment packet and
data packet. In: Internet Measurement Conference, ACM (2003)

6. Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Inferring TCP
connection characteristics through passive measurements. In: INFOCOM, IEEE
(2004)

7. Alexa Internet: Alexa Web search—top 500.
http://www.alexa.com/site/ds/top sites?ts mode=global&lang=none (2004)

8. Carson, M., Santay, D.: NIST Net: a Linux-based network emulation tool. ACM
Computer Communication Review 33 (2003) 111–126

9. Barford, P., Crovella, M.: Generating representative web workloads for network
and server performance evaluation. In: Measurement and Modeling of Computer
Systems. (1998) 151–160

10. Barford, P., Bestavros, A., Bradley, A., Crovella, M.: Changes in web client access
patterns: Characteristics and caching implications. World Wide Web 2 (1999)


