
Run-Time Selection of Block Size in Pipelined Parallel Programs∗

David K. Lowenthal
Michael James

Department of Computer Science
The University of Georgia
Athens, GA 30602–7404
{dkl,james}@cs.uga.edu

Abstract

Parallelizing compiler technology has improved in re-
cent years. One area in which compilers have made
progress is in handling DOACROSS loops, where cross-
processor data dependencies can inhibit efficient par-
allelization. In regular DOACROSS loops, where depen-
dencies can be determined at compile time, a useful
parallelization technique is pipelining, where each pro-
cessor (node) performs its computation in blocks; af-
ter each, it sends data to the next processor in the
pipeline. The amount of computation before sending
a message is called the block size; its choice, although
difficult for a compiler to make, is critical to the effi-
ciency of the program. Compilers typically use a static
estimation of workload, which cannot always produce
an effective block size. This paper describes a flexi-
ble run-time approach to choosing the block size. Our
system takes measurements during the first iteration
of the program and then uses the results to build an
execution model and choose an appropriate block size
which, unlike those chosen by compiler analysis, may
be nonuniform. Performance on a network of work-
stations shows that programs using our run-time anal-
ysis outperform those that use static block sizes when
the workload is either unbalanced or unanalyzable. On
more regular programs, our programs are competitive
with their static counterparts.

1. Introduction

Distributed-memory parallel computing is widely
used to speed up scientific applications. In practice,
parallel programming has proven to be very difficult,
so compilers have been developed to generate parallel

∗Supported by NSF CAREER Grant CCR-9733063.

programs. Most parallelizing compilers look for paral-
lelism only in loops, because that is where most of the
time is spent in typical scientific applications.

One key obstacle to automatic parallelization is the
presence of data dependencies, which enforce a certain
ordering; their existence in loops may result in sequen-
tial execution of the entire loop. A significant number
of scientific applications contain loops whose data de-
pendencies prevent all iterations from being executed
in parallel. Loops with data dependencies are often re-
ferred to as DOACROSS loops; if the dependencies can be
precisely determined by the compiler, we call them reg-
ular DOACROSS loops [7]. These can often be executed
efficiently using a technique called pipelining, where
each node computes its work in blocks; after each, it
passes the necessary results (via an explicit message)
to the next node in the pipeline. Once the pipe is
full, all nodes execute in parallel; the data dependen-
cies are satisfied by forcing a node to block awaiting
data from the node that precedes it in the pipeline.
Sophisticated compilers such as SUIF [2] often can au-
tomatically transform sequential loops with data de-
pendencies to pipelined loops.

One important parameter in a pipelined program
is the amount of work performed by each node be-
fore communicating. This is often referred to as the
tile or block size and is critical to the efficiency of the
program. A small block size decreases node idle time
but increases the amount of communication, while a
large block size decreases the amount of communica-
tion but increases node idle time. Unfortunately, com-
pilers are not always successful at choosing an effective
block size. There are several reasons for this. First,
compilers use static estimates of workloads, which can
be inexact [8]. Second, compilers generally divide the
computation into equal-sized blocks, which may not be
flexible enough to accommodate scientific applications
with unbalanced workloads. Finally, the best block size



may be unknown until run time if the amount of work
depends on input values. Fortunately, most scientific
programs are iterative and many exhibit similar char-
acteristics on each iteration. This makes it possible to
monitor one iteration of the outermost loop and use
the results to guide decisions on future ones.

This paper develops novel run-time analysis, to be
used in conjunction with existing compiler analysis
that detects pipelining, that finds the best block size
for pipelined code. Specifically, our analysis:

• Monitors the first iteration of a pipelined compu-
tation, obtaining the time to update each column.

• Uses the results of the monitoring to select an ef-
fective block size. Our system uses an efficient
heuristic that first chooses an initial (uniform)
block size, then subdivides blocks that incur a
large waiting penalty, and finally eliminates ex-
cess messages. Our choice of block size adjusts to
the application and can be nonuniform.

• Uses the computed block size during the rest of
the computation.

Performance results are such that programs that apply
our run-time analysis to choose the block size outper-
form those that make use of the best statically chosen
block size on an application with an unbalanced work-
load. When the workload is balanced, our programs
always execute within 10% of ones with the best static
block size (and sometimes execute faster).

The rest of this paper is organized as follows. Sec-
tion 2 discusses the pipelining problem, our program-
ming model, and related work. Section 3 describes the
run-time analysis to choose the best block size, and
Section 4 gives the performance results. Finally, Sec-
tion 5 summarizes and discusses future work.

2. Overview and Programming Model

There has been a significant amount of work on au-
tomatic parallelization. This includes, for example,
SUIF [2] and PARADIGM [3]. All perform depen-
dence analysis [1], which is compile-time analysis that
inspects control and data flow to determine when par-
allel execution of code does not violate its sequential
semantics. The two primary types of dependencies are
data and control; this paper focuses on the former.

When a compiler detects a true data dependence
inside a loop that it cannot remove, loop paralleliza-
tion with no communication is not possible. This pa-
per focuses on loops with true dependencies where it
is possible to extract some parallelism. Such loops,

for iter := 1 to NUMITERS {

/* row sweep */

for i := 0 to N-1

for j := 0 to N-1

X[i][j] := F(X[i][j], X[i][j-1], A[i], B[i])

/* column sweep */

for i := 0 to N-1

for j := 0 to N-1

X[i][j] := F(X[i][j], X[i-1][j], A[i], B[i])

}

Figure 1. Outline of a sequential ADI program.

often referred to as DOACROSS loops, are common in
practice, and, when dependencies can be inferred at
compile time, lend themselves to pipelining.

Consider the Alternate Direction Implicit (ADI)
code fragment in Figure 1. The row sweep can be exe-
cuted without any internal communication if the data
(array X) is distributed by rows ({BLOCK,*} in HPF
[6]). However, if this distribution is chosen for the first
loop, then the column sweep will have a cross-processor
(cross-node) dependence because X[i][j] depends on
X[i − 1][j]; the distribution of X by rows results in
node k requiring access to the last row of node k− 1 in
order to update its own first row. Note that the exact
dependence can be determined by the compiler.

Because of the cross-node dependence, there are four
choices that the compiler can make for the second loop:
(1) serialize it, (2) transpose the matrix before and af-
ter the loop, allowing the loop to be run in parallel with
no communication, (3) schedule the iterations of the
column sweep such that the dependencies are not vio-
lated, and (4) pipeline the loop, leaving the matrix in a
row-wise distribution. The first three ways have draw-
backs; this paper discusses ways to efficiently pipeline
and so assumes the compiler makes the fourth choice.

Note that we assume that all dependencies are de-
tectable at compile time; in general it can be very dif-
ficult to determine the exact dependencies. Many have
studied compile- and run-time methods to detect arbi-
trary dependencies, such as [13, 4, 9].

After the compiler determines the dependencies, it
must generate pipelined code. It does this by “strip-
mining” [10], code motion, and synchronization inser-
tion. The resulting program is shown in Figure 2.

Once the code has been generated, an appropri-
ate block size must be found. The compiler-generated
pipelined code in Figure 2 does not specify the block
size; if the compiler alone is doing the complete trans-

2



for iter := 1 to NUMITERS {

/* row sweep */

for i := start to end

for j := 0 to N-1

X[i][j] := F(X[i][j],X[i][j-1],A[i],B[i])

/* (pipelined) column sweep */

for jj := 0 to N-1 by blocksize

if (myId != 0)

recv X[start-1][jj:jj+blocksize] from myId-1

for i := start to end

for j := jj to jj+blocksize-1

X[i][j] := F(X[i][j],X[i-1][j],A[i],B[i])

if (myId != p-1)

send X[end][jj:jj+blocksize] to myId+1

}

Figure 2. Pipelined ADI program. Variables
start and end are local to each node and
based on the number of participating nodes
such that the work is divided evenly. A spe-
cific block size must be chosen at some point.

formation, it must choose one. A smaller block size
will decrease node idle time but increase the amount of
communication. Conversely, a larger block size will de-
crease the amount of communication but increase the
node idle time. The best size depends on the ratio of
computation to communication. Compiler-only meth-
ods suffer from several drawbacks. First, compiler algo-
rithms for static workload estimation are still maturing
[8]. Second, compilers pick a single block size, which is
restrictive unless the workload is completely uniform.
Finally, when the workload depends on values that can-
not be determined until run time, the compiler cannot
infer the amount of work.

Our programming model is general enough to
encompass many important scientific applications,
though there are some restrictions. First, we support
long-running, iterative scientific applications, which al-
lows for the possibility of using run-time information to
improve future iterations. Second, we support regular
DOACROSS loops, which allows the compiler to detect
opportunities for pipelining. Third, we require that a
loop be at least doubly nested so that pipelining can
be efficient. Fourth, we support only BLOCK data dis-
tributions, which means that each node operates on a
contiguous set of rows. Finally, we only pipeline in a
single dimension, as opposed to in multiple dimensions.

3. Run-Time Analysis

We assume that the compiler transforms DOACROSS
loops to pipelined loops as in Figure 2. However, in-
stead of choosing the best block size by statically es-
timating work at compile time, we make use of run-
time measurements taken during the first iteration of
a pipelined computation. At the end of the first itera-
tion, we determine an effective block size on each node
and use it for the rest of the computation. For the fol-
lowing explanation, we will assume a two-dimensional
problem of size n × n (all indices are assumed to start
at 0) with p nodes numbered 0 through p − 1.

On the first iteration, each node times each column
it updates. We also define, for a message of size x,
fsend(x) and frecv(x) as the overhead due to copying
a message to (from) the network, and fnet(x) as the
latency. They are computed from separate experiments
(training sets).

Note that our current model does not take interrupt
time into account as in [14]; it considers only send and
receive overheads, as in [12]. We are investigating the
effect of interrupts in our current research.

At the end of the first iteration, each node sends
all of its column times to node 0. Thus, node 0 will
have a vector t of size p, where each vector element is
itself a vector of n column times; ti,j denotes the time
to update column j on node i. We denote T k

i,j as the
time to update block j on node i using a block size
of k. This includes fsend(k) if necessary; so, T k

i,j =
∑(j+1)·k−1

l=j·k ti,l + fsend(k) for nodes 0 through p − 2,

and T k
i,j =

∑(j+1)·k−1
l=j·k ti,l for node p − 1. In addition,

we denote Sk
i,j as the time that node i can start its

computation of block j using a block size of k.
Our algorithm works in three steps. First, choose an

initial (uniform) block size. Next, look for blocks that
cause excessive waiting and subdivide them recursively.
Finally, eliminate excess messages by re-executing the
algorithm on adjacent blocks that are not subdivided.

The first step is to choose an initial block size; we
will consider all block sizes that are a power of two.
The basic idea is: for each block size, estimate its com-
pletion time using the block update times from each
node along with the message overheads. For a given
block size, node 0 commences the computation at time
0 (i.e., Sk

0,0 = 0) by updating its first block, which
takes time T k

0,0; node 1 must wait to start updating
its first block until it receives a message from node 0
(due to the data dependence). Hence, the time that
node 1 can start updating its first block is given by
Sk

1,0 = Sk
0,0 +T k

0,0 +fnet(k)+frecv(k). Node 0 can start
updating its second block at time Sk

0,1 = Sk
0,0 + T k

0,0.

3



t(1,0) t(1,1)

t(0,0) t(0,1)

t(1,0) t(1,1)

t(0,0) t(0,1)

column 0 on node 1 

wait to update this column 
until message arrival and

has been updated

message messagemessage

node 1

node 0

node 1

node 0

Figure 3. The difference between block sizes
of 1 (left) and 2 (right). On the left, node
0 sends a message after updating each col-
umn, which means that node 1 must wait to
start its second column until it has finished
its first column and it has received the neces-
sary data from node 0. On the right, node 0
updates both columns before sending a mes-
sage; after receiving it, node 1 can update
both of its columns. Recall that ti,j is the
time to compute column j on node i.

Note that the second message will arrive at node 1 at
time Sk

0,1 +T k
0,1 + fnet(k). Node 1 will be ready for the

message after it updates its first block, which occurs at
time Sk

1,0+T k
1,0. The message may arrive before node 1

has finished updating its first block, in which case it can
start as soon as it finishes updating Tk

1,0. Otherwise,
node 1 must wait until this message arrives. Note that
either way, node 1 must read the message from the net-
work before starting its second block. Hence, the time
at which node 1 can start updating its second block is
Sk

1,1 = max
{
Sk

0,1 +T k
0,1 +fnet(k), Sk

1,0 +T k
1,0

}
+frecv(k).

In general, a formula for Sk
i,j is given as follows:

Sk
0,0 = 0 and Sk

i,0 = Sk
i−1,0 + T k

i−1,0 + fnet(k) + frecv(k)
and, for 1 ≤ j ≤ n/k− 1, Sk

i,j = max
{
Sk

i−1,j + T k
i−1,j +

fnet(k), Sk
i,j−1 + T k

i,j−1

}
+frecv(k). This indicates that

node i can start block j at the later of two times: (1)
when it has finished updating all of its own previous
blocks and (2) it has received the message for the same
numbered block on node i− 1. The completion time is
then Sk

p−1,n/k−1 + T k
p−1,n/k−1, which is the time that

it takes node p− 1 to start updating its last block plus
the update time. We estimate the completion time for
k = 1, 2, 4, . . . n, and take the smallest such time; the
algorithm has a complexity of O(pn log n). Figure 3
illustrates the tradeoff (for two columns) between using
a block size of 1 and 2.

It it is possible that the most effective block size
found above is actually an ineffective choice. Consider

the case where most of the work is clustered at the right
part of the matrix. A choice must be made between a
finer granularity, where there is less idle time at the
right part of the matrix but excess messages when up-
dating the rest of the matrix, and a coarser granularity,
where there are fewer messages sent but significant idle
time at the right part of the matrix.

Our analysis handles this using the following heuris-
tic. We start by using the best block size (denoted
k) determined with the above analysis and attempt to
improve upon it by potentially subdividing blocks. We
have already computed the start time for each block
on each node Sk

i,j ; in doing so, we know the time that
node i must wait for a message from i− 1, if any. The
key waiting time is that of the last node (p − 1), be-
cause the pipeline cannot be completely full while the
last node is waiting for data. So, for each block on
node p − 1 we compute the waiting time; any block
that has a relatively large waiting time might benefit
from being split into smaller blocks, which may reduce
the waiting time. Hence, we invoke the first step of our
algorithm recursively on the first block whose waiting
time exceeds our prespecified threshold (we used 10%
of the total wait time). This will in fact effect a finer
block size if profitable, because the message overhead
incurred by finer-grain pipelining will not be nearly as
significant on a smaller block (there are fewer points).
After subdividing this block, we recompute the total
wait time as well as the wait time for each block, tak-
ing into account the subdivided block. We then look
for a (different) block to subdivide. When no blocks
need to be subdivided, we are done. We found this
simple heuristic to perform well in practice.

After we have reduced waiting time by subdivid-
ing blocks, we look for opportunities to eliminate ex-
cess messages. In the example above we use fine-grain
pipelining on the parts of the matrix with significant
computation; similarly, we want to use coarse-grain
pipelining on the parts of the matrix where there is lit-
tle work. To realize this, we re-run the original (global)
algorithm on consecutive groups of blocks that were
not subdivided. This eliminates unnecessary messages
when part of the matrix contains very little work, but
the initial global block size was relatively small due to
significant work on a different part of the matrix.

4. Performance

This section reports the performance of three pro-
grams. The first two are ADI integration and an im-
plicit hydrodynamics kernel, where an effective block
size might be inferred statically by a compiler. The
third is an adaptation of an airshed simulation where

4



the workload is not uniform, which represents applica-
tions that need to use run-time information and vari-
able block sizes to achieve good performance.

For each application we developed a program that
includes the run-time analysis. For an accurate com-
parison, we also developed a program with a (param-
eterizable) static block size that does not perform any
run-time analysis. In addition, we implemented a sep-
arate sequential program. For each application we
present the results of the program with the best static
block size and compare it to the program that uses our
run-time analysis.

Below, we first discuss the overheads incurred by our
run-time analysis. Then, we briefly describe the three
applications and present the results of runs on 2, 4,
and 8 nodes. The sequential times are also reported.
All tests were run on a network of 8 Pentium Pros
connected by a 100 Mbs Fast Ethernet, using Solaris
and the cc compiler. The execution times reported are
the median of at least three test runs, as reported by
gethrtime. The tests were performed when the only
other active processes were daemons.

4.1. Overhead of Run-Time Analysis

In general, the overheads of our run-time analysis
are small. They are primarily executing the program
with fine-grain pipelining on the first iteration, tak-
ing measurements (gethrtime), estimating completion
time for the (possibly nonuniform) block sizes, adding
extra code to allow nonuniform block sizes, and choos-
ing an ineffective block size due to timing inaccuracies.
Most of these overheads are small or negligible; how-
ever, potentially the most serious problem is choosing
an ineffective block size. Because we the only user on
the machine, this has not happened in our tests.

4.2. ADI

The execution times for two versions of ADI, size
1024, are shown in Table 4. The program that uses
our run-time analysis starts with a block size of 1
(fine-grain pipelining) on the first iteration and then
switches to a block size of 16 (on 2 nodes) or 8 (on 4
and 8 nodes). The best static block size on 2, 4, and
8 nodes was 16; the overhead of the run-time program
was at most 8.1%, on 8 nodes.

4.3. Hydro

Hydro is adapted from kernel number 23 from the
Livermore Loops [11]. It consists of a prespecified num-
ber of iterations, where each updates every point on a

Program Time (2/4/8) Block (2/4/8)

ADI Run-Time 48.6/25.9/13.3 16/8/8

ADI Best Static 48.3/24.3/12.3 16/16/16

ADI Sequential 95.7

Hydro Run-Time 57.9/30.1/19.9 32/32/32 (*)

Hydro Best Static 54.7/31.0/20.1 64/64/64

Hydro Sequential 98.9

Airshed Run-Time 44.8/26.0/16.6 64/1

Airshed Best Static 53.2/36.4/28.9 8/8/8

Airshed Prior Knowl. 42.4/24.6/15.6 64/1

Airshed Sequential 81.6

Figure 4. Performance in seconds of our three
test programs: ADI, Hydro, and Airshed. The
first two use a size of 1024 × 1024; the lat-
ter uses 1024 × 1024 × 4. Run-Time refers to
the program that makes a run-time choice of
block size, and Best Static refers to the best
out of the static programs. The (*) indicates
that a size of 32 was chosen for all blocks
except the first, which was subdivided. The
64/1 indicates that the block size is 64 on the
first 1000 columns and 1 on the last 24. The
“prior knowledge” version statically chooses
a block size of 64/1.

two-dimensional matrix. Because each update is based
on a four point stencil on the same matrix, there is a
data dependence that prevents full parallelization.

The execution times for two versions of Hydro are
shown in Figure 4. The run-time version first finds
a global block size of 32; then, interestingly, it subdi-
vides only the first block (due to the initial wait). This
results in a better completion time on four and eight
nodes than the best static program, which was with a
block size of 64. Because the workload is uniform, this
is an application for which a compiler might be able to
choose an effective block size. Still, our run-time anal-
ysis can sometimes produce a better one, even though
this is a program for which static analysis is possible.

4.4. Airshed Simulation

Our third test program is an airshed simulation,
which is adapted from the tpsuite from Carnegie Mel-
lon [5]. The program does two transport calculations
with a chemistry phase in between. The chemistry
phase has an unbalanced workload, and pipelining is
required between the transport and chemistry phases.
A compiler cannot determine the amount of work in
this case, because it does not know which points will
be updated. This program is intended to represent less

5



regular programs, where the workload is nonuniform.
The execution times for three versions of the air-

shed simulation are shown in Table 4. The work was
clustered at the right end of the matrix, so an effective
composition of blocks is to use larger blocks (size 64)
that encompass the part of the matrix that has little
work and then fine-grain pipelining (block size of 1) in
the part where there is significant work. The program
using our run-time analysis found this block size. The
best static block size in our experiments was 8; this is
a compromise—it avoids the severe message overhead
of fine-grain pipelining where there is little work and
severe load imbalance where there is significant work.
Still, the static program incurs more overhead than
necessary on all parts of the matrix, which accounts
for the superiority of the run-time program. The prior
knowledge test measures the overhead of our system;
it implements the effective block size by hand.

5. Summary and Future Work

We have presented a run-time approach to selecting
block sizes in pipelined parallel programs. This allows
us to choose an effective block size even when a source
program is not amenable to compiler analysis. Fur-
thermore, our system allows the choice of block size to
be nonuniform, which allows increased flexibility. Our
analysis monitors the program for a single iteration,
builds an execution model, and takes a three-step pro-
cedure to find an effective block size: choose an initial
block size, subdivide blocks that incur a large waiting
penalty, and then eliminate excess messages.

We implemented our system on a cluster of 8 Pen-
tium Pros. The programs that made use of run-
time information to select block sizes had faster execu-
tion times than those that make a static choice when
the workload is unbalanced. For programs that are
amenable to static analysis, the programs that use our
system are competitive; in a few cases, they even ex-
ceeded the performance of the the programs that used
statically determined block sizes. We believe that when
combined with a compiler, our system is a viable way to
efficiently execute a larger class of pipelined programs
than previously possible.

The work described in this paper is a first step;
there are many avenues still to be explored. These in-
clude recomputing the block size whenever application
characteristics change, integrating our run-time analy-
sis more tightly with compile-time analysis, integrating
interrupts into our model, investigating better (graph-
theoretic) algorithms to choose the block size, allowing
more general dependencies, and implementing efficient
pipelining in distributed shared memory systems.

6. Acknowledgements

John Kececioglu provided us with invaluable assis-
tance on all aspects of this work.

References

[1] J. Allen and K. Kennedy. Automatic translation of
Fortran programs to vector form. TOPLAS, 9(4):491–
542, Oct. 1987.

[2] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and
C.-W. Tseng. The SUIF compiler for scalable parallel
machines. In Proceedings of the Seventh SIAM Confer-
ence on Parallel Processing for Scientific Computing,
Feb. 1995.

[3] P. Banerjee, J. Chandy, M. Gupta, E. Hodges IV,
J. Holm, A. Lain, D. Palermo, S. Ramaswamy, and
E. Su. The PARADIGM compiler for distributed-
memory multicomputers. IEEE Computer, 28(10):37–
47, Oct. 1995.

[4] D.-K. Chen and P.-C. Yew. On effective execution
of nonuniform DOACROSS loops. IEEE Transactions
on Parallel and distributed systems, 7(5):463–476, May
1996.

[5] P. Dinda, T. Gross, D. O’Hallaron, E. Segall, J. Stich-
noth, J. Subhlok, J. Webb, and B. Yang. The CMU
task parallel program suite. Technical Report CMU-
CS-94-131, School of Computer Science, Carnegie Mel-
lon University, Mar. 1994.

[6] HPF–2 scope of activities and motivating applications.
Nov. 1994.

[7] A. Hurson, J. T. Lim, K. M. Kavi, and B. Lee. Paral-
lelization of DOALL and DOACROSS Loops — A Sur-
vey, volume 45, pages 53–103. Academic Press Ltd.,
1997.

[8] K. Kennedy. Compiling a software bridge to the 21st
century—invited talk at PPOPP 97. June 1997.

[9] V. Krothapalli, J. Thulasiraman, and M. Giesbrecht.
Run-time parallelization of irregular DOACROSS
loops. In Proceedings of Irregular ’95, pages 75–80,
1995.

[10] D. Loveman. Program improvement by source-to-
source transformation. Journal of the ACM, 24(1):129–
138, Jan. 1977.

[11] F. McMahon. The Livermore Fortran Kernels: A com-
puter test of the numerical performance range. Techni-
cal Report UCRL-53745, Lawrence Livermore National
Laboratory, 1986.

[12] D. Palermo, E. Su, J. Chandy, and P. Banerjee. Com-
piler optimizations for distributed memory multicom-
puters used in the PARADIGM compiler. In Proceed-
ings of the 23rd International Conference on Parallel
Processing, pages II:1–10, Aug. 1994.

[13] J. H. Saltz, R. Mirchandaney, and K. Crowley. Run-
time parallelization and scheduling of loops. IEEE
Transactions on Computers, 40(5):603–612, May 1991.

6



[14] R. F. Van der Wijngaart, S. R. Sarukkai, and P. Mehra.
The effect of interrupts on software pipeline execution
on message-passing architectures. In Proceedings of
ACM Int’l. Conference on Supercomputing, May 1996.

7


