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Abstract—Many large-scale clusters now have hundreds
of thousands of processors, and processor counts will
be over one million within a few years. Computational
scientists must scale their applications to exploit these new
clusters.Time-constrained scaling, which is often used, tries
to hold total execution time constant while increasing the
problem size along with the processor count. However,
complex interactions between parameters, the processor
count, and execution time complicate determining the
input parameters that achieve this goal.

In this paper we develop a novel gray-box, focused
regression-based approach that assists the computational
scientist with maintaining constant run time on increasing
processor counts. Combining application-level information
from a small set of training runs, our approach allows
prediction of the input parameters that result in similar
per-processor execution time at larger scales. Our exper-
imental validation across seven applications showed that
median prediction errors are less than 13%.

I. I NTRODUCTION

Nearly all applied sciences today make use of par-
allel computation. Applications from a wide variety of
domains run on large systems with tens or hundreds
of thousands of processors, such as ORNL’s Jaguar [1],
ANL’s Intrepid [2], LANL’s Roadrunner [3] and LLNL’s
BG/L [4]. However, these systems are a scarce resource
in high demand. For example, we experimented on
LLNL’s Thunder cluster and found that the worst-case
node acquisition time increased roughly exponentially
with the number of nodes, with the acquisition of 256
nodes (roughly one-quarter of the total) taking up to a
month. We anticipate that on larger clusters, acquiring
a similar fraction of the system will take a similar time,
so the user may not easily get a “second chance” to
determine the correct input parameters (for this paper,
input parameters refer to those values input by the user
that contribute significantly to execution time).

This paper focuses ontime-constrained scaling[5].
Instead of using a larger number of processors to

solve a problem faster, larger problems are solved and
overall execution time is kept constant. Unfortunately,
understanding how programs scale is difficult. While
time-constrained scaling for simple applications seems
simple (just increase the total problem size by the same
factor as the number of processors), several factors com-
plicate it in the general case. These include nonlinear
effects in computation and communication, along with
complex relationships between input parameters and
execution time.

In this paper we develop a regression-based tech-
nique that allows accurate time-constrained scaling of
applications. We use a gray-box technique that uses a
small amount of application-level information as input.
We choose a small series of training runs, varied over
different, smaller processor counts and then usefocused
regressionto predict the input parameters that need to
be used in order to achieve time-constrained scaling.
The training runs always use a processor count no more
than half of the target number; to reduce training time,
iterative applications can be executed for just a few
timesteps. The scientist (or compiler/run-time system)
must indicate the number of input parameters, whether
they represent the dimensions of the main data structure
or are unrelated, and whether the processor grid is
part of the parameterization. Our focused regression
technique allows a small number of training runs and
also improves prediction accuracy.

This paper makes two primary contributions. First,
we provide a technique that the computational scientist
can use to guide time-constrained scaling accurately. It
builds on our prior work [6], which usesnon-focused
regression to predict execution time using strong scaling
(rather than time-constrained scaling). Second, we show
that our focused regression technique makes accurate
time-constrained scaling predictions with little (and
often no) program-level information—predictions that
are better in some cases by a wide margin compared to



naive ones. Specifically, over all applications, median
prediction error is within 13%. This includes appli-
cations for which there exists a complex interaction
between multiple input parameters and execution time.

The rest of this paper is organized as follows. Sec-
tion II provides motivation for this work. Section III
describes our statistical techniques, in particular focused
regressions. Next, Section IV describes our experi-
mental methodology and results on seven applications.
Finally, Section V places our approach in the context of
prior work, while Section VI summarizes our findings
and future directions.

II. M OTIVATION

The computational scientist (“scientist” for the re-
mainder of this paper) has several options when more
processors become available. The first option is to use
strong scaling[7], where one runs thesameprogram
instance, i.e., uses identical input parameters. Strong
scaling is the most frequent type that appears in com-
puter science literature. However,time-constrained scal-
ing [5], in which the scientist attempts to keep total
run time constant, is becoming more commonplace.
This approach solves problems that were previously
unexplored and is generally more intuitive from the
scientist’s perspective.

Strong scaling is preferred when a scientist must
solve a specific problem as quickly as possible. How-
ever, the available parallelism is immutable and, there-
fore, strong scaling beyond a sufficiently large processor
count will fail to reduce runtime. Time-constrained
scaling, on the other hand, avoids limits imposed by
Amdahl’s law and allows scientists to to solve problems
at the limit of their system capacity. For example, a
scientist often tries to run a problem twice as large when
given twice as much computing power.

However, time-constrained scaling poses many diffi-
culties. First, most scientists assume that thedata set
size per processorshould be fixed as the processor
count increases, which is usually referred to asweak
scaling [7] and tries to keep computation time per
processor constant. Due to communication time, though,
weak scaling alone will not keep total execution time
constant.

Second, even if communication is insignificant for a
given application, proportionally increasing the problem
is often not well defined. For example, consider an
application that has a two dimensional data structure,
defined by (global) dimensionsN1 and N2, that is
partitioned among the processors at a given processor
count. Given twice as many processors, it is not clear
how N1 andN2 should change.
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Figure 1. Computation and communication times for CG as the
number of processors increases. The ratio ofSIZE/P is fixed; SIZE
ranges from 46,094 to 2,950,000, andP ranges from 16 to 1024. The
value ofNONZERis held constant.

Worse, the dimensions might not be correlated. In
the above example, we knew thatN1 × N2 should
be doubled when the processor count doubles. Some
applications do not have such an obvious relation-
ship between the parameters (e.g., CG from the NAS
suite [8]).

Finally, overall execution time may not remain con-
stant even when we know how to increase the prob-
lem size proportionally based on the input parameters.
Computation time or communication time (or both) can
increase at a greater than linear rate (which may not
be obvious to even the experienced scientist). Figure 1
shows the complexities of time-constrained scaling for
CG from the NAS suite. Here,both computation and
communication times increase when holdingSIZE/P,
where P is the number of processors, constant for a
given value ofNONZER.

In general, scientists would benefit from tools
that help navigate through the complexities of time-
constrained scaling.

III. F OCUSEDREGRESSION

This section discusses our focused regression tech-
nique. First, we describe the general idea. Then, we
discuss our basic model, which does not require any
program-level information. Finally, we discuss exten-
sions that provide greater accuracy for more compli-
cated applications.
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A. Overall Technique

The scientist must provide appropriate inputs for our
technique. Our current prototype requires the scientist
to present the application and input parameters used
on the largest processor count that is smaller than the
target number of processors (denotedPt). For example,
in this paperPt is always 1024, so the scientist must
present the input parameters used on the 512 processor
version. In addition, the scientist must provide certain
application-level information, which Table I shows and
we describe further below. The output is the set of
input parameters—or sets, when there are multiple input
parameters—that will result in application run time that
is equal to that of the program executing onPt/2 pro-
cessors. To find these parameters, we must in part run
experiments on smaller numbers of processors. While
we expect that some of these experiments will already
be run (e.g., the scientist has run the program with the
desired input parameters on 512 processors, and now
wants to scale to 1024), a few others usually must
be executed. To control training time, these executions
cover only a limited number of timesteps. Therefore,
we assume the timestep loop is known.

With the value ofPt and the input by the scientist,
our technique proceeds as follows. For simplicity, we
first present the case with only one input parameter.
We assume that the scientist provides us with data from
points with time≈ T , at bothP = Pt/2 andP = Pt/4.
Then, we sample points (assuming that this data is not
made available by the scientist) where the times are
≈ 1.1×T and≈ 0.9×T . We determine the appropriate
value of the input parameter to achieve this through
inspection of the data that the scientist provides. From
this point, we use the techniques described in the next
two subsections (basic and general regression models) to
predict the value of the input parameter onPt processors
that will result in an execution time of≈ T . To extend
this technique to multiple input parameters, please see
the procedure described in Section III-C.

B. Basic Model

In order to determine the proper input parameters for
constant run time atPt, we need a model that predicts
total run time T of a given application. This model
expressesT as a function of the values of its input pa-
rameters andPt. Aside fromPt, the computation time,
denotedW is the other key characteristic for determin-
ing run time in programs with little communication. We
can often easily determineW for simple programs from
the input parameters (i.e., we can just use the product of
the parameters (zi’s), or W = f(z1×z2×. . . zn)), andT

Program Parameter Processor
Relatedness Grid Used

BT Yes No
LU Yes No
SP Yes No
CG No No

Miranda Yes No
SMG No Yes

Sweep3d Yes Yes

Table I
APPLICATION-LEVEL INFORMATION NEEDED FROM THE

SCIENTIST FOR OUR SEVEN PROGRAMS.

is approximately proportional toW/P . More generally,
we have

log2(T ) = β0 + β1log2(W ) + β2log2(Pt) + ǫ (1)

whereβ0, β1, andβ2 are coefficients that we estimate
based on a set of observed (T,W,Q) triplets,Q is the
number of processors used in a training run (Q < Pt),
and ǫ is the error. Generally, we estimate theβ values
so as to minimize the error between the predicted values
and the observed values.

Specifically, to collect the (T,W,Q) triplets, we ex-
ecute the program onQ processors, whereQ ∈
{2, . . . , Pt/2}. We vary the values ofW andQ on the
sample runs and then use regression to generate Equa-
tion 1. Because it is easier to acquireQ processors than
Pt, it is reasonable to perform multiple instrumented
runs for different configurations of the input variables.

We predict run time using a log-scale because the
prediction errors are well known to be proportional
to the expected time—we are concerned with relative
errors. Working in log-scale implicitly handles this. The
base of the log makes no fundamental difference; we
use log2 in this paper for mathematical convenience.
The coefficientsβ1 and β2 in Equation 1 measure the
relative increase in time due to changes in computation.
Finally, working in log-scale implicitly handles interac-
tions between the different terms in Equation 1 (e.g.,
time is proportional to the quotient ofW andPt).

While the model in Equation 1 is relatively simple,
it works well for computation-dominated, simple-array
based applications. The applications upon which we
evaluate our focused regression technique in this paper
(see Section IV) are listed in Table I. The first three are
well predicted with Equation 1: BT, LU, and SP (from
the NAS suite [8]). All three have a high computation-
to-communication ratio and a single input parameter.
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C. General Model

For more complex applications, simply applying
Equation 1 is insufficient for three reasons. First, we
cannot easily determine computation time (W ) in ad-
vance in some applications. Rather, we can specify the
values of some input parameters in advance, and these
parameters determine computation in an unknown or
complex way. In such cases, one may need to exam-
ine several potential predictor parameters to determine
which ones are significant predictors of time and to
model the relationship betweenT and these variables.
For example, CG has this characteristic, as indicated by
Table I.

Second, modeling only total execution time produces
inaccurate predictions for applications with a significant
amount of time spent in communication. Computa-
tion and communication can scale at different rates,
which the training runs capture only if we model them
separately. As mentioned earlier, Figure 1 shows this
situation. Currently, we do not subdivide either compu-
tation or communication further into phases because the
prediction quality we achieve for our applications is usu-
ally accurate without it. We are currently investigating
breaking computation and communication into smaller
phases. For example, we could break communication
calls into groups that have similar scaling behavior (e.g.,
logarithmic-scaling collectives versus linear-scaling col-
lectives).

Third, for applications in which the program specifies
a processor grid to allow the scientist to control the data
distribution,T is not only a function ofPt, but also of
P1, P2, . . ., Pn, wheren is the number of processor
grid dimensions andPt is the product of thePi values.
Both SMG and Miranda fall into this category. Param-
eterizing this aspect to some extent requires knowledge
of the program structure. We can obtain significantly
better fits when we have this information by using the
values of the processor dimensions rather than justP .
In such cases, our models can give scientists insight into
the processor configurations, for a fixedW andPt, that
run fastest, in addition to providing time estimates for
various input combinations.

Our prototype handles each of these possibilities.
Case 1: We use a more general equation for exe-

cution time with complex input parameter relationships:

log2(T ) = β0 + β1z1 + β2z2 + . . . +

βnzn + βn+1log2(Pt) + ǫ (2)

Here,zi is the ith input parameter describing the data.
We use additional training runs to determine which of

thezi are important in predictingT , as well as to model
the functional form of these variables (similar to what
was done by Lee et al. [9]).

Case 2: If communication is significant, we use
separate regressions for computation and communica-
tion. Both follow the same form of either Equation 1
(if the input parameters are related) or 2 (if they are
not, as in case 1 above). Our current prototype splits
the regressions only if the percentage of time spent
in communication is greater than 50% at the largest
number of processors used for training (512); we found
that regressing only on total time suffices with smaller
percentages. We collect computation and communica-
tion time using the PMPI profiling layer of MPI.

Case 3:The most interesting case occurs when the
application uses a processor grid. We considered simply
extending Equation 2 by replacing thePt term with
terms for the processor grid terms (e.g.,P1 and P2).
However, while intuitive, experiments showed that this
technique is ineffective because the data distribution,
as specified by the processor grid, significantly affects
application execution time in a nonlinear manner, as
we show in Section IV. Thus, using a single regression
results in significant errors.

Instead, we restrict the sample runs used in the
regression to a narrow range orfocal regionaround the
processor grid at the target number of processors,Pt. In
general, the focal region is trivial when the number of
input parameters is small (e.g., 1); in this case, using a
fixed execution time to determine the focal region suf-
fices. However, for nontrivial applications with several
input parameters, such as SMG and Sweep3d, we must
determine a focal region based on the input parameter
space since that space is large, and it is quite difficult
to cluster sample runs around execution time.

We then use Equation 1 or Equation 2 in the focal
region, depending on whether or not the input parame-
ters are related, as described above. The typical strategy
when creating regression models uses more data to
achieve a better result. However, in our particular case,
more data is worse, if it is not nearby in the processor
dimension space onQ < Pt processors. Also, while
the focal region idea is quite useful and necessary when
handling an application that uses a processor grid, it also
improves regression quality for all applications. There-
fore, we use the focal region idea in general—restrict
tests to those around the values of the input parameters
(adjusted for processor count) presented by the scientist.
Using only a subset of available data for prediction via
regression is not new; for example, Lee and Brooks use
this technique for predicting performance and power
[10]. We apply this technique to scalability analysis.
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Figure 2. Processor grids (only shown down to 64 processors)used in SMG to predictPx = 1, Py = 32, and Pz = 32, and Px = 1,
Py = 128, andPz = 8, respectively. For all vertices in the graph,Px = 1.

Consider an example, with one of our applications,
SMG, which has six input parameters—three processor
dimensions,px, py, and pz, along with three grid
dimensions,nx, ny, and nz. We next illustrate what
predictions our prototype makes, along with what focal
region it selects to make each prediction. Suppose
the scientist has run SMG on 512 processors using a
processor grid wherepx = 1, py = 16, and pz = 32,
denoted for convenience as(1, 16, 32). We assume that
if the scientist wants to use time-constrained scaling of
SMG to 1024 processors, then it is necessary to double
one of the three processor dimensions.

For each prediction, we use adifferent regression
based on experiments in the focal region. Figure 2
shows two different focal regions, one of which,
(1, 32, 32), we would use in the preceding example. The
figure shows that our prototype uses those processor
grids (shown in black) at lower (total) numbers of
processors that are most proportionally similar to the
grid at the target number of processors. As the results in
the next section show, the results degrade if we include
data from grids that are not proportionally similar. Our
figure setspx = 1, because if we also varypx, the
picture becomes quite complex. However, our prototype
handles the general three-dimensional case.

IV. RESULTS

This section discusses results of our focused re-
gression prototype in making time-constrained scaling
predictions. For our evaluation we used two different
clusters at Lawrence Livermore National Laboratory:
the Atlas cluster and theHera cluster. The former has
1152 four-socket, dual-core AMD Opteron nodes with
16GB RAM, while the latter has 864 four-socket, quad-
core AMD Opteron nodes with 32 GB RAM. We used
Hera (which is similar to Atlas) to execute Miranda
because of time constraints on Atlas. Each Opteron node
is a NUMA architecture; each socket has local memory,
and all others are accessed through longer-access remote
memory controllers. Our experiments use four cores on
each node (one per socket on Atlas and Hera) to avoid
potential variance if all cores are in use [11]. Note that
in the rest of this section, we use the term processor to
refer to a core.

To eliminate potential NUMA effects, we used
cpu_bind to ensure that Linux allocates memory for
each core out of the socket’s local memory. Without
binding, Linux may allocate remote memory (arbitrar-
ily), which introduces significant variance across runs.

A. Methodology

Our prototype collects results for each instrumented
training run; these runs occur on a variety of processor
counts, but never on the target processor count (Pt).
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We use the PMPI layer to collect computation and
communication times; we count any time in the MPI
library as communication time. While this is not com-
pletely precise, getting finer-grain results (e.g., omitting
blocking time and collecting only network and copying
time) requires instrumenting the entire MPI library. We
then use measured execution times to fit a linear model.
We use the statistical package SAS for all regressions.
We emphasize that we run the program only on a small
subset of the many possible input parameter/processor
combinations; this choice conserves machine time as
well as produces better results by using focal regions
(as described in the previous section).

We make the important assumption that we can run
an application with the input parameters set to values
of our choosing. Essentially, the parameter space is
quite large and sparse for applications like SMG (5
free parameters). This ability to execute the program in
configurations of our choice ensures that we can collect
the data that we need to make accurate predictions.
Essentially, we assume that scientists write programs
that are flexible and provide meaningful timing results,
if not physical results, for any combination of the input
parameters.

For our evaluation we executed the program at the
target processor count (1024 processors), and we find
the input parameters that are predicted to cause the
program to run in the same time as the for a 512-
processor run (which is the goal). We measure effective-
ness by reporting error based on the relative difference
between the observed execution times on 1024 and 512
processors.

B. Applications

We tested our techniques using seven applications.
Four are from the NAS suite [8]. In particular, we use
BT, SP, CG, and LU; our approach does not apply to
other NAS programs (FT, IS, MG) because we have
insufficient input data due to input restrictions. Further,
EP is trivial because it has only one parameter and zero
communication. CG is a conjugate gradient program,
and LU, BT and SP solve PDEs using three different
techniques: lower-upper symmetric Gauss-Seidel, block
tridiagonal, and scalar pentadiagonal. We further use
SMG and Sweep3d from the ASC suite; the former is
a three-dimensional multigrid solver, and the latter is
a three-dimensional neutron transport code. The final
application is Miranda, which is an industrial-strength
hydrodynamics application.

Program Focused Proportional
Regression Error Scaling Error

BT 1.8% 17%
LU 5.3% 11%
SP 5.2% 3.6%

Table II
PERCENTAGE ERROR BETWEEN ACTUAL AND PREDICTED TIMES

FOR ONE-PARAMETER PROGRAMS(BT, SP,AND LU) WHEN USING

512 PROCESSORS FOR TRAINING. FOR REFERENCE, THE ERROR

WHEN SCALING PROPORTIONALLY IS SHOWN. ALL PREDICTIONS

ARE FOR PROGRAMS EXECUTING ON1024PROCESSORS.

C. Summary of Results

Overall, our prediction quality is quite good: median
prediction error ranges from 3% to 12.2%, and predic-
tions are almost always within 20% and usually much
better. For the three more complex applications, wemust
generate different regressions for different focal regions
to achieve accuracy. In particular, we obtain a median
error as high as 75% if we do not use a focal region.

D. Single Parameter Programs

First, we studied three programs that have only
one important parameter: BT, SP, and LU. These pro-
grams are computation intensive; they serve as pro-
grams for which the scientist could perform accurate
time-constrained scaling in a straightforward manner.
Proportional scaling, which we define as increasing
the parameter by an identical factor as the number of
processors increases, will be relatively effective.

Table II shows the results of all three programs.
Focused regression produces predictions within 6% of
the actual time, whereas predicting using simple pro-
portional scaling of the single input is over 17% for
BT and 11% for LU. For SP, proportional scaling is
slightly better, 3.6% to 5.2%, but both predictions are
quite good.

These results show focused regression performs well
and avoids the larger errors incurred by proportional
scaling. More importantly, it shows that performing
time-constrained scaling even on seemingly simple ap-
plications is not necessarily trivial.

E. Multiple Parameter Programs

Next, we studied four programs that have at least
two important parameters: SMG, Sweep3d, CG, and
Miranda. All of these applications serve as challenges
for our focused regression approach; time-constrained
scaling is difficult either because the parameters have
nontrivial interactions or the application specifies pro-
cessor grid dimensions. We compare our results to an
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approach, denotednon-focused, in which we use all the
sample runs below 1024 processors to create a single
monolithic regression. We study SMG first and in depth
because it presents the most challenges.

SMG: SMG has six input parameters: three processor
dimensions,px, py, and pz, along with three grid
dimensions,nx, ny, and nz. The application specifies
grid dimensions in terms of a per-processor local grid;
one can recover the global grid by taking the product
of each grid dimension with the associated processor
dimension. For time-constrained scaling, four of the six
input parameters are unconstrained, which still leaves
many different ways to scale SMG. Note that SMG is
not symmetric in all dimensions [12], so modeling it is
not at all straightforward.

We chose to scale the global grid equally in all three
dimensions (e.g., if we double the processor count,
we increase each global grid dimension by a factor
of 3

√
2), which corresponds physically to decreasing the

grid point resolution by a factor of 2. Furthermore,
we assume that if the user is scaling a program with
processor dimensionspx, py, andpz, that one of these
dimensions will increase by a factor of 2. Therefore, we
make predictions for all three possibilities.

As described in Section III, we must create a re-
gression for different focal regions with SMG. Specif-
ically, a different regression predicts each processor
configuration. We used six of the possible processor
configurations at 1024 processors for these results.

Figure 3 shows the median errors for all program
execution times that we predicted using each of the three
techniques, and Table III summarizes the results.

In the particular case of SMG, using focused regres-
sions allows accurate predictions, while the non-focused
technique is clearly inferior. Also, the median error is
just 5.6% for all the points predicted. The non-focused
technique has median prediction errors that are higher
(76%). Furthermore, the worst case has an even larger
disparity—up to 117% with the non-focused approach.
While the worst case for focused regression is 34%, we
note that 90% of the predictions are within 10%.

Finally, we do not give the prediction error when
using proportional scaling for SMG because we lack a
clear definition of proportional scaling with six input
parameters, and some parameters (the processor grid
dimensions) have strict restrictions on their values.

Sweep3d:Sweep3d has fewer input parameters (five)
than SMG (six) because it has a two dimensional
processor grid. Also, the specification of the grid is
global, not local. Three of the five input parameters are
unconstrained for time-constrained scaling. Thus we can
scale Sweep3d in many ways, as with SMG. We choose

the same approach for scaling as for SMG and use focal
regions in exactly the same way.

Figure 3 and Table III summarize the results. The re-
sults are similar to those of SMG; the median prediction
error is quite low for our focused regression (5.0%) and
poor for the non-focused regression (36%).

CG: Figure 3 shows the results when applying fo-
cused regression to CG, and Table III summarizes this
data. The figure shows that we produce predictions
whose median error is 12%, and the worst-case error
is less than 23%. For comparison, we also show the
error when using a non-focused regression—for CG,
we focus the regression on different values of theNZ
input parameter, along with splitting computation and
communication and regressing on them separately. Pre-
diction quality is much better with focused regression.
Figure 4 shows the effect of using our prototype to
predictSIZE, as opposed to using naive weak scaling.

We also further investigated the naive time-
constrained scaling prediction. However, the question is:
how would the scientist scale CG to keep the execution
time constant without our approach? As we mentioned
earlier, CG has two parameters:SIZE and NONZER.
The scientist has three intuitive potential choice to scale
CGs: doubleSIZE, holding NONZERconstant; double
NONZER, holding SIZE constant; or increase each by√

2. We ruled out the third case for two reasons. First,
increasing both parameters by

√
2 seems physically

unrealistic since CG is at its core a one-dimensional
data structure (sparse matrix). Second, CG requires both
parameters be integers, and increasingNONZERby

√
2

will lead to experiments that we cannot actually run.

Therefore, we investigated the first two possibilities.
When doublingSIZE and holdingNONZERconstant,
the average error is 53%; When doublingNONZER
and holdingSIZE constant, the average error is 13%.
Both are worse than the average error with focused
regression, and the potential for large error exists.

Miranda: Figure 3 shows the results from Miranda
for both focused and non-focused regressions, and Ta-
ble III summarizes this data. In this case, we vary only
two processor grid dimensions, which substantially re-
duces the number of processor grids at 1024 processors.

The data shows thateither technique achieves good
prediction quality. The median is slightly better when
using the non-focused approach, while we have fewer
prediction errors over 10% (17 to 11). Recall, however,
that for SMG, prediction quality was much better with
focused regression, and the non-focused regression pro-
duced consistently poor results.
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Figure 3. Scatterplots showing prediction error for focused and non-focused regressions for SMG, Sweep3d, CG, and Miranda.

V. RELATED WORK

Extensive study into methods to predict the perfor-
mance of parallel applications has explored a variety

of approaches. Prior work has frequently focused on
cross-platform predictions in which the processor count
is held constant but the system under consideration
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Prediction SMG Sweep3d CG Miranda
Error (%) Max Avg Median Max Avg Median Max Avg Median Max Avg Median
Focused 34 7.1 5.6 12 4.9 5.0 22 12 12 20 3.7 2.2

Non-
focused 117 75 76 53 33 36 53 27 27 21 3.7 3.2

Table III
MAXIMUM , AVERAGE, AND MEDIAN PREDICTION ERROR INSMG, SWEEP3D, CG, AND M IRANDA FOR FOCUSED AND NON-FOCUSED

REGRESSIONS.

P Wk Scaling Time (s) Prototype Time (s)
16 46,094 29.3 46,094 29.3
32 92,188 33.5 78,682 27.9
64 184,375 43.2 124,979 27.4
128 368,750 52.8 237,656 31.4
256 737,000 81.3 299,536 28.7
512 1,475,000 101 458,171 29.2
1024 2,950,000 189 558,273 29.7
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Figure 4. Time-constrained scaling with our prototype for 16through 1024 processors (withNONZERfixed at 20). Our prototype predicts the
value of SIZE at 1024 (given a set of experiments using 16 through 512 processors) that will match the time at 16 processors, which is 29.3
seconds. For completeness, we also show the predicted valuesfor 32 through 512 processors. Clearly, our prototype leadsto time-constrained
scaling, while naive weak scaling does not. The right-hand side displays the results graphically.

is changed. Other research has used extensive manual
analysis to derive analytic models. We extend a signif-
icant body of prior work that has developed statistical
methodologies to predict performance.

First, this work extends our previous work on pre-
dicting strong scaling using black-box predictions and
regression [6]. Our work here is different in multi-
ple ways: it uses focused regressions; it targets time-
constrained scaling, which is more difficult than strong
scaling in many ways; and it uses gray-box techniques.

Another approach uses machine learning to make pre-
dictions on multicore machines [13]. Also in a similar
vein, Curtis-Maury et al. predict the power-performance
tradeoff on multicore machines [14]. While similar to
our approach, these approaches are limited to single
multicore processors and do not address cluster systems.

The other, most closely related work uses regression
to predict application performance across a range of
input parameter values. Prior work here includes neural
networks [15] and piecewise regression [9]. Neither
performs extrapolation, which is our focus.

Similarly, other black-box modeling approaches offer

at best limited abilities to extrapolate to larger processor
counts. Yang et al. predict performance across platforms
through partial execution of iterative programs but only
for system sizes used for the partial executions [16].
Lyon et al. use the theoretical approach of Taylor expan-
sions to understand execution behavior, including scal-
ability properties [17]. Combining static and dynamic
analysis to predict performance on different architec-
tures for different inputs offers greater possibilities for
extrapolating across process counts than these other
statistical methods [18]. Later work showed that the
technique could locate performance bottlenecks [19]).
In contrast, our framework only requires relinking the
application with the PMPI library to gather data during
training runs.

There are a variety of simulation- or trace-based
approaches to performance modeling [20], [21], [22].
Although techniques could extrapolate those traces to
larger numbers of processors, we provide a more direct
approach to scaling predictions.

White-box approaches typically require detailed anal-
ysis of data structures and program constructs, such as
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loop nests [23]. Several other researchers have explored
white-box scalability analysis approaches that provide
algorithmic or architectural perspectives [24], [25], [26],
[27], [5], [28]. In general, they derive application or
architecture specific models through detailed analysis,
which requires significant effort that is not readily auto-
mated. In a strongly related white-box approach, Brehm
et al. use regression and explore separating computa-
tion and communication [29]. However, their approach
requires detailed analysis to create the computation and
communication models. Other white-box approaches
that predict workload and memory requirements, such
asmodeling assertions[30], require code modifications.
Our techniques use the MPI profiling interface for
instrumentation, which at most requires relinking the
application.

Analytic modeling of parallel machines include
LogP [31] and BSP [32]. Another approach that requires
no user intervention to create a static cost model [33]
has only been applied to simple programs and architec-
tures.

Several tools trace or analyze MPI performance
through the MPI profiling interface, including
mpiP [34], Open|SpeedShop [35], VampirTrace [36],
svPablo [37], TAU/ParaProf [38], and Paraver [39].
These tools generally focus on providing assistance
in optimizing applications, particularly for very large
processor counts [40]. We build on algorithms to
capture the critical path in MPI programs hat were
developed to support optimization [41], [42].

VI. SUMMARY

This paper has described the design, implementation,
and evaluation of an approach that usesfocused re-
gression, which assists computation scientists in scal-
ing their application so that execution time is kept
constant. Our approach only requires the application
scientist to provide a small amount of application-level
information—specifically whether the input parameters
are related and if the application uses a processor grid.
Our approach then provides values of input parameters
that will yield approximately the same execution time
on a larger number of processors. Notably, our tech-
nique never requires a run of the application at the scale
at which the scientist desires.

We are exploring several directions of future work.
First, we are investigating breaking computation and
communication into smaller phases. In particular, dif-
ferent computation or communication phases may scale
quite differently; the idea is analogous to dividing total
time into computation and communication time—which
improved prediction accuracy. This extension requires

that we combine phases when their execution time is
sufficiently small, to protect against variance that is
more striking in small phases. Second, we are looking
at more applications that have many input parameters
with complex relationships. While our approach is ef-
fective for all applications in our set, we may find
that other applications require different techniques to
achieve accurate time-constrained scaling predictions.
Finally, we are investigating how to reduce the number
of experiments needed at smaller scales further through
experimental design.
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