
Practical Performance Prediction Under

Dynamic Voltage Frequency Scaling

Barry Rountree1, David K. Lowenthal2, Martin Schulz1, Bronis R. de Supinski1

1Lawrence Livermore National Laboratory, Computation Directorate,

Livermore, CA 94550, {rountree, schulzm, bronis}@llnl.gov

2University of Arizona, Department of Computer Science

Tucson, AZ, 85721, dkl@cs.arizona.edu

Predicting performance under Dynamic Voltage Fre-

quency Scaling (DVFS) remains an open problem. Cur-

rent best practice explores available performance coun-

ters to serve as input to linear regression models that

predict performance. However, the inaccuracies of these

models require that large-scale DVFS runtime algorithms

predict performance conservatively in order to avoid

significant consequences of mispredictions. Recent theo-

retical work based on interval analysis advocates a more

accurate and reliable solution based on a single new

performance counter, Leading Loads.

In this paper, we evaluate a processor-independent

analytic framework for existing performance counters

based on this interval analysis model. We begin with an

analysis of the counters used in many published models.

We then briefly describe the Leading Loads architectural

model and describe how we can use Leading Loads

Cycles to predict performance under DVFS. We vali-

date this approach for the NAS Parallel Benchmarks and

SPEC CPU 2006 benchmarks, demonstrating an order

of magnitude improvement in both error and standard

deviation compared to the best existing approaches.

I. INTRODUCTION

Predicting execution time under Dynamic Voltage

Frequency Scaling (DVFS) remains an open problem for

domains such as power savings [1], processor thermal

regulation [2, 3] and processor reliability [4]. While

researchers agree that varying sensitivity to changes in

CPU clock frequency arise from memory accesses, our

survey of 15 papers spanning nine processor families

Copyright 2011 IEEE. IEEE acknowledges that this contribution
was authored or co-authored by a contractor or affiliate of the U.S.
Government. As such, the Government retains a nonexclusive, royalty-
free right to publish or reproduce this article, or to allow others to do
so, for Government purposes only. This work was partially performed
under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.
IGCC July 2011, Orlando, Florida, USA.

(and two processor simulators) found 17 unique hard-

ware performance monitor (HPM) combinations used to

predict performance. No consensus yet exists for this

important, common problem.

A related line of research models the effects of

DVFS using interval analysis. This approach provides a

clearer understanding of the interactions between proces-

sor clock and memory subsystem. Using cycle-accurate

simulations, three teams [5–7] independently discovered

that a single counter that monitors Leading Loads [5]

can predict execution time under DVFS with an order

of magnitude less error than the best regression-based

models. Unfortunately, no existing processors support

this significant theoretical result.

Accurate performance prediction under DVFS is par-

ticularly vital to green supercomputing. Adaptive run-

time systems may adjust the clock frequency to reduce

power when this will not impact overall execution time.

If a DVFS runtime system mispredicts execution on the

critical path and chooses a faster clock frequency than

necessary, a local opportunity for energy savings will be

lost. On the other hand, choosing a slower frequency

than necessary may result in longer execution time, thus

multiplying the energy penalty across all processors.

Consider this motivating example: 100 million cores

running at 20 megawatts (MW), or 20 megajoules (MJ)

of energy per second [8]. If a runtime system correctly

predicts that during one particular second of program

execution, 10% of cores can be slowed to 50% power

consumption, then we realize a 5% savings in energy

(1 MJ) for that second. However, if the runtime system

underpredicts execution time by 1%, causing the slowed

nodes to remain in that state for 1.01 seconds, the system

would use an additional 0.19 MJ in energy. At slightly

over 5% prediction error, the system consumes more

energy than it saved by slowing the cores.

Measuring average error is insufficient for evaluating

prediction strategies. A predictor with a relatively low

average error but a relatively high standard deviation may

significantly increase both execution time and energy

consumption. Strategies such as adding buffer time can

mitigate the chances of using more energy than was

saved, but only at the cost of forgoing even more

potential savings. In contrast,we evaluate an HPM that

not only reduces median error of predicted execution

time across the SpecCPU2006 [9] and NAS Parallel

Benchmarks [10] from 2.455% to 0.123%, but also

reduces the standard deviation from 2.868 to 0.340.

Current best practice for predictors in runtime sys-

tems [1] first minimizes execution time overhead and

only then attempts to save energy. This conservative

approach masks significant potential energy savings. We

target techniques that identify and realize these savings

while simultaneously reducing mispredictions that in-

crease time and energy costs.

This paper makes the following contributions:

1) We present a thorough review of the extensive

related literature to determine what HPMs have

most often been used and why;

2) We perform a comprehensive overview of the

effectiveness of these counters when applied to a

recent Intel processor;

3) We repeat these experiments through simulation

to demonstrate that our proposed counter, leading

loads, provides an order of magnitude improve-

ment in both median error and standard deviation.

The structure of the paper follows. Section II provides

background in DVFS. Section III presents our results for

existing HPMs while Section IV reviews the Leading

Loads approach. Section V compares the new approach

to the approaches based on existing HPMs.

II. OVERVIEW

Power and frequency are quadratically related. In-

creases in CPU clock frequency require a quadratic

increase in power, but by the same token reductions

provide an opportunity for saving quadratically more

power. The domain of high-performance computing

(HPC) can leverage this relationship in two different

ways. For the same power budget, a dense and highly

integrated architecture such as Blue Gene may use orders

of magnitude more low-frequency processors than a sim-

ilar cluster with high-frequency processors. For highly

parallel workloads, the tradeoff of increased processor

count for decreased processor performance has led to a

substantial increase in overall performance.

Dynamic Voltage/Frequency Scaling (DVFS) is or-

thogonal to the low power processor approach. Instead of

always using the same frequency, DVFS allows runtime

CPU clock frequency selections that best meet power

consumption and performance requirements. This capa-

bility is particularly effective with parallel programs.

One can select the highest available frequency for over-

loaded processors while using slower frequencies so that

the other processors complete “just in time.” Recent

work has shown this technique can realize the combined

goal for DVFS in HPC: significant energy savings with

negligible performance loss [1, 11–13].

Reliable performance predictions at a particular

CPU clock frequency support greater energy savings—

otherwise processors may complete work early and waste

energy idling, or inadvertently introduce delays by taking

too long to complete. For CPU-bound computation,

which requires no main memory accesses, we can eas-

ily calculate the change in performance for different

frequencies. Given an execution time t0 at CPU clock

frequency f0 and a target CPU clock frequency fn, the

execution time tn at the target CPU clock frequency is:

tn =
f0

fn
t0

As the number of memory accesses increases, the

program becomes increasingly memory bound, with a

greater fraction of overall performance dependent on

memory latency. Theoretically, an entirely memory-

bound program that spends all execution time accessing

main memory experiences no slowdown when we reduce

CPU clock frequency since the change does not impact

main memory access times. Although entirely memory-

bound programs do not exist, we must consider the

degree of memory boundedness [14] in order to predict

performance under DVFS accurately. Time spent waiting

for memory at f0 does not incur performance loss at

fn, and out-of-order processors may overlap those stall

cycles with computation at the lower frequency.

III. EVALUATION OF EXISTING MODELS

In this section we explore state-of-the-art techniques to

predict performance under DVFS. Models based on in-

struction rates and miss rates provide reasonably accurate

average predictions. However, models that use HPMs

that more closely correlate with bus timecan provide

greater accuracy. We use these results from real hardware

to validate the effectiveness of our model that we present

in Section IV.

A. Existing Models and Implementations

Models: Nearly all models to predict performance

under changes in CPU clock frequency divide program

execution into CPU time and bus time. CPU time scales

proportionally to the change in frequency while bus time

remains constant. For example, Snowdon et al. attribute

execution time to CPU, bus, memory or I/O activity [18];

Lee et al. distinguish between memory instructions and

non-memory instructions [16]; and Ge et al. distinguish

between on-chip and off-chip time [20].

TABLE I
EVALUATION OF EXISTING MODELS ON THE CORE2 ARCHITECTURE

Mean Median Standard

Absolute Absolute Deviation

Model R-squared Error (%) Error (%) of Error

I/C [11, 15, 16] 0.147 5.582 4.867 6.986

I/M [17] 0.445 5.161 4.912 5.986

M/C [11, 15, 18] 0.520 4.856 5.153 5.754

X/C [15, 16] 0.909 1.897 1.060 2.546

R/C [19] 0.945 1.432 1.088 1.943

(I,M)/C [11] 0.505 4.845 5.092 5.772

(X,C)/I [16] 0.923 1.533 0.682 2.278

(I,M,X)/C [15] 0.941 1.278 0.567 1.987

I = Instructions, C = Cycles, M = L2 Cache Misses,

X = Bus Accesses, R = Cycle with 1+ Outstanding Reads.

Implementations: These models capture the intuitive

relationship between performance and memory bound-

edness. They are accurate for single-issue architectures:

memory access and computation do not overlap so

we can determine memory access time and scale any

remaining time proportionally to the change in CPU

clock frequency. However, computation may overlap

bus execution time on out-of-order issue architectures.

Researchers have compensated this overlap through lin-

ear regression models that capture correlations between

program characteristics and performance. We generally

expect that programs with a lower instructions-per-cycle

(IPC) rate are more memory bound than ones with a

higher IPC. We also expect that last level cache misses

per cycle (MPC) are higher in memory-bound programs

than CPU-bound ones. A typical regression has the form:

Tf ′

Tf

= α0 + α1IPCf + α2MPCf

where f is the reference CPU clock frequency, f ′ is

the target CPU clock frequency, T is execution time at

a particular CPU clock frequency, and α0, α1, and α2,

are constants that minimize error for the training set. To

predict performance of a new application at frequency

f ′, the cycles, misses, instructions and execution time

are measured at f . The regression then computes the

ratio of the measured time to the predicted time.

Experimental Results: We apply several existing

regression-based models [11, 15–19] to real executions

on a quad-core Xeon 5440 processor. Table I summa-

rizes results for the serial versions of the NAS Parallel

Benchmark suite classes A through E, modified to limit

total iteration counts. We compile all benchmarks using

gcc at optimization level −O2. Unless otherwise noted,

we obtain results by using a linear regression over HPM

values per cycle at 2.833GHz (e.g., L2 data cache misses

per cycle). We predict the ratio of cycles at 2.000GHz

to cycles at 2.833GHz.

R2 is the standard goodness of fit measure. We

calculate error for each benchmark as:

error = 100×
predicted− actual

actual

Table I shows the standard deviation of the error values

as well as the mean and median of the absolute error

values for the benchmarks as a group. We list counters as

well as models with the HPMs treated as a single-HPM

model in order to assess their contribution. Our summary

lists only principle HPMs of the models although we use

the complete models that the references describe.

B. Discussion

Snowdon et al. created an effective model based

on MPC for the PXA255 processor [18]. This single-

issue architecture creates a direct relationship between

the number of cache misses and the amount of time

spent on the bus. In out-of-order issue architectures,

this link in not nearly as strong, and consequently this

HPM is not nearly as useful. Likewise, papers published

by Lee, Freeh and Ge examine performance of their

models primarily on combinations of cache miss rates

and instruction rates [11,16,17]. Despite their wide use,

these two metrics provide little additional accuracy on

out-of-order issue architectures. For example, we report

a mean absolute error of 1.897% for a regression using

only bus transactions per cycle. Adding both I/C and

M/C terms to the regression only reduces the error to

1.278%, but comes at the cost of multiple runs in order

to collect the necessary HPM data.

More recent processors provide HPMs that more

directly measure bus time. Both Curtis-Maury et al.

and Lee et al. exploit these HPMs. Curits-Maury et al.

dynamically predict IPC in order to select near-optimal

thread granularity [15] while Lee et al. predict execution

time [16]. The Curtis-Maury model targeted dynamic

concurrency throttling. Here, we reduce the model to the

three HPMs that are relevant for predicting performance

across changes in CPU clock frequency: bus transactions,

cache misses and IPC rates. This modification outper-

forms any regression model in the literature.

Finally, Intel processor documentation suggests using

the Outstanding Bus Requests HPM with a CMASK=1

in order to count the number of cycles with one or

more outstanding reads [19]. We abbreviate this as 1+

Reads/Cycle or simply R/C. This metric is strongly

correlated with bus transactions and provides a slightly

improved predictor of performance (mean absolute error

1.432%) when compared to the improved Curtis-Maury

model. To our knowledge, this HPM has not been used

in any existing work in this area, despite its performance

equivalence to models requiring additional HPMs.

C. Limitations of Current Models

Regression-based approaches target good average pre-

diction accuracy. Error will be split between under-

prediction, which can lead to unnecessary delays and

large energy penalties, as well as overprediction, which

results in lost power savings. Further, the quality of the

prediction with regression-based models depends on the

quality of the training data. If a new program is suffi-

ciently different, the error could be much greater than the

regression would lead us to expect. If the phenomenon

underlying the regression is understood in sufficient

detail, we should be able to predict which programs will

be the outliers. Current models do not provide this level

of understanding. In the next section, we address these

weaknesses by presenting a novel model that explicitly

accounts for the out-of-order nature of modern server-

class processors. We then use this model to create an

improved technique to predict performance.

IV. ARCHITECTURAL MODEL

The previous section showed that regression-based

models only provide good median performance predic-

tions. Outliers have significant error and these models

do not suggest why this error occurs or how to reduce

it. We now consider a Leading Loads [5–7], HPM that

predicts more accurately and more consistently.

A. Definitions and Assumptions

We define a load as a non-speculative read that results

in a last-level cache miss. Execution of each load begins

with its issue on the cycle when the read begins and

terminates some constant time later (the latency) with its

completion on the cycle when the data arrives from main

memory. We assume the results of the load are required

by one or more instructions further downstream, and that

these instructions cannot begin execution until the load

completes. We define the first load to be a leading load.

We ignore any other loads that occur between the issue

and completion of the leading load, and define the load

that occurs subsequent to the completion of the previous

leading load as the next leading load.

We classify load issue and completion as load events.

We divide the instruction stream into intervals that intu-

itively are the instructions that occur between two load

events. However, we use a slightly more complicated

definition to obtain invariant interval boundaries across

CPU clock frequency changes. We define the start of the

interval as the first instruction in a set of instructions

that cannot begin execution until the associated load

event occurs. An interval ends when the next interval

begins. We assume deterministic instruction scheduling

independent of latency, which still allows load events to

occur at different times and in different orders.

Most modern processors use write buffers to hide

store miss penalties, making the effective latency zero.

We could extend our model to handle write-bound

applications for which write latency is a performance

limiting factor. However, none of the NPB or SpecCPU

benchmarks exhibit this behavior so we do not model

writes. Our experimental results in Section V use cycle-

accurate simulation and demonstrate that we achieve

significant accuracy despite this simplification.

B. Leading Load Implementation

We set the leading load bit to high when a leading

load occurs. We reset the bit when the load completes.

The Leading Load Cycles HPM, which is our

estimated bus time, increments every cycle that the bit is

high. To implement the leading load bit, we add an extra

bit to every load/store queue entry. Insertions into this

queue check for any entry with this bit set. If none is

found then the bit on the new entry is set. When the load

completes, the entry is removed from the queue and the

corresponding bit is reset. Thus, we expect an overhead

of one bit per queue entry (along with the associated

control logic), which is about ten bits on recent Xeons,

a negligible increase in area and power.

V. EVALUATION OF LEADING LOADS

A thorough exploration of available HPMs failed to

yield a combination that approximates Leading Loads.

We now show how we validated this new HPM approach

through the PTLSim cycle-accurate simulator [21].

A. Experimental Setup

PTLSim: Validation of the Leading Loads technique

requires a cycle-accurate processor and cache simulator.

We made the necessary changes to PTLSim to iden-

tify and to track leading loads. This simulator uses a

compile-time setting to specify the memory latency: the

number of CPU cycles taken by any last-level cache

miss. Assuming that changes to CPU clock frequency do

not affect the memory bus frequency, we can simulate

Predicted Execution Time at f ′ = Observed Bus Time + (f ′/f)×Observed CPU Time

Observed Bus Time at f =
LeadingLoadCycles at f

f

Observed CPU Time at f = Observed Execution Time at f −Observed Bus Time at f

Fig. 1. Leading Loads Prediction

changes in CPU clock frequency simply by changing the

number of cycles of memory latency (faster CPUs fill the

same time with more cycles). We use a 2:1 ratio of high

to low CPU clock frequency, predicting performance

for a processor running half as fast as the observed

processor. This ratio matches the greatest range that we

have observed in HPC clusters, and this maximum tends

to maximize the error of any predictive model.

Benchmarks: We used three benchmark sets for the

simulations: 170 unique instances of a synthetic bench-

mark that we created to increase test coverage, single

iterations of 20 benchmarks taken from the NAS Parallel

Benchmark suite classes S, W, and A-C, and complete

runs of 58 benchmarks taken from the SpecCPU 2006

benchmark suite classes test and train.

Leading Loads Models: We use leading loads to mea-

sure the number of total effective bus cycles at frequency

2n and use this to predict execution time at frequency n.

Table II summarizes the results. Because we require no

training data, leading load error is independent of the

results of other experiments.

Regression Models: For each of the existing models,

we calculate linear regression predictions for each bench-

mark set. The model-wide results use standard error,

and the error of individual results is calculated as in

Section III. Because we effectively use the same data

for both testing and training, we expect the error of the

regression models to be higher in practice. Thus, these

regression results (as opposed to the leading load results)

are a lower bound of potential error. Table II summarizes

three single-variable regressions (read cycles, L2 cache

misses and instructions) as well as a linear regression

that combines all three variables (RMI).

CPU and Memory Boundedness: Predicting behav-

ior of applications with essentially no cache misses

(CPU-bound) is trivial, as is predicting behavior of

applications that are entirely limited by bus speed and

capacity (memory-bound). The execution time of a CPU-

bound application changes proportionally to the change

in CPU clock frequency while a memory-bound appli-

cation, at least in theory, shows no change in execution

time regardless of the change in CPU clock frequency.

In Figure 2 we measure CPU boundedness by dividing

the number of cycles at the higher frequency by the

number of cycles at the lower frequency. Thus, CPU-

bound benchmarks, which use roughly the same number

of cycles spread over proportionally more time, will be

closer to 1.0 and the more memory-bound benchmarks,

which use proportionally fewer cycles to take the same

amount of time to in the extreme case, will be closer

to the ratio of the two frequencies. We focus on where

prediction is the most difficult: realistic benchmarks in

between these trivial extremes.

B. Discussion

Figure 2 shows results for our 78 benchmarks. The

dark points are predictions that use leading loads. The

white points use regression-based techniques. Clearly,

leading loads consistently generate significantly more

accurate predictions for the range of CPU-boundedness.

Table II shows the entire results. The first third shows

results obtained from a regression over each HPM indi-

vidually, which serve as a reference point for judging the

remaining results. As in the results obtained on the Xeon

processor, we observe that models based only on cache

misses or instruction counts perform poorly compared

to a model based solely on bus cycles. Combining all

three HPMs gives a slight improvement over the bus-

cycle-only model. These results form the middle third

of Table II. We show the performance of the three-

HPM regression across each set of benchmarks (NAS

Parallel Benchmarks, SpecCPU 2006 and our synthetic

benchmarks) individually and the combined NAS and

SPEC benchmarks. The synthetic benchmarks share a

similar prediction error with the NAS benchmarks.

The final third of Table II shows the effectiveness of

leading loads in performance prediction when compared

to the three-HPM regression. Median absolute error

decreases across the SpecCPU suite from 2.217% to

0.412%, and across the NPB suite from 0.888% to

0.122%. Across all 218 experiments, median absolute

error decreases from 1.465% to 0.199%.

For the combination of NAS and Spec (NPB+Spec)

we achieve an order-of-magnitude reduction in median

absolute error, from 2.455% to 0.123%. This combi-

nation causes particular difficulty for regression-based

techniques, as these two suites display different behavior

in terms of CPU-boundedness. This result shows leading

loads provide a general solution to this problem indepen-

dent of the characteristics of the underlying applications.

TABLE II
EVALUATION OF leading loads USING PTLSIM

Mean Median Standard

Absolute Absolute Deviation

Model Benchmarks R
2 Error (%) Error (%) of Error

(R) Read Cycles all 0.940 2.296 1.837 2.938

(M) L2 Misses all 0.019 9.193 6.323 12.742

(I) Instructions all 0.629 6.070 4.893 8.941

RMI all 0.955 1.944 1.465 2.800

RMI NPB+Spec 0.976 2.379 2.455 2.868

RMI NPB 0.993 0.888 0.760 1.277

RMI Spec 0.974 2.115 2.217 2.700

RMI synth 0.974 0.992 0.744 1.348

Leading Loads all n/a 0.276 0.199 0.356

Leading Loads NPB+Spec n/a 0.248 0.123 0.340

Leading Loads NPB n/a 0.122 0.095 0.108

Leading Loads Spec n/a 0.292 0.142 0.382

Leading Loads synth n/a 0.288 0.225 0.353

1.0 1.2 1.4 1.6 1.8 2.0

−
8

−
6

−
4

−
2

0
2

4

Comparison of RMI and Leading Loads Error over combined SPEC and NPB

CPU−boundedness

P
e

rc
e

n
t

P
re

d
ic

ti
o

n
 E

rr
o

r
(2

n
 G

H
z
 p

re
d

ic
ti
n

g
 n

 G
H

z
)

CPU Memory
Bound Bound

3−HPM RMI regression model

Leading Loads model

Fig. 2. Comparative Performance of RMI and Leading Loads models.

TABLE III
CLASSIFICATION OF HARDWARE PERFORMANCE COUNTERS

USED IN EXISTING MODELS.

Counter Type Counter Name

Instruction Total Instructions [11, 15–17, 22–28]
Counts Branch Instructions [15, 26, 27, 29]

Load and Store Instructions [29]
Single and Double Precision SIMD ops [26]

Cycle Total Stall Cycles [26]
Counts Data Depedence Stall Cycles [25]

Decoder/Dispatch Stalls [30]
Branch Misprediction Stalls [30]
I/O Stalls [30]
Reorder Buffer Full Stalls [28, 30, 31]
Idle Cycles [30]
Active Cycles [26]

Cache Last Level Cache Miss [11, 23, 27, 30, 32]
Accesses L1 Data Cache Access [11, 22]

L1 Data Cache Miss [24]
Trace Cache Deliver Mode [15]
L2 Cache Evictions [31]

Memory TLB Miss [32, 33]
Accesses Bus Access [15, 16]

DRAM Access due to Page Conflict [28, 31]
Burst Transactions [31]
Quadword Write Transfers [31]
Remote memory accesses [32]
Cancelled Memory Accesses [26]

Other Mispredicted Branches [15]
Machine Clears [26]
TC Deliver Mode [26]
UOP Queue Writes [26]

VI. RELATED WORK

This research intersects several disparate fields. The

problem of energy as a design constraint in high-

performance computing has led to low-power processors

in high-density supercomputers [34,35]. DVFS has been

applied to determine the most efficient per-program

allocation of processors and frequencies [36] as well as

to application-oblivious runtime algorithms [1, 11, 37].

These applications have been limited by the absence of a

reliable predictive model of program performance under

changing CPU clock frequencies. Work in bounding

potential energy savings required complete program ex-

ecution at every frequency [38], and runtime algorithms

commonly assume all slowdown is scaled slowdown

until demonstrated otherwise [1].

We refer the reader to table III for the counters used

by existing predictive models.

VII. CONCLUSIONS: IMPLICATIONS FOR GREEN

SUPERCOMPUTING

Prior HPM-based models can be classified as either

high-level (with significant error) or exhaustive-search

(which provides little explanation as to why the counters

work or when they will fail). We have taken a new

architecture model of the relationship between CPU

clock frequency, memory usage, and performance and

from this evaluated a proposed HPM, leading loads. We

have compared this approach to performance prediction

under DVFS to the best existing performance counter

approaches and found order-of-magnitude reductions in

error and standard deviation.

This model and predictor will help to create DVFS-

based runtime systems that aggressively and reliably

save energy. Given that underprediction on the critical

path can waste energy across the entire system, we

lose significant opportunities for energy savings when

prediction error is high. Reducing prediction error means

that runtime systems can be less conservative when

scheduling CPU frequencies to save energy. Reducing

the standard deviation reduces the impact when errors

do occur. By relying on an arithmetic model rather than

a linear regression, we have removed sources of error

resulting from incomplete training sets and thus can be

more confident that these results will be reproducible

across other applications.

Much work remains. We have explored the single-

core case; multicore will introduce complications due

to bus contention across cores. Newer architectures such

as Nehalem and Sandy Bridge have multiple memory

latencies and will “overclock” a subset of cores if the

remainder are idle. Accounting for these architectural

features will require additions to this model.

REFERENCES

[1] B. Rountree, D. K. Lowenthal, B. de Supinski, M. Schulz, and
V. W. Freeh, “Adagio: Making DVS Practial for Complex HPC
Applications,” in International Conference on Supercompuing

(ICS), Yorktown Heights, New York, Jun. 2009.

[2] H. Hanson, S. W. Keckler, S. Ghiasi, K. Rajamani, F. Rawson,
and J. Rubio, “Thermal Response to DVFS: Analysis with an
Intel Pentium M,” in International Symposium on Low Power

Electronics and Design (ISLPED), Portland, OR, 2007.

[3] J. S. Lee, K. Skadron, and S. W. Chung, “Predictive Temperature-
Aware DVFS,” IEEE Transactions on Computers (ToC), vol. 59,
no. 1, pp. 127–133, 2010.

[4] M. Basoglu, M. Orshansky, and M. Erez, “NBTI-aware DVFS:
A New Approach to Saving Energy and Increasing Processor
Lifetime,” in International Symposium on Low Power Electronics

and Design (ISLPED), Austin, TX, 2010.

[5] B. Rountree, “Theory and practice of dynamic voltage/frequency
scaling in the high-performance computing environment,” Ph.D.
dissertation, University of Arizona, 2010.

[6] S. Eyerman and L. Eeckhout, “A Counter Architecture for
Online DVFS Profitability Estimation,” IEEE Transactions on

Computers (ToC), 2010, preprint.

[7] G. Keramidas, V. Spiliopoulos, and S. Kaxiras, “Interval-Based
Models for Run-Time DVFS Orchestration in Superscalar Pro-
cessors,” in Proceedings of the 2010 International Conference on

Computing Frontiers (CF), Bertinoro, Italy, 2010.
[8] Exascale Initiative Steering Committee, “A decadal DOE plan

for providing exascale applications and technologies for DOE
mission needs,” 2010.

[9] Standard Performance Evaluation Corp., SpecCPU 2006. http:
//www.spec.org, 2006.

[10] NASA Advanced Supercomputing Division, NAS Parallel Bench-

mark Suite. http://www.nas.nasa.gov/Resources/Software/npb.
html, 2006, version 3.3.

[11] R. Ge, X. Feng, W. Feng, and K. W. Cameron, “CPU Miser:
A performance-Directed, Run-Time System for Power-aware
Clusters,” in Proceedings of the 2007 International Conference

on Parallel Processing (ICPP), Xi’An, China, 2007.
[12] C.-H. Hsu, W.-C. Feng, and J. S. Archuleta, “Towards Effi-

cient Supercomputing: A Quest for the Right Metric,” in High-

Performance Power-Aware Computing (HPPAC), Denver, Col-
orado, 2005.

[13] N. Kappiah, V. W. Freeh, D. K. Lowenthal, and F. Pan, “Exploit-
ing Slack Time in Power-Aware, High-Performance Programs,”
in International Conference for High Performance Computing,

Networking, Storage and Analysis (SC), Seattle, Washington,
Nov. 2005.

[14] C.-H. Hsu and W.-C. Feng, “A Power-Aware Run-Time System
for High-Performance Computing,” in International Conference

for High Performance Computing, Networking, Storage and

Analysis (SC), Seattle, Washington, Nov. 2005.
[15] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.

Nikolopoulos, “Online Power-Performance Adaptation of Multi-
threaded Programs using Hardware Event-Based Prediction,” in
International Conference on Supercomputing (ICS), Queensland,
Australia, Jun. 2006.

[16] S.-J. Lee, H.-K. Lee, and P.-C. Yew, “Runtime Performance
Projection Model for Dynamic Power Management,” in 12th

Asia-Pacific Conference on Advances in Computer Systems Ar-

chitecture (ACSAC), Seoul, Korea, Aug. 2007.
[17] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, and

R. Springer., “Exploring the Energy-Time Tradeoff in MPI Pro-
grams on a Power-Scalable Cluster,” in 19th IEEE International

Parallel and Distributed Processing Symposium (IPDPS), Den-
ver, Colorado, Apr. 2005.

[18] D. C. Snowdon, G. van der Linden, S. M. Petters, and G. Heiser,
“Accurate Run-Time Prediction of Performance Degradation
Under Frequency Scaling,” in Operating System Platforms for

Embedded Real-Time Applications (OSPERTA), 2007.
[19] Intel, Intel 64 and IA-32 Architectures Optimization Reference

Guide. Intel Corporation, Nov 2007, no. 248966-016.
[20] R. Ge and K. W. Cameron, “Power-Aware Speedup,” in 21st

IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS), Long Beach, California, Mar. 2007.
[21] M. T. Yourst, “PTLsim: A Cycle Accurate Full System x86-64

Microarchitectrual Simulator,” in IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), San
Jose, CA, 2007.

[22] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos,
B. R. de Supinski, and M. Schulz, “Prediction Models for
Multi-dimensional Power-Performance Optimization on Many
Cores,” in International Conference on Parallel Architectures and

Compilation Techniques (PACT), Toronto, Canada, Oct. 2008.
[23] G. Dhiman, T. Rosing, V. Kontorinis, E. Saxe, D. Tullsen, and

J. Chew, “Dynamic Workload Characterization for Power Effi-
cient Scheduling on CMP Systems,” in International Symposium

on Low Power Electronics and Design (ISLPED), Austin, TX,
USA, 2010.

[24] M. Moeng and R. Melhem, “Applying Statistical Machine Learn-
ing to Multicore Voltage and Frequency Scaling,” in Proceedings

of the 2010 International Conference on Computing Frontiers

(CF), Bertinoro, Italy, 2010.
[25] K. Choi, R. Soma, and M. Pedram, “Dynamic Voltage and

Frequency Scaling Based on Workload Decomposition,” in In-

ternational Symposium on Low Power Electronics and Design

(ISLPED), Newport Beach, CA, USA, 2004.
[26] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoluos, and D. S.

Nikolopoulos, “Prediction-Based Power-Performance Adaptation
of Multithreaded Scientific Codes,” IEEE Transactions on Par-

allel and Distributed Systems, vol. 19, no. 10, pp. 1396–1410,
2008.

[27] A. Weissel and F. Bellosa, “Process Cruise Control: Event-Driven
Clock Scaling for Dynamic Power Management,” in International

Conference on Compilers, Architecture, and Synthesis for Embed-

ded Systems (CASES), Grenoble, France, 2002.
[28] G. Dhiman and T. S. Rosing, “Dynamic Voltage Frequency

Scaling for Multi-Tasking Systems Using Online Learning,” in
International Symposium on Low Power Electronics and Design

(ISLPED), Portland, Oregon, Aug. 2007.
[29] D. Sasikala, M. E. Ravichandran, and C. S. Ravichandran, “Pro-

cessor Performance Enhancement Using Self-Adaptive Clock
Frequency,” International Journal of Computer Applications

(IJCA), vol. 3, no. 11, pp. 19–26, 2010.
[30] S. Huang and W. Feng, “Energy-Efficient Cluster Computing via

Accurate Workload Characterization,” in Proceedings of the 9th

International Symposium on Cluster Computing and the Grid

(CCGRID), Shanghai, China, 2009.
[31] D. C. Snowdon, E. L. Sueur, S. M. Petters, and G. Heiser, “Koala:

A Platform for OS-Level Power Management,” in Proceedings

of the 4th Eurosys Conference, Nuremberg, Germany, 2009.
[32] V. Bui, L. C. McInnes, B. Norris, L. Li, K. Huck, O. Hernandez,

and B. Chapman, “A Component Infrastructure for Performance
and Power Modeling of Parallel Scientific Applications,” in
Proceedings of the 2008 CompFrame/HPC-GECO workshop

on Component-based High Performance Computing (CBHPC),
Karlsruhe, Germany, 2008.

[33] D. C. Snowdon, S. M. Petters, and G. Heiser, “Accurate On-line
Prediction of Processor and Memory Energy Usage Under Volt-
age Scaling,” in Conference on Embedded Software (EMSOFT),
Salzburg, Austria, Sep. 2007, pp. 84–93.

[34] A. Gara, M. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E.
Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay,
T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and
P. Vranas, “Overview of the Blue Gene/L System Architecture,”
IBM Journal of Research and Development, vol. 49, no. 2-3, pp.
195–212, 2005.

[35] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang,
S. Pakin, and J. C. Sancho, “Entering the Petaflop Era: The
Architecture and Performance of Roadrunner,” in International

Conference for High Performance Computing, Networking, Stor-

age and Analysis (SC), Austin, Texas., Nov. 2008.
[36] R. Springer, D. K. Lowenthal, B. Rountree, and V. W. Freeh,

“Minimizing Execution Time in MPI Programs on an Energy-
Constrained, Power-Scalable Cluster,” in Principles and Practice

of Parallel Programming (PPoPP), New York City, New York,
Mar. 2006.

[37] V. W. Freeh, N. Kappiah, D. K. Lowenthal, and T. K. Bletsch,
“Just-In-Time Dynamic Voltage Scaling: Exploiting Inter-Node
Slack to Save Energy in MPI Programs,” Journal of Parallel and

Distributed Computing, vol. 68, no. 9, pp. 1175–1185, 2008.
[38] B. Rountree, D. K. Lowenthal, S. H. Funk, V. W. Freeh, B. R.

de Supinski, and M. Schulz, “Bounding Energy Consumption
in Large-Scale MPI Programs,” in International Conference for

High Performance Computing, Networking, Storage and Analysis

(SC), Reno, Nevada, Nov. 2007.

