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ABSTRACT

Interest in using Java for high-performance parallel catimguhas
increased in recent years. One obstacle that has inhilzitedidm
widespread acceptance in the scientific community is thguage
requirement that all array accesses must be checked toectisyr
are within bounds. In practice, array bounds checking iersci
tific applications may increase execution time by more théaca
tor of 2. Previous research has explored optimizationsaticsily
eliminate bounds checks, but the dynamic nature of manytfioe
codes makes this difficult or impossible.

Our approach is instead to create a new Java implementation

that does not generate explicit bounds checks. It insteszkplar-
rays inside ofndex Confinement Regio€Rs), which are large,
isolated, mostly unmapped virtual memory regions. Any \arra
reference outside of its bounds will cause a protectionatioh;
this providesmplicit bounds checking. Our results show that our
new Java implementation reduces the overhead of boundkingec

from an average of 63% to an average of 9% on our benchmarks.

Categories and Subject Descriptors
D.3.4 [Programming Language§: Processors-eptimization

General Terms
Measurement, Performance
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1. INTRODUCTION

Interest is growing in the scientific programming commuiriity
using Java for high performance computing (HPC). Some reaso
for this include attractive features such as portabiligpressive-
ness, and safety. In addition, threads are built into tha Jan-
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guage. Finally, rapid progress is being made in Java contpité-
nology.

However, several obstacles currently prevent Java frororhec
ing widely accepted for HPC. One such obstacle is the Java lan
guage specification requirement that all array accesseblduked
to ensure they are within bounds. This often causes a ruaign
formance penalty, because in general, a Java compiler msste
all array references are within bounds by adding explicéoks
preceding an array access. If the reference is outside tiedsoof
the array, a run-time error is generated. Unfortunatelg, shmple
solution adds overhead to all run-time array accesses.

While array accesses are infrequent in some applicaticien-s
tific programs tend to be array intensive, which means thatich
ing array bounds can significantly increase execution tioe Java
to have any chance to be widely used for HPC applicationayarr
bounds checking overhead must be alleviated.

The current state of the art for reducing bounds checking-ove
head is to use static analysis to eliminate explicit chegkprov-
ing an array reference is within its bounds [4]. Howeverre¢he
are several problems with this approach. First, the dynaaiare
of many scientific codes makes static elimination difficultim-
possible. This is borne out by our manual inspection of theSNA
benchmark suite [2]. Second, even when static analysissisiipie,
currently available compilers may have difficulty removinglicit
checks.

Rather than attempting to eliminate explicit bounds chestés
ically, our goal is to use compiler and operating system etigp
implicitly check array bounds in Java programs. We levetthge
64-bit address space of modern architectures to reducegtot
array bounds checks. This is a potentially useful technfqusci-
entific applications, which increasingly are difficult toedywe stat-
ically. If static analysis cannot eliminate bounds chetken the
compiler must inserk bounds checks for an-dimensional array
reference. Instead, we perform no static analysis of thgraro,
and we insert zero checks for array bounds. We place each arra
object in anindex confinement regigthCR). An ICR is an isolated
virtual memory region, of which only a small portion, copesd-
ing to valid array data, is mapped and permissible to access.
rest of the ICR is unmapped, and any access to that portidn wil
cause a hardware protection fault. This achieves impligitrials
checking for all array references. While ICRs can be implete
on most modern architecture/operating systems, they areply
intended for 64-bit machines. This allows allocation of tigds of
thousands of 32GB ICRs, each of which is large enough to anpli
itly catch any illegal access to an array of double-precigiam-
bers.

We made two primary modifications trj , the GNU Java im-



Program || Dynamic Percentage of Removable Che¢ks
FT 0%

MG 90%

BT 100%

CG 7%

Table 1: Percentage of bounds checks, for four NAS programs,
that we believe could be eliminated statically. In practice we
are not aware of a Java compiler that can successfully elimete
all of the removable checks indicated above.

plementation. First, we modified array allocatiarey) so that
array objects are allocated inside of ICRs. Second, we neadifi

will successfully eliminateall removable checks. In these cases
compile-time schemes must fall back to general run-timesiche
ing. Instead, our Java implementation decreases the cbsuoids
checking and does not depend on static analysis to do so.

A similar approach to ours is to use segmentation for no-cost
bounds checking [6]. The basic idea is to place an array irga se
ment and set the segment limit to the size of the array. Thls-te
nique is effective for small one-dimensional arrays, beeaauto-
matic checking is done on both ends of the array. However; typ
cally one end must be explicitly checked for large arraysttar-
more, because there are a limited number of segments thétecan
simultaneously active (four on the x86, for example), fudubds
checking must be used for some arrays if there are more lragsr
than this maximum. Most importantly, multidimensionaleys

the waygcj generates array indexing code so that illegal accesses .annot be supported. This is because the segment limit meve

will fall into an unmapped memory area.

Because our new Java implementation utilizes ICRs, dense ac
cess patterns are replaced with sparse ones. This hasvesgati
sequences in the TLB, cache, and memory. Accordingly, we-mod
ified the Linux kernel to customize virtual addressing toirote
for a sparse access pattern. Furthermore, a process casectooo
use our customized scheme, so that regular processes éextath
by our kernel modifications.

Our results on a 900 MHz Itanium-2 show that performance of
our new Java implementation that uses ICRs is superigcio-
generated code that uses explicit bounds checks. Spdyifical
approach reduces the bounds checking overhead for saieltifa
benchmarks from an average of 63% to an average of only 9%. In
addition,all of the benchmarks performed better using ICRs rather
than full compiler bounds checking.

The remainder of this paper is organized as follows. The next
section describes related work. Section 3 provides imphtation
details, and Section 4 presents performance results.o8egtlis-
cusses issues arising in this work. Finally, Section 6 actes.

2. RELATED WORK

A significant body of work exists on static analysis to eliati&
array bounds checks. Kolte and Wolfe [12] perform partidure
dancy analysis to hoist array bound checks outside of lobpsir
algorithm was based on that described by Gupta [10], whoderm
lated the problem as a dataflow analysis. In ABCD [4], Bodik et
al. implemented a demand-driven approach to bounds chgakin
Java. Artigas et al. [1] addresses the problem by introduain
new array class with the concept o$afe region Xi and Pfenning
[17] introduce the notion of dependent types to remove dvoaynd
checks in ML; Xi and Xia [18] extend this idea to Java. Rugind a
Rinard [15] provide a new framework using inequality coastts
for dealing with pointers and array indices, which works fhoth
statically and dynamically allocated areas.

All the above analyses are performed at compile time. Thés ha
the advantage of avoiding run-time overhead but fails whtiree
(1) the code is too complicated to prove anything about aeter-
ences, or (2) the code depends on input data. The formerdiesiu
cases where, for example, different arrays are passedt(zd pe-
rameters) to functions from several different call sitetie Tatter
includes applications where indices cannot be determihedra-
pile time. As one example, Table 1 shows the results of our in-
spection of several benchmarks from the NAS suite. In pagic
our inspection of the CG and FT benchmarks show that it is ex-
tremely difficult and impractical to prove that array refeces are
within bounds. Furthermore, even when most or all checks are
potentiallyremovable, we are not aware of a Java compiler that

only an access past the allocated memory for the entire ;aaray
illegal access in one of the firat — 1 dimensions that happens to
fall within the allocated memory for the array will not be cgut.
While this provides some degree of security, it can not pcedie-
mantically correct Java programs.

Electric Fence [14], which places a single unmapped page on
either side of an allocated memory area, bears some sityitari
ICRs. Electric Fence automatically catches overruns oneorke
However, it does not handle arbitrary array referenced) asaef-
erences past the unmapped page. In contrast, our Java ieTgkem
tion is able to catch any illegal reference.

Our approach bears some similarities to Millipede [11], #-so
ware DSM system. Millipede avoids thrashing by placingidigt
variables (that would generally be allocated on the same)pawy
different pages at their appropriate offsets; then, botigepaare
mapped to the same physical page. Different protectionghem
be used on each variable, because protections are donevatulaé
page level.

Our extended and customizable virtual memory abstractiem)(
[3] is used only by those processes that use ICRs. This means
that regular processes are unaffected. This is somewhatisem
cent of microkernels such as Mach [19], which provide fldiipi
to application level processes (such as allowing an extpager).
However, our modification is inside the kernel as opposed thea
application level.

There has been work on how to utilize 64-bit architecturesstiy
from the viewpoint of protection. For example, [5] descsilégpal,
which places all processes in a single 64-bit virtual addsgsce.
This allows for a more flexible protection structure.

Finally, array bounds checking is often mentioned as a igcien
for preventing buffer overflow. Several have studied theegai
overflow problem; this includes usinggcc patch along with a
canaryto detect it [8]. Another compile-time solution, RAD [7],
involves modifying the compiler to store return addresses $afe
location. This solution retains binary compatibility basa stack
frames are not modified.

3. IMPLEMENTATION

This section describes implementation details on an Itaru
which is a 64-bit machine. First, we discuss our impleméoradf
index confinement regions (ICRs). Next, we discuss our nmuadifi
tions to the GNU Java implementatiay;j . Finally, we describe
our modifications to the 1A-64 Linux kernel.

3.1 Index Confinement Regions

An Index Confinement Region (ICR) is a large, isolated region
of virtual memory. When an array is placed in an appropyatel
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Figure 1: Two index confinement regions. Each array is isolad from any other program data; bounds checking is done autorati-

cally through unmapped pages.

sized ICR, references to this array are confined within the. Ibr
example, consider placing a one-dimensional integer arrdgxed
only by 32-bit expressions, within an ICR. If the size of tlikRlis
chosen to be at least 16GB and the array is placed at the lieginn
of the ICR, it is impaossible to generate an array referenae ith
outside of the ICR. A reference below the lower end of the IER i
not possible because of three factors. First, arrays in davim-
ited to 23" entries by the language specification. Second, negative
index expressions are not permitted by the Java languagéispe
tion. Third, our Java compiler (as well as others) takes aidhge

of these language restrictions by treating index exprassis un-
signed, so that if a negative 32-bit index expression is gead by

a program, it is converted to a positive index expressiayeliathan

231 _1. Note that this simple optimization cannot be performed by
a C or C++ compiler, because negative index expressionggaé |

in those languages.

An ICR must be large enough so that any 32-bit index exprassio
will result in an access within an ICR. In general, ICR siz¢his
product of 4GB 23?) and the size of the array element type; this
can be calculated at allocation time. Although each ICRsIs¢
GB in size, a 64-bit virtual address space permits the dilmcaf
millions of ICRs.

Figure 1 shows two regions and their associated arrays. In an
ICR, pages in which the actual array resides are mapped eatth r
and write permission. All other pages in the ICR are unmapped
This is achieved usingmap (with MAP_FI XED). Because in gen-
eral the array size is not a multiple of the page size, one étitko
array that is within a mapped page is not implicitly proteicteéve
align arrays so that the upper limit of the array is at a pagambte
ary, leaving the bottom end of the array unalighethis allows au-
tomatic bounds checking, because an access to an unmapped pa
results in a protection violation. Leaving the front end loé tar-
ray unprotected (not page aligned) does not matter becdube o
treatment of negative indices described above.

The ICR abstraction extends naturallyrtalimensions, because
Java has no true multidimensional arrays. Instead, Javasepts
ann-dimensional array as vectors of vectors. As describedegbov
Java compilers already can avoid a lower-bound check fon eac
vector. Hence, because each vector is placed in an ICR, gie hi
bound check is also unnecessary anthecks are required for an
n-dimensional array reference.

Because Java requires arrays to be allocated via the keyword
new, the runtime system must be modified to place arrays in ICRs.
Additionally, the Java compiler must be modified so that igipl
bounds checking can be performed. The next section desdrive
we modified thegycj compiler and runtime libraries to facilitate the
ICR-based allocation of Java arrays.

!Because we use right-aligned placement of arrays, ICRsreequ
one extra page at the right end to ensure proper protection.

3.2 GNU Java Implementation

We created a new Java implementation, basegign that makes
use of ICRs. We made two primary modifications. First, we glegin
the way arrays are indexed and allocated, which involves -
piler and run-time library changes. Second, we changed i G
backend so that it would conform to the Java language spacific
tion.

3.2.1 Array Indexing and Allocation

Java requires that array index expressions produce aveosffi
set that is within the allocated space of the array. This mdlaat
conceptually,gcj must produce two checks per access; one to
check that the index is positive and one to verify the indeless
than the length of the array. The length of each array is dtage
a field in the array object. However, as mentioned abgeg, op-
timizes these checks into a single check by sign-extendidiges
and comparing the index to the array length as an unsignee val
Therefore, any negative index becomes a very large positilex
that is guaranteed to be larger than the length of the arraig i$
due to the restriction that the number of array elements iava J
array is limited to the maximum signed intege?!{( — 1).

We modifiedgcj to target ICRs. First, we had to disable bounds
checking in the compiler, which was easily donegag provides
a compile-time flag for this purpose. Second, because thaspre
location of ICRs is not known at compile time, we cannot synpl
sign-extend the index expression, as this might result incoess
to a mapped portion of a different ICR when added to the array
base address (see Figure 2). While this is not a problemriilate
gcj because an explicit comparison is made to the upper bound,
our implementation does no comparisons. As a result, we must
map a negative index expression to a page that is guararatded t
unmapped. Therefore, instead of sign-extending the ingpres-
sion, we zero-extend it. This ensures that any negativeesgn
becomes an unsigned expression precisely in the rangeef and
pressionsZ®!, 232 — 1). Such an indexing expression will result in
an access to an unmapped page within the i@Rhat array.

In Java, all arrays are allocated dynamically with the keygvo
new, which calls a runtime library routine appropriate for tire a
ray type (object or primitive). These particular routines lsew-

Obj ect Array andNewPr i mAr r ay, respectively. Each of these
functions eventually callsal | oc to actually allocate the array.
When using ICRs, we modified both of these routines, repacin
mal | oc with a call tommap with (1) the target address of the
next available ICR and the (2) théAP_FI XED flag (as described
in the previous section). These methods extend naturally-to
dimensional arrays, as the firat— 1 dimensions are arrays of
objects. The keywordew invokesNewMul t i Ar r ay, which in-
vokes itself recursively, callinfewObj ect Ar r ay until all of the
firstn — 1 dimensions are allocated. Finally, the last dimension will
be allocated usinlewPr i mAr r ay if the type is primitive; other-
wise, it is allocated usinjewCbj ect Ar r ay.
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Figure 2: Pictorial description of an illegal array reference and its corresponding sign-extended index expression rgeis zero-

extended index expression with ICRs.

Because all ICR support is implemented in the compiler, run-
time libraries, and operating system, no source code matliic
is necessary to allocate arrays in ICRs. However, allogatimays
in ICRs poses many challenges to the operating system ahd arc
tecture. Section 3.3 discusses the impact of ICRs on the memo
hierarchy along with OS support for ICRs.

3.2.2 GNU Backend Modifications

As described above, our ICR technique allayeg to avoid gen-
erating array bound checks into the intermediate code nially,
this could enable aggressive optimizations, specificaliyruction
scheduling, that could result in a violation of the Java sgins.
The particular situation we face is that without bounds &bgethe
optimizer might reorder array references, which is a péaéptin-
safe optimization. (This is because we catch out-of-bowiaan
OS exception, but the compiler is not aware of this.)

To prevent this problem, we modified the GNU backend so that
it would not reorder array references. This was done in tepsst
First, the syntax tree created fgj is inspected, and whenever an
array reference tree node is found, a bit in its RTL repres@nt is
set. Second, the instruction scheduler scans for this dinaoves
the RTL corresponding to the array reference earlier in #eeg
ated code only if it is not reordered with another array refiee.

3.3 Linux Support for ICRs

While our new Java implementation allocates arrays in |©Bs,
viating the need for bounds checks, the ICR abstractiolf filsces
significant pressure on the memory hierarchy—causing cemhe
flicts and internal fragmentation. Smaller page sizes teskis
problem, though the address space available in Linux (andéhe
the number of ICRs that can be used) decreases with the page si
due to the three-level linear page table in Linux. A more lgubt
problem is that ICRs force a sparse access pattern, whigdesau
the kernel to consume significant amounts of memory to hode pa
tables.

To mitigate these problems, we have designed and impleahente
an abstraction we caktvm|[3] to provide an application process
with an extended, customizable virtual memory. As we arerint
ested in ICR-based programs, we use the extended virtuedssid
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Figure 3: Address space layout and address translation foreg-
ular processes with a three-level page table in Linux, usingKB
pages.

directory, so the first, second, and third levels of the PT are denoted
L1PD, L2PD, and L3PD. The L3PD contains entries that map the
virtual page to a physical frame. In standard 1A-64 Linuxe(§&y-
ure 3, largely borrowed from [13]), a 4KB page size provides a
320GB address space, which is far too small for any of ourleenc
marks, while a 64KB page size provides 20PB of address space,
which is sufficient for all of our benchmarks. We modified ttB4
kernel directory structure to allow the large virtual addrepace al-
lowed by the 64KB kernel, while maintaining for ICRs the cach
and memory benefits of the 4KB page size. Simply stated, we mod
ified the L2PD and L3PD to be held in several consecutive pages
This means that the L2PD and L3PD directories each consime
consecutive pages and neleg. N additional bits for their index.
For example, increasing the L2PD and L3PD to 512 pages each re
sults in an available virtual address space of over 32PBglwisi
adequate space for hundreds of thousands of ICRs. Figumwssh
the new scheme.

The second part is customizing the virtual addressing sehem
As mentioned above, the sparse access patterns imposediy IC
violate the principle of locality. For example, a 4KB pageesdi-

space to allocate as many ICRs as are needed and a customizerkectory contains 512 entries, so in an extended virtualestdspace
virtual addressing scheme to reduce memory consumed by pageas described above, each L3PD contains 256K enthiEs jages

tables.

The first part of implementing axvmis to increase the address
space size. Linux uses a three-level page table (PT) foslaan
tion. Borrowing Linux terminology, we refer to a page tabtea

x 512 entries per page), assumed to represemtiguousvirtual
memory. Hence, one L3PD represents 1GB (256KBIKB) of
virtual memory. Unfortunately, arrays placed in ICRs aréeast
4GB from one another. This means that when using the scheme
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Figure 4: Address space layout for processes using ouwm abstraction. The L2PD and L3PD are each 512 pages instead ofphge.

shown in Figure 4, two different array references requilecation
of two L3PDs—even though typically onlyneentry in each L3PD
will be used. As a result, memory consumption due to diréesor
is increased considerably. This is a well-known problenhweit-
tremely sparse address spaces, which are generally betteds
using a hashed or clustered page table [16].

However, ICRs exhibit regular sparse patterns; this is@afhg
true for multidimensional arrays, where a given dimensiasivec-
tors with identical sizes and types. We take advantage eflthi
swapping bits between the L3PD and the L2PD indices, so that
the L3PD can hold many ICRs (rather than one). Each page of
the L3PD contains entries for consecutive pages, so ICR&tva
consecutive pages mapped use consecutive entries in thz (LRP
to a limit). Our implementation significantly reduces théeimal
fragmentation of the directories, leading to a reductiomamory
usage by processes using ICRs. Without our customized ssidre
ing scheme, the kernel runs out of memory due to the large sBumb
of directory allocations in Multigrid and Fourier Transfor With
our scheme, both programs run successfully.

To avoid increasing the minimum size and memory usage of pro-
cesses that dnot use ICRs, axvmis used exclusively via a new
system callenabl e xvm (invoked via the Java runtime library),
which converts a standard Linux 3-level page table into attimu
page, multilevel extended version (as shown in Figure 4)s @k
lows only those processes that make use of ICRs to incur the-me
ory overhead due to the larger directories when ugimg Further
details on ouxvmdesign and implementation can be found in [3].

4. EXPERIMENTAL RESULTS

We examined the performance of both our new Java implemen-
tation as well as standagktj on a variety of Java applications.
These applications include the Java version of the NAS R4ral
Benchmark Suite 3.0 [9], some simple hand-written scienkiéir-

nels, and a synthetic array program. While the NAS prograans c
be executed with multiple threads, we run the serial vesshma
cause our experimental platform is a uniprocessor. We esigda
that the technique used in our new Java implementation is com
pletely applicable to multithreaded Java programs.

Each NAS program uses Class W input size. The NAS Java pro-
grams includeCG, a conjugate gradient prograr&T, a fourier
transform; IS, an integer sorting progranm;U, a regular-sparse,
block triangular system solutioyiG (and MG3D), a multigrid
solver; and two computational fluid dynamics simulatidsi§,and
SP. Other than MG3D, the Java versions of the NAS suite use lin-
earized arrays rather than multidimensional ones; thisheildis-
cussed later. Our hand-written kernels use multidimersdiamays
and includeMM , matrix multiplication; JAC, a Jacobi iteration
program; andrOM, the TomcatV mesh generation program from
SPEC92, which we converted to Java. The input sizes for these
three programs weigd6 x 896, 896 x 896, and768 x 768, respec-
tively, and were chosen by finding the size that resulted écetion
time with no bounds checking taking 30 seconds. In additige,
include 3 versions of a synthetic benchmai,D, S2D, andS3D,
with array sizesl M, 1000 x 1000, and 100 x 100 x 100, re-
spectively. The total number of elements in each of thesgyaiis
the same. This benchmark simply repeatedly updates eatieete
of an array and is used to study how ICRs and bounds checking
scale with dimensionality. We used maximum optimizatidDg}
to compile our programs with both Java implementations.difi-a
tion, we compiled all benchmarks directly to executablegpams
rather than Java bytecodes.

We performed our experiments on a 900MHz Itanium-2 with
1.5GB memory, a 16KB L1 instruction cache, 16KB L1 data cache
256KB L2 cache, and 1.5MB L3 cache. The operating system is
Debian Linux version 2.4.19. We use wallclock times for meas
ment; all experiments were run when the machine was unused.



The rest of this section is organized as follows. First, wespnt
the overall execution times of several programs. Then, wihéun
examine some of the results through inspection of hardemed-
counters.

4.1 Overall Execution Times

Figure 5 shows the execution time of each version of the NAS
Java benchmarks. The baseline version, labde&hecksis com-
piled withgcj using a compile-time flag to disable bounds checks.
All other versions of each program are normalized to thisieal
Full Checksis the default program produced kg j ; all bounds
are checked via compare instructions in the code. Each aatoes
ann-dimensional array incurs a single upper bound check fdn eac
dimension. FinallyJava ICRsis our new method that competes
with full compiler bounds checking. Note thBio Checkss not
legal according to the Java language specification—we syt
as a baseline to determine overheads.

Java ICRsis superior toFull Checkson all NAS Java bench-
marks. The average normalized overhear&wif Checksis 39%,
while the average overhead fdava ICRsis only 5%. The over-
head ofFull Checksprimarily comes from extra instructions exe-
cuted (compares) and extra cache reads (some of which aseshis
to load the bounds.

As previously mentioned, the NAS benchmarks use linearized
arrays. Each multidimensional array (in the original Famtver-
sion) is transformed into a 1-dimensional array (in the Java
sion). This was done intentionally by the NAS developmeatrte
to reduce the cost of bounds checking [9]. Also, becauseadfort
references arrays in column-major order, linearizingyeria/oids
the need to interchange loops or transpose array dimerfsiogisi-
cient execution in a row-major environment such as Javah Boll
ChecksandJava ICRdenefit from this conversion—the former be-
cause of fewer bounds checks (only one total check is neeated)
the latter because of lower memory hierarchy overhead (oné/
total ICR per array is needed).

However, linearized arrays do not allow legitimate bourtoksok-
ing. An access beyond the bound of the first dimension mayaot b
detected, as it may fall in the allocated area of the arrayal&eur-
rently working to de-linearize the NAS Java Suite to fullgtthCRs
on them and currently have results from Multigrid, which wee d
note MG3D. This program was produced by modifyingj ava
to (1) generate Java code using multidimensional afrapsl (2)
transpose arrays to row-major order. Then, we modified byl han
the main arrays to be four-dimensional as in the NAS C versfon
MG, because the Fortran version of MG usesnmorblocks and

forming benchmark iflava ICRsand it is still 24% better thaRull
Checks This is strong evidence that the de-linearized NAS suite
will perform much better withlava ICRsthan with Full Checks
Combined with the fact that our previous study showed thaiGh
versions of these programs [3] perform well with ICRs reiatio
explicit bounds checks, we believe that the NAS multidiniemasl
Java programs will also perform well.

It is important to note that the NAS multidimensional suie i
almost a worst case for our ICR technique, because the NAS pro
grams use tiling to improve locality. This decreases the sifz
each dimension, causing decreased memory system perfoeman
(see below).

One of the reasons for the significant overhead Wit Checks
is that all checks (for all dimensions) occur in the innertiosp
of a loop nest. Theoretically, it is possible in some casdsoist
invariant checks out of the innermost loop. Hence, we ingattd
the cause of this lack of code motion, keeping in mind thaecod-
tion can be difficult to implement due to aliasing. Becagsg is
simply a front end to thgcc backend, we concluded that the back-
end ofgcc usually cannot hoist any checks in our benchmarks—a
reminder that while algorithms for code motion are matur@rac-
tice it can be hard to legally move code without risking madifion
of program semantics.

4.2 Low-Level Performance Details

The performance afava ICRss better than that dfull Checks
in all of our benchmarks. However, a better understandintpef
overheads caused Byull Checksand those caused klava ICRs
will help explain why in generalava ICRperforms so much better
thanFull Checks

We chose four of our test programs to examine in detail: TOM,
S2D, S3D, and MG3D. For TOM and S2Dava ICRshas almost
no overhead, whil&ull Checkshas over a factor of two. For S3D
and MG3D,Java ICRas close to a 50% overhead for each, while
Full Checkshas about 120% and 60%, respectively. We examined
the following counters for each program: total instructicexe-
cuted, TLB misses, and all levels of cache (see Figure 7)s Thi
clearly shows that the reason for the poor performance on T@®M
Full Checkss because of two reasons. First, there is an increase by
about a factor of 2 in instructions due to bounds checks. Tde |
nium is aVLI Wmachine, creating bundles of instructions to make
use of instruction-level parallelism (ILP). In many cagée, origi-
nal code exhibited poor ILP, allowing bounds checking todiddd
into the empty slots in the bundles. However, this was noagsv
the case, s&ull Checksstill pays a heavy penalty for TOM. Sec-

f 2j ava does not properly translate those. Because the translationond, theFull Checksversions have significantly more L1 accesses

is a time-consuming task—as a straight translation ubRjgava
does not produce completely correct code—we also testentaev
representative multidimensional programs written by havii\,
JAC, TOM, as well as the three synthetic programs.

Figure 6 shows the execution times of our synthetic bencksnar
our hand-written scientific kernels, and MG3D. Notice tiatthe
different synthetic versions that the costkaill Checksincreases
much faster thadava ICRsas dimensionality increases. This is
due to the additional checking overhead caused by the iserea
in the number of dimensions. The increase in overheadavh
ICRsis due to stress in the memory hierarchy due to fragmenta-

and misses. This is due to fetching the array length infaondor
comparison.

While the time forJava ICRsis a vast improvement ovétull
Checks ICRs do incur some overhead. Also shown in Figure 7 is
the large increase in TLB misses for S3D and MG3D. In general,
the degradation of the TLB performance when using ICRs is de-
pendent on array size and array access patterns. In partisoiall
array sizes increase fragmentation because each ICR musbist
a new page. Typically, as the number of dimensions of an anray
creases, the size of each dimension tends to decrease.&dfoplex
Class W MG3D uses an array size6df x 64 x 64, whereas TOM

tion, which causes an increase in the number of cache and TLB uses an array size 868 x 768. The TLB will miss much more fre-

misses. The penalty fdfull Checkson the three kernels averages
46%, whileJava ICRsaverages only 6%. MG3D is the worst per-

*The originalf 2j ava linearizes arrays.

quently compared t&ull Checks(which packs consecutive rows)
when array sizes are small. The cache misses do not incrigase s
nificantly (other than for MG3D), mostly due to the use of a 4KB
page—separate tests (not shown) revealed that using a 18KB o
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Figure 5: Execution times for each program version on each othe NAS benchmarks (using linearized arrays). All times arenor-
malized to the No Checks version, as it is the baseline; this means that smaller barsra better. Using Java | CRs is better than Full
Checksin all programs. Note that the benchmarks are explained at tle beginning of Section 4.
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Figure 6: Execution times for each program version on each othe hand-written benchmarks as well as MG3D. All times are
normalized to the No Checks version, as it is the baseline; this means that smaller barsra better. UsingJava | CRsis better than Full
Checksin all programs. Note that the benchmarks are explained at tle beginning of Section 4.
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Figure 7: Low-level performance counter results for Full Checks and Java ICRs for TOM, S2D, S3D, and MG3D. All times are
normalized to the No Checks version.

64KB page size caused a large increase in L3 cache misses when Program
using ICRs. The severe fragmentation from MG3D also causes p
formance degradation in all levels of the cache hierarchoth®f

these aspects are shown in Figure 7.

To further demonstrate the effect of the size of the last disien
on TLB performance, consider S2D and S3D. For S3D, which uses
an array of sizel(00 x 100 x 100), Java ICRdas a 42% overhead
compared tdNo ChecksNotice that the number of TLB misses for
S3DJava ICRgFigure 7) is 16 times more thado ChecksindFull
Checks This is due to the small size (100) of the last dimension,
which causes fragmentation. Because the size of each dionens
tends to increase as the number of dimensions decreasebpae c
an array size 01000 x 1000 for S2D. With that size, S2D has an
Java ICRsoverhead of 6%. This large improvement over S3D is
due to fewer TLB misses, as there is less internal fragmientat

In general, we see a tradeoff betwdana ICRsandFull Checks
the overhead of the former is in memory hierarchy overheddew
the overhead of the latter is in the increase in the numbersbfuc-
tions. Even with this substantial pressure on the memomatghy,
Java ICRssignificantly reduces the average penalty for performing

bounds checks in Java.

Finally, we investigate the effect of our GNU backend modific
tions. Recall that to avoid potentially unsafe Java codmfbeing
generated from our modifiegicj , we had to limit the aggressive-
ness of the instruction scheduler. Specifically, we disasid re-

ordering of array references.

Table 2 shows results of different instruction schedulictgesnes
for the NAS benchmarks. The first column shows performance
with a naive, yet correct, scheme to prevent reordering ryar

No Scheduling| Full Scheduling| Modified Scheduling
BT 90.5 55.0 66.9
CG 7.05 6.64 6.65
FT 5.63 4.05 4.06
IS 7.17 6.90 6.90
LU 280 172 175
MG 8.44 7.29 7.29
SP 263 177 184

Table 2: Effect of different instruction scheduling schems
(times in seconds).

references. Those results are produced by completelylutigabe
instruction scheduler. As can be seen, this degrades peafare
significantly.

The second column shows full instruction scheduling, whésh
sults in good performance but may result in an incorrect gava
gram. The third column gives performance of our Java impleme
tation. As can be seen from the Table, the degradation iroperf
mance is negligible (less than 4%) for most of the prograniss T
indicates that memory references were rarely, if at allrdeced
by the instruction scheduler. However, our implementagiosures
that such reordering does not occur.

Only one program, BT, benefits significantly from array refer
ence reordering (which is illegal in Java). Specificallyrfpe
mance using our modified scheduler is about 20% worse than if
full scheduling is used. This is likely due to the presenctaaje
basic blocks containing primarily array references (etee,func-
tionsadd andx_sol ve), which increases the probability that an



unmodified instruction scheduler can (illegally) reordsuaset of
these references.
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5. DISCUSSION

This section discusses two main issues arising with thikwor
First, we compare our new Java implementation, which usBsI1C 7.
within thegcj compiler, to Ninja [1], the state of the art in bounds [1
checking for Java. Ninja works by findirgafe regions This not
only improves performance by eliminating array bound cleblat
also allows more aggressive optimizations because an taoep
will not occur within a safe region. Our modifiggtj , on the other
hand, does not explicitly perform other optimizationsyimeg in-
stead orgcj to perform those.

Several points are of note here. One is that our ICR-baséd tec
nique is in fact orthogonal to the techniques used by Ninja. |
particular an unsafe region permits no aggressive optimizan-
cluding array bound checks. In this case, gaj will eliminate
bounds checks. So, our ICRs could in principle be integratex
Ninja, providing a significant performance improvement foe
large number of programs that defy static analysis. In faat,
manual inspection showed there were several such progrets i
NAS suite (see Section 2). This is also confirmed by the report
results of the Ninja compiler itself, which was unable to eov
a significant loop computation in TOM, resulting in poor peff
mance[l]. Furthermore, more complex programs are unlitely
receive complete coverage from safe regions.

Second, our current implementation places all Java ama@@Rs.
In fact, only multi-dimensional arrays that are indexed iroa-
wise manner are suitable for our technique (to avoid exeeddiB
misses). We could extend our Java implementation to handlgsa
accessed in a column-wise manner by either (1) transpdsénart
ray or (2) avoiding placing it in an ICR and performing traafital
bounds checks. However, in the benchmarks used in this wark,
current technique was sufficient.

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]
6. CONCLUSION

This paper has introduced a new technique to check arraydsoun [10]
in Java programsnplicitly, rather than the more traditional explicit
way. We use compiler and operating system support to remove
all bounds checks in Java programs. This means that instead of
bounds checks for an-dimensional array reference, zero checks
are inserted. The basic idea is to place each array objedhites
confinement regioCR), which is an isolated virtual memory re-
gion. The rest of a ICR is unmapped, and any access to thavport
will cause a hardware protection fault. Combined with theyar
size restriction in Java, we are able to conform to Java seosan
without adding any bounds checks.

In order to obtain this improvement, it was necessary to @) c
ate a new Java implementation to perform special arrayatiloes
as well as (2) use a small (4KB) page size with a large virtdal a
dress space. Combined, this reduces overhead in the caaredl as
as fragmentation in main memory due to program data as well as
page table data. We created a large virtual address spa@ via
abstraction we callesvm which provides an extended, customiz-
able virtual memory, with little, if any, effect on other pesses. In
particular, ICRs average a small 9% overhead, while full giben
bounds checking averages nearly 63%. Overall, we belieae th
reducing the penalty for array bounds checking in Java wélken
Java a more attractive language for parallel and HPC apialita

[11]

[12]

[13]

[14]

[15]

[16]

comments.
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