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ABSTRACT
Interest in using Java for high-performance parallel computing has
increased in recent years. One obstacle that has inhibited Java from
widespread acceptance in the scientific community is the language
requirement that all array accesses must be checked to ensure they
are within bounds. In practice, array bounds checking in scien-
tific applications may increase execution time by more than afac-
tor of 2. Previous research has explored optimizations to statically
eliminate bounds checks, but the dynamic nature of many scientific
codes makes this difficult or impossible.

Our approach is instead to create a new Java implementation
that does not generate explicit bounds checks. It instead places ar-
rays inside ofIndex Confinement Regions(ICRs), which are large,
isolated, mostly unmapped virtual memory regions. Any array
reference outside of its bounds will cause a protection violation;
this providesimplicit bounds checking. Our results show that our
new Java implementation reduces the overhead of bounds checking
from an average of 63% to an average of 9% on our benchmarks.
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Measurement, Performance

Keywords
Array-Bounds Checking, Java, Virtual Memory

1. INTRODUCTION
Interest is growing in the scientific programming communityin

using Java for high performance computing (HPC). Some reasons
for this include attractive features such as portability, expressive-
ness, and safety. In addition, threads are built into the Java lan-�This research was supported in part by a State of GeorgiaYa-
macrawgrant as well as NSF Grant No. 0234285.
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guage. Finally, rapid progress is being made in Java compiler tech-
nology.

However, several obstacles currently prevent Java from becom-
ing widely accepted for HPC. One such obstacle is the Java lan-
guage specification requirement that all array accesses be checked
to ensure they are within bounds. This often causes a run-time per-
formance penalty, because in general, a Java compiler must ensure
all array references are within bounds by adding explicit checks
preceding an array access. If the reference is outside the bounds of
the array, a run-time error is generated. Unfortunately, this simple
solution adds overhead to all run-time array accesses.

While array accesses are infrequent in some applications, scien-
tific programs tend to be array intensive, which means that check-
ing array bounds can significantly increase execution time.For Java
to have any chance to be widely used for HPC applications, array
bounds checking overhead must be alleviated.

The current state of the art for reducing bounds checking over-
head is to use static analysis to eliminate explicit checks by prov-
ing an array reference is within its bounds [4]. However, there
are several problems with this approach. First, the dynamicnature
of many scientific codes makes static elimination difficult or im-
possible. This is borne out by our manual inspection of the NAS
benchmark suite [2]. Second, even when static analysis is possible,
currently available compilers may have difficulty removingexplicit
checks.

Rather than attempting to eliminate explicit bounds checksstat-
ically, our goal is to use compiler and operating system support to
implicitly check array bounds in Java programs. We leveragethe
64-bit address space of modern architectures to reduce the cost of
array bounds checks. This is a potentially useful techniquefor sci-
entific applications, which increasingly are difficult to analyze stat-
ically. If static analysis cannot eliminate bounds checks,then the
compiler must insertn bounds checks for ann-dimensional array
reference. Instead, we perform no static analysis of the program,
and we insert zero checks for array bounds. We place each array
object in anindex confinement region(ICR). An ICR is an isolated
virtual memory region, of which only a small portion, correspond-
ing to valid array data, is mapped and permissible to access.The
rest of the ICR is unmapped, and any access to that portion will
cause a hardware protection fault. This achieves implicit bounds
checking for all array references. While ICRs can be implemented
on most modern architecture/operating systems, they are primarily
intended for 64-bit machines. This allows allocation of hundreds of
thousands of 32GB ICRs, each of which is large enough to implic-
itly catch any illegal access to an array of double-precision num-
bers.

We made two primary modifications togcj, the GNU Java im-



Program Dynamic Percentage of Removable Checks
FT 0%
MG 90%
BT 100%
CG 7%

Table 1: Percentage of bounds checks, for four NAS programs,
that we believe could be eliminated statically. In practice, we
are not aware of a Java compiler that can successfully eliminate
all of the removable checks indicated above.

plementation. First, we modified array allocation (new) so that
array objects are allocated inside of ICRs. Second, we modified
the waygcj generates array indexing code so that illegal accesses
will fall into an unmapped memory area.

Because our new Java implementation utilizes ICRs, dense ac-
cess patterns are replaced with sparse ones. This has negative con-
sequences in the TLB, cache, and memory. Accordingly, we mod-
ified the Linux kernel to customize virtual addressing to optimize
for a sparse access pattern. Furthermore, a process can choose to
use our customized scheme, so that regular processes are unaffected
by our kernel modifications.

Our results on a 900 MHz Itanium-2 show that performance of
our new Java implementation that uses ICRs is superior togcj-
generated code that uses explicit bounds checks. Specifically, our
approach reduces the bounds checking overhead for scientific Java
benchmarks from an average of 63% to an average of only 9%. In
addition,all of the benchmarks performed better using ICRs rather
than full compiler bounds checking.

The remainder of this paper is organized as follows. The next
section describes related work. Section 3 provides implementation
details, and Section 4 presents performance results. Section 5 dis-
cusses issues arising in this work. Finally, Section 6 concludes.

2. RELATED WORK
A significant body of work exists on static analysis to eliminate

array bounds checks. Kolte and Wolfe [12] perform partial redun-
dancy analysis to hoist array bound checks outside of loops.Their
algorithm was based on that described by Gupta [10], who formu-
lated the problem as a dataflow analysis. In ABCD [4], Bodik et
al. implemented a demand-driven approach to bounds checking in
Java. Artigas et al. [1] addresses the problem by introducing a
new array class with the concept of asafe region. Xi and Pfenning
[17] introduce the notion of dependent types to remove arraybound
checks in ML; Xi and Xia [18] extend this idea to Java. Rugina and
Rinard [15] provide a new framework using inequality constraints
for dealing with pointers and array indices, which works forboth
statically and dynamically allocated areas.

All the above analyses are performed at compile time. This has
the advantage of avoiding run-time overhead but fails when either
(1) the code is too complicated to prove anything about arrayrefer-
ences, or (2) the code depends on input data. The former includes
cases where, for example, different arrays are passed (as actual pa-
rameters) to functions from several different call sites. The latter
includes applications where indices cannot be determined at com-
pile time. As one example, Table 1 shows the results of our in-
spection of several benchmarks from the NAS suite. In particular,
our inspection of the CG and FT benchmarks show that it is ex-
tremely difficult and impractical to prove that array references are
within bounds. Furthermore, even when most or all checks are
potentially removable, we are not aware of a Java compiler that

will successfully eliminatesall removable checks. In these cases
compile-time schemes must fall back to general run-time check-
ing. Instead, our Java implementation decreases the cost ofbounds
checking and does not depend on static analysis to do so.

A similar approach to ours is to use segmentation for no-cost
bounds checking [6]. The basic idea is to place an array in a seg-
ment and set the segment limit to the size of the array. This tech-
nique is effective for small one-dimensional arrays, because auto-
matic checking is done on both ends of the array. However, typi-
cally one end must be explicitly checked for large arrays. Further-
more, because there are a limited number of segments that canbe
simultaneously active (four on the x86, for example), full bounds
checking must be used for some arrays if there are more live arrays
than this maximum. Most importantly, multidimensional arrays
cannot be supported. This is because the segment limit prevents
only an access past the allocated memory for the entire array; an
illegal access in one of the firstn � 1 dimensions that happens to
fall within the allocated memory for the array will not be caught.
While this provides some degree of security, it can not produce se-
mantically correct Java programs.

Electric Fence [14], which places a single unmapped page on
either side of an allocated memory area, bears some similarity to
ICRs. Electric Fence automatically catches overruns on oneend.
However, it does not handle arbitrary array references, such as ref-
erences past the unmapped page. In contrast, our Java implementa-
tion is able to catch any illegal reference.

Our approach bears some similarities to Millipede [11], a soft-
ware DSM system. Millipede avoids thrashing by placing distinct
variables (that would generally be allocated on the same page) on
different pages at their appropriate offsets; then, both pages are
mapped to the same physical page. Different protections canthen
be used on each variable, because protections are done at thevirtual
page level.

Our extended and customizable virtual memory abstraction (xvm)
[3] is used only by those processes that use ICRs. This means
that regular processes are unaffected. This is somewhat reminis-
cent of microkernels such as Mach [19], which provide flexibility
to application level processes (such as allowing an external pager).
However, our modification is inside the kernel as opposed to at the
application level.

There has been work on how to utilize 64-bit architectures, mostly
from the viewpoint of protection. For example, [5] describes Opal,
which places all processes in a single 64-bit virtual address space.
This allows for a more flexible protection structure.

Finally, array bounds checking is often mentioned as a technique
for preventing buffer overflow. Several have studied the general
overflow problem; this includes using agcc patch along with a
canary to detect it [8]. Another compile-time solution, RAD [7],
involves modifying the compiler to store return addresses in a safe
location. This solution retains binary compatibility because stack
frames are not modified.

3. IMPLEMENTATION
This section describes implementation details on an Itanium-2,

which is a 64-bit machine. First, we discuss our implementation of
index confinement regions (ICRs). Next, we discuss our modifica-
tions to the GNU Java implementation,gcj. Finally, we describe
our modifications to the IA-64 Linux kernel.

3.1 Index Confinement Regions
An Index Confinement Region (ICR) is a large, isolated region

of virtual memory. When an array is placed in an appropriately-
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Figure 1: Two index confinement regions. Each array is isolated from any other program data; bounds checking is done automati-
cally through unmapped pages.

sized ICR, references to this array are confined within the ICR. For
example, consider placing a one-dimensional integer array, indexed
only by 32-bit expressions, within an ICR. If the size of the ICR is
chosen to be at least 16GB and the array is placed at the beginning
of the ICR, it is impossible to generate an array reference that is
outside of the ICR. A reference below the lower end of the ICR is
not possible because of three factors. First, arrays in Javaare lim-
ited to231 entries by the language specification. Second, negative
index expressions are not permitted by the Java language specifica-
tion. Third, our Java compiler (as well as others) takes advantage
of these language restrictions by treating index expressions as un-
signed, so that if a negative 32-bit index expression is generated by
a program, it is converted to a positive index expression larger than231�1. Note that this simple optimization cannot be performed by
a C or C++ compiler, because negative index expressions are legal
in those languages.

An ICR must be large enough so that any 32-bit index expression
will result in an access within an ICR. In general, ICR size isthe
product of 4GB (232) and the size of the array element type; this
can be calculated at allocation time. Although each ICR is several
GB in size, a 64-bit virtual address space permits the allocation of
millions of ICRs.

Figure 1 shows two regions and their associated arrays. In an
ICR, pages in which the actual array resides are mapped with read
and write permission. All other pages in the ICR are unmapped.
This is achieved usingmmap (with MAP FIXED). Because in gen-
eral the array size is not a multiple of the page size, one end of the
array that is within a mapped page is not implicitly protected. We
align arrays so that the upper limit of the array is at a page bound-
ary, leaving the bottom end of the array unaligned1. This allows au-
tomatic bounds checking, because an access to an unmapped page
results in a protection violation. Leaving the front end of the ar-
ray unprotected (not page aligned) does not matter because of the
treatment of negative indices described above.

The ICR abstraction extends naturally ton dimensions, because
Java has no true multidimensional arrays. Instead, Java represents
ann-dimensional array as vectors of vectors. As described above,
Java compilers already can avoid a lower-bound check for each
vector. Hence, because each vector is placed in an ICR, the high-
bound check is also unnecessary andno checks are required for ann-dimensional array reference.

Because Java requires arrays to be allocated via the keyword
new, the runtime system must be modified to place arrays in ICRs.
Additionally, the Java compiler must be modified so that implicit
bounds checking can be performed. The next section describes how
we modified thegcj compiler and runtime libraries to facilitate the
ICR-based allocation of Java arrays.

1Because we use right-aligned placement of arrays, ICRs require
one extra page at the right end to ensure proper protection.

3.2 GNU Java Implementation
We created a new Java implementation, based ongcj, that makes

use of ICRs. We made two primary modifications. First, we changed
the way arrays are indexed and allocated, which involves both com-
piler and run-time library changes. Second, we changed the GNU
backend so that it would conform to the Java language specifica-
tion.

3.2.1 Array Indexing and Allocation
Java requires that array index expressions produce a positive off-

set that is within the allocated space of the array. This means that
conceptually,gcj must produce two checks per access; one to
check that the index is positive and one to verify the index isless
than the length of the array. The length of each array is stored as
a field in the array object. However, as mentioned above,gcj op-
timizes these checks into a single check by sign-extending indices
and comparing the index to the array length as an unsigned value.
Therefore, any negative index becomes a very large positiveindex
that is guaranteed to be larger than the length of the array. This is
due to the restriction that the number of array elements in a Java
array is limited to the maximum signed integer (231 � 1).

We modifiedgcj to target ICRs. First, we had to disable bounds
checking in the compiler, which was easily done asgcj provides
a compile-time flag for this purpose. Second, because the precise
location of ICRs is not known at compile time, we cannot simply
sign-extend the index expression, as this might result in anaccess
to a mapped portion of a different ICR when added to the array
base address (see Figure 2). While this is not a problem in standard
gcj because an explicit comparison is made to the upper bound,
our implementation does no comparisons. As a result, we must
map a negative index expression to a page that is guaranteed to be
unmapped. Therefore, instead of sign-extending the index expres-
sion, we zero-extend it. This ensures that any negative expression
becomes an unsigned expression precisely in the range of index ex-
pressions (231, 232�1). Such an indexing expression will result in
an access to an unmapped page within the ICRfor that array.

In Java, all arrays are allocated dynamically with the keyword
new, which calls a runtime library routine appropriate for the ar-
ray type (object or primitive). These particular routines are New-
ObjectArray andNewPrimArray, respectively. Each of these
functions eventually callsmalloc to actually allocate the array.
When using ICRs, we modified both of these routines, replacing
malloc with a call tommap with (1) the target address of the
next available ICR and the (2) theMAP FIXED flag (as described
in the previous section). These methods extend naturally ton-
dimensional arrays, as the firstn � 1 dimensions are arrays of
objects. The keywordnew invokesNewMultiArray, which in-
vokes itself recursively, callingNewObjectArray until all of the
firstn�1 dimensions are allocated. Finally, the last dimension will
be allocated usingNewPrimArray if the type is primitive; other-
wise, it is allocated usingNewObjectArray.
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Figure 2: Pictorial description of an illegal array reference and its corresponding sign-extended index expression versus zero-
extended index expression with ICRs.

Because all ICR support is implemented in the compiler, run-
time libraries, and operating system, no source code modification
is necessary to allocate arrays in ICRs. However, allocating arrays
in ICRs poses many challenges to the operating system and archi-
tecture. Section 3.3 discusses the impact of ICRs on the memory
hierarchy along with OS support for ICRs.

3.2.2 GNU Backend Modifications
As described above, our ICR technique allowsgcj to avoid gen-

erating array bound checks into the intermediate code. Potentially,
this could enable aggressive optimizations, specifically instruction
scheduling, that could result in a violation of the Java semantics.
The particular situation we face is that without bounds checks, the
optimizer might reorder array references, which is a potentially un-
safe optimization. (This is because we catch out-of-boundsvia an
OS exception, but the compiler is not aware of this.)

To prevent this problem, we modified the GNU backend so that
it would not reorder array references. This was done in two steps.
First, the syntax tree created bygcj is inspected, and whenever an
array reference tree node is found, a bit in its RTL representation is
set. Second, the instruction scheduler scans for this bit and moves
the RTL corresponding to the array reference earlier in the gener-
ated code only if it is not reordered with another array reference.

3.3 Linux Support for ICRs
While our new Java implementation allocates arrays in ICRs,ob-

viating the need for bounds checks, the ICR abstraction itself places
significant pressure on the memory hierarchy—causing cachecon-
flicts and internal fragmentation. Smaller page sizes lessen this
problem, though the address space available in Linux (and hence
the number of ICRs that can be used) decreases with the page size
due to the three-level linear page table in Linux. A more subtle
problem is that ICRs force a sparse access pattern, which causes
the kernel to consume significant amounts of memory to hold page
tables.

To mitigate these problems, we have designed and implemented
an abstraction we callxvm [3] to provide an application process
with an extended, customizable virtual memory. As we are inter-
ested in ICR-based programs, we use the extended virtual address
space to allocate as many ICRs as are needed and a customized
virtual addressing scheme to reduce memory consumed by page
tables.

The first part of implementing anxvmis to increase the address
space size. Linux uses a three-level page table (PT) for transla-
tion. Borrowing Linux terminology, we refer to a page table as a

physical memory

L1 high unused L1 low L2 index L3 index offset

L1 index

3 10 13 13 16

13

9
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 offset
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L2

L3
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Figure 3: Address space layout and address translation for reg-
ular processes with a three-level page table in Linux, using4KB
pages.

directory, so the first, second, and third levels of the PT are denoted
L1PD, L2PD, and L3PD. The L3PD contains entries that map the
virtual page to a physical frame. In standard IA-64 Linux (see Fig-
ure 3, largely borrowed from [13]), a 4KB page size provides an
320GB address space, which is far too small for any of our bench-
marks, while a 64KB page size provides 20PB of address space,
which is sufficient for all of our benchmarks. We modified the 4KB
kernel directory structure to allow the large virtual address space al-
lowed by the 64KB kernel, while maintaining for ICRs the cache
and memory benefits of the 4KB page size. Simply stated, we mod-
ified the L2PD and L3PD to be held in several consecutive pages.
This means that the L2PD and L3PD directories each consumeN
consecutive pages and needlog2N additional bits for their index.
For example, increasing the L2PD and L3PD to 512 pages each re-
sults in an available virtual address space of over 32PB, which is
adequate space for hundreds of thousands of ICRs. Figure 4 shows
the new scheme.

The second part is customizing the virtual addressing scheme.
As mentioned above, the sparse access patterns imposed by ICRs
violate the principle of locality. For example, a 4KB page size di-
rectory contains 512 entries, so in an extended virtual address space
as described above, each L3PD contains 256K entries (512 pages� 512 entries per page), assumed to representcontiguousvirtual
memory. Hence, one L3PD represents 1GB (256KB� 4KB) of
virtual memory. Unfortunately, arrays placed in ICRs are atleast
4GB from one another. This means that when using the scheme
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Figure 4: Address space layout for processes using ourxvm abstraction. The L2PD and L3PD are each 512 pages instead of 1page.

shown in Figure 4, two different array references require allocation
of twoL3PDs—even though typically onlyoneentry in each L3PD
will be used. As a result, memory consumption due to directories
is increased considerably. This is a well-known problem with ex-
tremely sparse address spaces, which are generally better served
using a hashed or clustered page table [16].

However, ICRs exhibit regular sparse patterns; this is especially
true for multidimensional arrays, where a given dimension has vec-
tors with identical sizes and types. We take advantage of this by
swapping bits between the L3PD and the L2PD indices, so that
the L3PD can hold many ICRs (rather than one). Each page of
the L3PD contains entries for consecutive pages, so ICRs that have
consecutive pages mapped use consecutive entries in the L3PD (up
to a limit). Our implementation significantly reduces the internal
fragmentation of the directories, leading to a reduction inmemory
usage by processes using ICRs. Without our customized address-
ing scheme, the kernel runs out of memory due to the large number
of directory allocations in Multigrid and Fourier Transform. With
our scheme, both programs run successfully.

To avoid increasing the minimum size and memory usage of pro-
cesses that donot use ICRs, anxvm is used exclusively via a new
system callenable xvm (invoked via the Java runtime library),
which converts a standard Linux 3-level page table into an multi-
page, multilevel extended version (as shown in Figure 4). This al-
lows only those processes that make use of ICRs to incur the mem-
ory overhead due to the larger directories when usingxvm. Further
details on ourxvmdesign and implementation can be found in [3].

4. EXPERIMENTAL RESULTS
We examined the performance of both our new Java implemen-

tation as well as standardgcj on a variety of Java applications.
These applications include the Java version of the NAS Parallel
Benchmark Suite 3.0 [9], some simple hand-written scientific ker-

nels, and a synthetic array program. While the NAS programs can
be executed with multiple threads, we run the serial versions be-
cause our experimental platform is a uniprocessor. We emphasize
that the technique used in our new Java implementation is com-
pletely applicable to multithreaded Java programs.

Each NAS program uses Class W input size. The NAS Java pro-
grams includeCG, a conjugate gradient program;FT, a fourier
transform; IS, an integer sorting program;LU , a regular-sparse,
block triangular system solution;MG (and MG3D), a multigrid
solver; and two computational fluid dynamics simulations,BT and
SP. Other than MG3D, the Java versions of the NAS suite use lin-
earized arrays rather than multidimensional ones; this will be dis-
cussed later. Our hand-written kernels use multidimensional arrays
and includeMM , matrix multiplication;JAC, a Jacobi iteration
program; andTOM , the TomcatV mesh generation program from
SPEC92, which we converted to Java. The input sizes for these
three programs were896�896, 896�896, and768�768, respec-
tively, and were chosen by finding the size that resulted in execution
time with no bounds checking taking 30 seconds. In addition,we
include 3 versions of a synthetic benchmark,S1D, S2D, andS3D,
with array sizes1M , 1000 � 1000, and100 � 100 � 100, re-
spectively. The total number of elements in each of these arrays is
the same. This benchmark simply repeatedly updates each element
of an array and is used to study how ICRs and bounds checking
scale with dimensionality. We used maximum optimization (-O6)
to compile our programs with both Java implementations. In addi-
tion, we compiled all benchmarks directly to executable programs
rather than Java bytecodes.

We performed our experiments on a 900MHz Itanium-2 with
1.5GB memory, a 16KB L1 instruction cache, 16KB L1 data cache,
256KB L2 cache, and 1.5MB L3 cache. The operating system is
Debian Linux version 2.4.19. We use wallclock times for measure-
ment; all experiments were run when the machine was unused.



The rest of this section is organized as follows. First, we present
the overall execution times of several programs. Then, we further
examine some of the results through inspection of hardware-level
counters.

4.1 Overall Execution Times
Figure 5 shows the execution time of each version of the NAS

Java benchmarks. The baseline version, labeledNo Checks, is com-
piled withgcj using a compile-time flag to disable bounds checks.
All other versions of each program are normalized to this value.
Full Checksis the default program produced bygcj; all bounds
are checked via compare instructions in the code. Each access to
ann-dimensional array incurs a single upper bound check for each
dimension. Finally,Java ICRsis our new method that competes
with full compiler bounds checking. Note thatNo Checksis not
legal according to the Java language specification—we use itonly
as a baseline to determine overheads.

Java ICRsis superior toFull Checkson all NAS Java bench-
marks. The average normalized overheard ofFull Checksis 39%,
while the average overhead forJava ICRsis only 5%. The over-
head ofFull Checksprimarily comes from extra instructions exe-
cuted (compares) and extra cache reads (some of which are misses)
to load the bounds.

As previously mentioned, the NAS benchmarks use linearized
arrays. Each multidimensional array (in the original Fortran ver-
sion) is transformed into a 1-dimensional array (in the Javaver-
sion). This was done intentionally by the NAS development team
to reduce the cost of bounds checking [9]. Also, because Fortran
references arrays in column-major order, linearizing arrays avoids
the need to interchange loops or transpose array dimensionsfor effi-
cient execution in a row-major environment such as Java. Both Full
ChecksandJava ICRsbenefit from this conversion—the former be-
cause of fewer bounds checks (only one total check is needed)and
the latter because of lower memory hierarchy overhead (onlyone
total ICR per array is needed).

However, linearized arrays do not allow legitimate bounds check-
ing. An access beyond the bound of the first dimension may not be
detected, as it may fall in the allocated area of the array. Weare cur-
rently working to de-linearize the NAS Java Suite to fully test ICRs
on them and currently have results from Multigrid, which we de-
note MG3D. This program was produced by modifyingf2java
to (1) generate Java code using multidimensional arrays2 and (2)
transpose arrays to row-major order. Then, we modified by hand
the main arrays to be four-dimensional as in the NAS C versionof
MG, because the Fortran version of MG usescommonblocks and
f2java does not properly translate those. Because the translation
is a time-consuming task—as a straight translation usingf2java
does not produce completely correct code—we also tested several
representative multidimensional programs written by hand: MM,
JAC, TOM, as well as the three synthetic programs.

Figure 6 shows the execution times of our synthetic benchmarks,
our hand-written scientific kernels, and MG3D. Notice that for the
different synthetic versions that the cost ofFull Checksincreases
much faster thanJava ICRsas dimensionality increases. This is
due to the additional checking overhead caused by the increase
in the number of dimensions. The increase in overhead ofJava
ICRs is due to stress in the memory hierarchy due to fragmenta-
tion, which causes an increase in the number of cache and TLB
misses. The penalty forFull Checkson the three kernels averages
46%, whileJava ICRsaverages only 6%. MG3D is the worst per-2The originalf2java linearizes arrays.

forming benchmark ifJava ICRs, and it is still 24% better thanFull
Checks. This is strong evidence that the de-linearized NAS suite
will perform much better withJava ICRsthan withFull Checks.
Combined with the fact that our previous study showed that the C
versions of these programs [3] perform well with ICRs relative to
explicit bounds checks, we believe that the NAS multidimensional
Java programs will also perform well.

It is important to note that the NAS multidimensional suite is
almost a worst case for our ICR technique, because the NAS pro-
grams use tiling to improve locality. This decreases the size of
each dimension, causing decreased memory system performance
(see below).

One of the reasons for the significant overhead withFull Checks
is that all checks (for all dimensions) occur in the innermost loop
of a loop nest. Theoretically, it is possible in some cases tohoist
invariant checks out of the innermost loop. Hence, we investigated
the cause of this lack of code motion, keeping in mind that code mo-
tion can be difficult to implement due to aliasing. Becausegcj is
simply a front end to thegcc backend, we concluded that the back-
end ofgcc usually cannot hoist any checks in our benchmarks—a
reminder that while algorithms for code motion are mature, in prac-
tice it can be hard to legally move code without risking modification
of program semantics.

4.2 Low-Level Performance Details
The performance ofJava ICRsis better than that ofFull Checks

in all of our benchmarks. However, a better understanding ofthe
overheads caused byFull Checksand those caused byJava ICRs
will help explain why in generalJava ICRsperforms so much better
thanFull Checks.

We chose four of our test programs to examine in detail: TOM,
S2D, S3D, and MG3D. For TOM and S2D,Java ICRshas almost
no overhead, whileFull Checkshas over a factor of two. For S3D
and MG3D,Java ICRshas close to a 50% overhead for each, while
Full Checkshas about 120% and 60%, respectively. We examined
the following counters for each program: total instructions exe-
cuted, TLB misses, and all levels of cache (see Figure 7). This
clearly shows that the reason for the poor performance on TOMfor
Full Checksis because of two reasons. First, there is an increase by
about a factor of 2 in instructions due to bounds checks. The Ita-
nium is aVLIW machine, creating bundles of instructions to make
use of instruction-level parallelism (ILP). In many cases,the origi-
nal code exhibited poor ILP, allowing bounds checking to be folded
into the empty slots in the bundles. However, this was not always
the case, soFull Checksstill pays a heavy penalty for TOM. Sec-
ond, theFull Checksversions have significantly more L1 accesses
and misses. This is due to fetching the array length information for
comparison.

While the time forJava ICRsis a vast improvement overFull
Checks, ICRs do incur some overhead. Also shown in Figure 7 is
the large increase in TLB misses for S3D and MG3D. In general,
the degradation of the TLB performance when using ICRs is de-
pendent on array size and array access patterns. In particular, small
array sizes increase fragmentation because each ICR must start on
a new page. Typically, as the number of dimensions of an arrayin-
creases, the size of each dimension tends to decrease. For example,
Class W MG3D uses an array size of64� 64� 64, whereas TOM
uses an array size of768�768. The TLB will miss much more fre-
quently compared toFull Checks(which packs consecutive rows)
when array sizes are small. The cache misses do not increase sig-
nificantly (other than for MG3D), mostly due to the use of a 4KB
page—separate tests (not shown) revealed that using a 16KB or
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Figure 5: Execution times for each program version on each ofthe NAS benchmarks (using linearized arrays). All times arenor-
malized to theNo Checks version, as it is the baseline; this means that smaller bars are better. Using Java ICRs is better than Full
Checks in all programs. Note that the benchmarks are explained at the beginning of Section 4.
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Figure 6: Execution times for each program version on each ofthe hand-written benchmarks as well as MG3D. All times are
normalized to theNo Checks version, as it is the baseline; this means that smaller bars are better. UsingJava ICRs is better than Full
Checks in all programs. Note that the benchmarks are explained at the beginning of Section 4.
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Figure 7: Low-level performance counter results forFull Checks and Java ICRs for TOM, S2D, S3D, and MG3D. All times are
normalized to the No Checks version.

64KB page size caused a large increase in L3 cache misses when
using ICRs. The severe fragmentation from MG3D also causes per-
formance degradation in all levels of the cache hierarchy. Both of
these aspects are shown in Figure 7.

To further demonstrate the effect of the size of the last dimension
on TLB performance, consider S2D and S3D. For S3D, which uses
an array of size (100� 100� 100), Java ICRshas a 42% overhead
compared toNo Checks. Notice that the number of TLB misses for
S3DJava ICRs(Figure 7) is 16 times more thanNo ChecksandFull
Checks. This is due to the small size (100) of the last dimension,
which causes fragmentation. Because the size of each dimension
tends to increase as the number of dimensions decreases, we chose
an array size of1000 � 1000 for S2D. With that size, S2D has an
Java ICRsoverhead of 6%. This large improvement over S3D is
due to fewer TLB misses, as there is less internal fragmentation.

In general, we see a tradeoff betweenJava ICRsandFull Checks;
the overhead of the former is in memory hierarchy overhead, while
the overhead of the latter is in the increase in the number of instruc-
tions. Even with this substantial pressure on the memory hierarchy,
Java ICRssignificantly reduces the average penalty for performing
bounds checks in Java.

Finally, we investigate the effect of our GNU backend modifica-
tions. Recall that to avoid potentially unsafe Java code from being
generated from our modifiedgcj, we had to limit the aggressive-
ness of the instruction scheduler. Specifically, we disallowed re-
ordering of array references.

Table 2 shows results of different instruction scheduling schemes
for the NAS benchmarks. The first column shows performance
with a naive, yet correct, scheme to prevent reordering of array

Program No Scheduling Full Scheduling Modified Scheduling
BT 90.5 55.0 66.9
CG 7.05 6.64 6.65
FT 5.63 4.05 4.06
IS 7.17 6.90 6.90
LU 280 172 175
MG 8.44 7.29 7.29
SP 263 177 184

Table 2: Effect of different instruction scheduling schemes
(times in seconds).

references. Those results are produced by completely disabling the
instruction scheduler. As can be seen, this degrades performance
significantly.

The second column shows full instruction scheduling, whichre-
sults in good performance but may result in an incorrect Javapro-
gram. The third column gives performance of our Java implemen-
tation. As can be seen from the Table, the degradation in perfor-
mance is negligible (less than 4%) for most of the programs. This
indicates that memory references were rarely, if at all, reordered
by the instruction scheduler. However, our implementationensures
that such reordering does not occur.

Only one program, BT, benefits significantly from array refer-
ence reordering (which is illegal in Java). Specifically, perfor-
mance using our modified scheduler is about 20% worse than if
full scheduling is used. This is likely due to the presence oflarge
basic blocks containing primarily array references (e.g.,the func-
tionsadd andx solve), which increases the probability that an



unmodified instruction scheduler can (illegally) reorder asubset of
these references.

5. DISCUSSION
This section discusses two main issues arising with this work.

First, we compare our new Java implementation, which uses ICRs
within thegcj compiler, to Ninja [1], the state of the art in bounds
checking for Java. Ninja works by findingsafe regions. This not
only improves performance by eliminating array bound checks, but
also allows more aggressive optimizations because an exception
will not occur within a safe region. Our modifiedgcj, on the other
hand, does not explicitly perform other optimizations, relying in-
stead ongcj to perform those.

Several points are of note here. One is that our ICR-based tech-
nique is in fact orthogonal to the techniques used by Ninja. In
particular an unsafe region permits no aggressive optimization, in-
cluding array bound checks. In this case, ourgcj will eliminate
bounds checks. So, our ICRs could in principle be integratedinto
Ninja, providing a significant performance improvement forthe
large number of programs that defy static analysis. In fact,our
manual inspection showed there were several such programs in the
NAS suite (see Section 2). This is also confirmed by the reported
results of the Ninja compiler itself, which was unable to cover
a significant loop computation in TOM, resulting in poor perfor-
mance[1]. Furthermore, more complex programs are unlikelyto
receive complete coverage from safe regions.

Second, our current implementation places all Java arrays in ICRs.
In fact, only multi-dimensional arrays that are indexed in arow-
wise manner are suitable for our technique (to avoid excessive TLB
misses). We could extend our Java implementation to handle arrays
accessed in a column-wise manner by either (1) transposing the ar-
ray or (2) avoiding placing it in an ICR and performing traditional
bounds checks. However, in the benchmarks used in this work,our
current technique was sufficient.

6. CONCLUSION
This paper has introduced a new technique to check array bounds

in Java programsimplicitly, rather than the more traditional explicit
way. We use compiler and operating system support to remove
all bounds checks in Java programs. This means that instead ofn
bounds checks for ann-dimensional array reference, zero checks
are inserted. The basic idea is to place each array object in aindex
confinement region(ICR), which is an isolated virtual memory re-
gion. The rest of a ICR is unmapped, and any access to that portion
will cause a hardware protection fault. Combined with the array
size restriction in Java, we are able to conform to Java semantics
without adding any bounds checks.

In order to obtain this improvement, it was necessary to (1) cre-
ate a new Java implementation to perform special array allocations
as well as (2) use a small (4KB) page size with a large virtual ad-
dress space. Combined, this reduces overhead in the cache aswell
as fragmentation in main memory due to program data as well as
page table data. We created a large virtual address space viaan
abstraction we calledxvm, which provides an extended, customiz-
able virtual memory, with little, if any, effect on other processes. In
particular, ICRs average a small 9% overhead, while full compiler
bounds checking averages nearly 63%. Overall, we believe that
reducing the penalty for array bounds checking in Java will make
Java a more attractive language for parallel and HPC applications.
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