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Abstract

RNA pseudoknot prediction is an algorithm for RNA se-
quence search and alignment. An important building block
towards pseudoknot prediction is RNA secondary structure
prediction. The difficulty of extending the secondary struc-
ture prediction algorithm to a parallel program is (1) it has
complicated data dependences, and (2) it has a large data
set that typically cannot fit completely in main memory.

In this paper, we propose a new out-of-core, distributed-
memory algorithm for RNA secondary structure prediction.
Its novelty lies in its redundant file scheme, I/O-reducing
in-core buffer mechanism, and dynamic load balancing al-
gorithm. Experimental results obtained on 16 Sun Ul-
traSPARC IIIi nodes provide evidence that our approach
achieves good speedup. Furthermore, we found that coun-
terintuitively, the size of the in-memory buffer is critical to
efficiency of the parallel program.

1 Introduction

Due to the increasing number of new biological molec-
ular sequences, it is becoming more attractive to determine
the structure of them computationally. The RNA pseudo-
knot has been treated as a significant structural motif in
a wide range of biological processes of RNAs. Stochas-
tic context-free grammars (SCFGs) have been adapted
from computational linguistics to develop an application
to model RNA pseudoknotted structures with great suc-
cess [3, 7]. An advanced grammar modeling approach,
which is based on parallel communication grammar sys-
tems (PCGS), was introduced to specify pseudoknotted
structures; it avoids context-sensitive rules and using a sin-
gle CFG synchronized with a number of regular grammars
[4]. This approach does not only permit automatic genera-
tion of a single-RNA structure prediction algorithm for each
specified pseudoknotted structure model, but also makes it
possible to develop full probabilistic models of pseudoknot-
ted structures to allow the prediction of consensus structures
by comparative analysis and structure homology recogni-
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Figure 1. Data dependence pattern for RNA
Secondary Structure Prediction Algorithm.
Matrix elements depend on all elements in
the same row and column.

tion in database searches.
An important building block for RNA pseudoknot pre-

diction is RNA secondary structure prediction, which is also
computationally intensive. As the scale of the secondary
structure prediction problem grows, its parallelization be-
comes an important issue. Furthermore, this algorithm has
a potentially huge data set, meaning that the primary data
structure must reside on disk; in other words, the program
is likely to be out of core [2].

This paper focuses on developing a distributed-memory,
out-of-core parallel program for RNA secondary structure
prediction. The difficulties are that the data dependence
makes it difficult to (1) determine an efficient data partition-
ing (distribution), and (2) determine an efficient computa-
tional pattern that limits the amount of I/O. Specifically, the
data dependence pattern (shown in Figure 1) is such that the
value of

��� �����	�
depends on all matrix elements in row

�
to

the left, and all elements in column
�

below. This is a depen-
dence pattern that is atypical of most parallel programs that
we are aware of and causes so-called “strided” data accesses
[8, 15]—and, for this application, tail-end load imbalance
when a row- or column-based distribution is used. Strided



accesses are detrimental in in-core applications because of
poor cache performance, but they are especially detrimen-
tal in out-of-core applications such as secondary structure
prediction [8], because disk accesses are in general several
orders of magnitude more expensive than memory accesses.

To counter these difficulties, our implementation has
many novel attributes. First, we use a unique two-file ap-
proach to trade a small amount of extra computation for bet-
ter locality. Second, we use an in-core buffer scheme that
actually reduces the total amount of I/O. Finally, we use a
dynamic load balancing scheme that improves performance
by up to a factor of two.

Our results show two primary aspects of the parallel, out-
of-core secondary structure prediction program. First, un-
surprisingly, while speedup on small sizes is relatively poor,
the speedup on large sizes is good. On a problem size as
���
�����
���
��

, we got a speedup of ��� � when using 8 nodes.
Second, we were surprised to find that the choice of the

size of the in-core buffer (often called ICLA [2]) has a dra-
matic effect on performance—but not in the way one would
generally expect. Specifically, beyond a point, increas-
ing the ICLA size—which is generally thought to result
in lower I/O overhead but the same computational cost—
instead results in slower execution time. For example, the
execution time for a problem of size


���
	����
���
	�
is

	���

seconds with a
� ��� MB in-core buffer. As the size of in-core

buffer was doubled to � M, the execution time increases to
 ��� seconds. This is because of the interaction of the data
dependence pattern and cache hit rate—and is despite the
other surprising attribute that increasing ICLA size actually
reduces the amount of I/O. Overall, the tradeoff between
choosing a small and large ICLA are reminiscent of choos-
ing a tile size in pipelined parallel programs [11, 9, 12].

The rest of this paper is organized as follows. Section 2
describes the RNA secondary structure prediction algorithm
and design issues in out-of-core parallel parallel programs.
It also covers related work in both areas. Implementation
details are given in Section 3, and the results of our exper-
iments are presented and analyzed in Section 4. Finally,
Section 5 summarizes this paper.

2 Background

While the RNA secondary structure prediction algorithm
can be applied up to a 3-dimensional instance, our present
work is to develop a 2-dimensional out-of-core parallel al-
gorithm. The algorithm will compute all the elements along
the same diagonal in parallel. The basic update formula [4]
has the format:��� ���������� "!$#&% �(' if

�)�*�+-,�.0/21 #32465 %7!&8	% ��� �9�;:$�<�;��� :>= � ���	�?'�'
if
�A@�*�

This section gives background: it first describes secondary
structure prediction in more detail and then discusses out-
of-core, distributed-memory parallel programming.
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In general, secondary structure in biochemistry and

structural biology describes three-dimensional form of lo-
cal regions. RNA secondary structure prediction is an im-
portant building block for RNA pseudoknots, which them-
selves are complicated sequences that are folded by inter-
actions that determine the RNA molecule structure between
pairs of nucleotides in the molecule. A system that is able to
automatically generate a secondary structure prediction al-
gorithm for each specified pseudoknotted structure model is
created by using SCFG models. Similar to the well-known
CYK [1] algorithm, the automated secondary structure pre-
diction algorithm is based on dynamic programming [4]. As
a sequence i � � �j� k � is input, the maximum probability for ev-
ery subsequence i � � �j�l� ��� is computed to permit the substruc-
ture specified by every nonterminal m . For the secondary
structure, the maximum probability, in two dimensions, form to derive a pseudoknotted structure is [4]:nporqts�u(swv�xzy {}|2~�	� �0� �?�R���0��� npo?�fs�u(s(�$x�� npow�Ns(�$����s<v�x�� nporq\�"���Xx(�
This algorithm has a time complexity as � %w��� ' , where �
is the length of sequence, as any matrix element �>� % m ��������'
will be used %w��� � � � 'z=�� times in order to compute the
rest of the probability matrix.BDCwB ��^X]��2QT�7�� ¡QfY�M£¢cW�]$W¤_�WzY0WZb7beMPb¥_¦Y0QfdfY�WZh¨§

For achieving solutions with higher precision, problem
sizes of scientific applications are typically increased. This
may cause the primary data set to exceed main memory dur-
ing computation. The typical solution is to write the code
so that the data structure is stored on disk. A (usually)
small part of each data structure will reside in memory at
any given time. This is called out-of-core programming.

There are three approaches to out-of-core programming.
The first one is to use virtual memory, which automati-
cally ensures correctness for programs whose data size ex-
ceeds the size of available memory. But due to a lack
of application-specific knowledge about the program’s data
dependence and parallelism, the operating system will usu-
ally page data suboptimally, causing poor performance [13].
There has been work done on making the virtual memory
system more efficient for out-of-core programs by allowing
user-designed memory managers [5]. Another solution is
to allow programmers to write the code with explicit file
I/O. This is the approach that we use. The last is compiler-
directed explicit I/O [2, 10], which is designed to convert
an in-core program to an out-of-core one via a compiler.
However, this approach is not effective for programs with
complicated data dependences. The data dependences of
the secondary structure algorithm is along both rows and
columns, while the computation is along diagonals—this is
much more complicated than modern compilers or virtual



memory systems can handle efficiently. Therefore, to de-
velop a parallel out-of-core program, we will write the par-
allel out-of-core program with explicit file I/O.

The out-of-core parallel programming model we use is
derived from the data-parallel programming paradigm [2].
A decomposition of the data domain exploits the inherent
parallelism. The Local Placement Model [2] is applied. In
this model, each processor has a disk that acts as another
level of memory, i.e., extending the well-known SPMD
model [6].

In the local placement model, the data structure of
each processor resides on disk in a logically separate file
called Local Array File (LAF) or Out-of-Core Local Array
(OCLA) [2]. The portion of the data structure loaded into
memory for computation is called the In-Core Local Array
(ICLA). No processor is allowed to access directly to any
other OCLA. The only approach for a processor to obtain
the data in another processor’s OCLA is via communica-
tion after the data is fetched.

3 Implementation

Given the formula for
��� �����	�

defined previously, the
computation will start from the main diagonal (i.e.,

��� �9���<�
for all

�
, assuming that M is an � � � matrix) and proceed

to the upper right corner of the matrix (i.e,
��� � � � � ). One

legal execution order is to compute all matrix elements on
one diagonal in each iteration.

There is no data dependence between any pair of ma-
trix elements on the same diagonal. Therefore, all the ma-
trix elements on same diagonal can be computed in parallel.
To compute element

��� �9�7�	�
, all the (previously computed)

points in row
�

to the left and in column
�

below are re-
quired. Note that dynamic programming is not possible, as
no partial results can be stored from previous iterations.

In many parallel algorithms, the parallelism is solely
along columns (or rows), while the data dependence is
along rows (or columns). Thus, the scheme to partition
the matrix is straightforward and minimizes the communi-
cation. However, the problem that we are facing has par-
allelism along the diagonal of the matrix, but has the data
dependences along both rows and columns. While we ini-
tially use a standard row-wise data distribution, the data de-
pendences make the implementation challenging.

In this section, we first solve the in-core distributed-
memory parallel algorithm to study the communication pat-
tern. Then we propose an out-of-core sequential algorithm
to choose an effective disk file layout and access pattern.
A “two-file” method is found the most appropriate for the
RNA secondary structure prediction algorithm. Then, an
out-of-core parallel algorithm is developed combining both
previous algorithms.
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We will first discuss the simpler problem of parallelizing

secondary structure prediction a distributed-memory pro-
gram, but is in core. (We will not discuss the shared mem-
ory version, as it has previously been developed [14].)

As stated above, communication is the critical issue for
the in-core parallel algorithm. The communication patterns
along row and column are similar. Communication may be
initiated as soon as any matrix element on the boundary is
computed. If this element is on the right boundary, the pro-
cessor will send all the elements that have been computed
in that row to its right neighbor. On the other hand, if the
element resides on the upper boundary, its processor should
send all the matrix along that column to its upper neighbor.
For example, as shown in Figure 2,

��� �������
is on the right

and lower boundary of the sub matrix assigned to processor� 8 . Both
��� �����6= � �

and
��� ��= � �7�	�

belong to processor � # .��� ���7�	�
is computed one iteration earlier than

��� �9�7�²= � �
,

which is the first element in row
�

to be computed by � # .
Therefore, as soon as

��� �����	�
is computed, all elements in

row
�

that are to the right of
��� �������

should be sent to � # in
order to allow � # to compute

��� ���7��= � �
in the next iter-

ation. The similar situation also occurs along the column,
such that

��� ��= � �7�	�
is computed one iteration earlier than��� ���7�	�

. Thus, � # must transmit to � 8 all elements on col-
umn

�
as soon as they have been computed.

The amount of communication for rows and columns
is identical because their communication patterns are the
same. Thus, we only need to estimate the amount of com-
munication along column or row. Here, we calculate the
amount of communication along the columns. Assume �NÂ
is the bottom processor (it sends data to its upper neighbor� # ). Meanwhile, � # sends its elements, as well as those
from �TÂ , to � 8 . This continues until the processor that is
second from the top sends to the top processor all the el-
ements that the top processor does not own. During exe-
cution, �TÂ sends all elements allocated to it to � # , which
sends both the elements of it and those elements of � # to� 8 , and so on. Generally, one processor will send all the
matrix elements assigned to itself and the processors below
it to its upper neighbor. The amount of communication, Ã ,



Figure 3. Data distribution after dynamic load
balancing.

is � %w� 8fÄ � ' . (For full derivational details, see [16].) Thus,
the communication along columns or rows is � %w� 8}Ä � '
versus the total computation time of � %w� � ' . As long as�ÆÅ � , good speedup should be obtained.

Dynamic Load Balancing Unfortunately, a row- or
column-wise data distribution causes tail end load imbal-
ance. Hence, we employ the following scheme for dynamic
load balancing: the “lower” processors, once they complete
their work, share the load of the “higher” processors. The
dynamic load balancing occurs between iterations.

Specifically, we use a straightforward load balancing
technique, which works as follows: if the total number of
processors is � , processor

�
(
��ÇÉÈ

) sends % � � �(' �JÊ
rows to processor

� � � , where
Ê

is 1 (for the in-core ver-
sion). This is repeated every � ��Ê

diagonals. This simple
scheme performed well in practice for the in-core version.

The overhead of load balancing is � %w� 8 ' , which is small
compared to the � %w��� ' overall computation time. An ex-
ample partitioning after load balancing is shown pictori-
ally for four processors in Figure 3. This load balancing
is necessary—our results show that for large matrix sizes,
the execution time with dynamic load balancing is a factor
of two faster than the corresponding time without it.ºDCwB ��^¾]��2QT�7�� ¡QfY0MËKNMPÌN^XM6ST]$aeWZb>IÍb<dfQfY�aw]0gVh

As our second step towards our desired distributed-
memory, out-of-core parallel program, we investigate an
out-of-core algorithm that is sequential. We discuss the
in-core buffer structure, the disk structure, and how I/O is
done.

Î�Î�ÎÎ�Î�ÎÏ�ÏÏ�Ï Row Buffer

Column Buffer

Row File Column File

Element Being Computed

Figure 4. Mapping between in-core buffer
and disk file. The shaded square area rep-
resents both row buffer and column buffer,
which are updated together.

3.2.1 Data Structure for In-Core Buffer

The data dependence is along both row and column (shown
in Figure 4). Therefore, for efficient access, we keep parts
of rows and columns in memory. These buffers hold the
data read from disk for computing one or more matrix el-
ements inside both those rows and columns. The in-core
buffer (also called ICLA [2]) is composed of row buffer and
column buffer. We denote the number of rows and columns
in these buffers as

:	Ð
and

:	Ñ
, respectively.

3.2.2 File Structure of Out-of-Core Buffer

Because the matrix has data dependences along both rows
and columns, a single file containing the whole matrix is
not a good solution. For example, if a single file is used to
store the matrix in row major, when a column is required
the whole file will need to be read to collect the scattered
data. The identical problem also occurs if we store the data
in column major.

Therefore, we use two files to store the matrix. Both
files contain the exactly same matrix. One stores the ma-
trix in row major, while the other one is in column major.
Therefore, the situation to read through the whole file for
small amount of scattered data is avoided. Both files are be
updated after a subset of matrix elements in the matrix are
computed (also shown in Figure 4).

3.2.3 I/O Scheme

We must choose an ICLA scheme to minimize I/O, which is
generally consumes a significant amount of time in an out-
of-core program. Therefore, we strive to choose an ICLA
scheme with the least I/O cost.

Denote Ò as the number of file read operations. The in-
core buffer is composed of

:
arrays, each of which contains� elements, where � is the matrix size. Among those

:
arrays,

:�Ð
arrays are allocated to rows, while rest (

:0Ñ
) are
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Figure 5. Pictorial view of our I/O scheme.
Circled elements in each window (square) are
computed using the same buffer.

allocated to columns. In general, we have
:$Ð Ä � =�:	Ñ Ä �Éóôzõ

. where,
ôZõ

is the size of total available memory of the
local processor.

We developed 3 ICLA schemes: minimum-replacement,
complete-replacement and half-replacement. They are dis-
cussed in full in an accompanying technical report [16].
Due to space limitations, we discuss only half-replacement
in this paper—it was the best of the three algorithms.

With half replacement, we are able to read or write sev-
eral rows or columns in one operation and compute several
diagonals in a single iteration. In each I/O operation,

:�Ñ
columns are read into the column buffer, flushing the previ-
ous contents. Meanwhile, only ö 3;÷8ùø rows are read into the
row buffer, which replace the oldest ö 3;÷8 ø rows. With this
scheme, ö 3�÷8Vø diagonals can be computed in one iteration.

For example, in Figure 5,
:�Ðú� 


and
:	Ñ�� � . As-

sume that rows
� � � ��� �¨û ��� � � and

� � � are already
in the row buffer. First, rows

�����D= � �9�)= �
and

�)= û are
read. After matrix elements in window

�
are computed,

rows
�V= � ���V= � ���X= � and

�X= �
are read in, replacing

row
� � � ��� ��û ��� � � and

� � � . When all elements in those
four diagonals on row

�9���D= � �9�D= � �9�D= û are computed,
they are written back to column file, including the matrix
elements in window

�
. On the other hand, there is no need

to write them back to the row file, because no elements in
window � have been computed. After all the elements in
window � are computed, elements in window û and � will
be written back to the row file. The elements in window �
depend on elements in window � . This requires that

:$Ð
rows

be in memory together.
Analyzing this scheme, we see that for the first ö 3 ÷8 ø di-

agonals, there are üþýÿ 3;÷�� 8�� � reads for rows and another ü	ý3�� �
reads for columns. For the second diagonals, there should
be ü ý 1 ÿ 3�÷�� 8��ÿ 3 ÷ � 8�� �

reads for rows and ü ý 1 ÿ 3�÷�� 8��3 � �
reads for

columns. This continues until the last few ( ó :	Ð ) diagonals,

which has one read for rows and ü 3;÷3�� � reads for columns.
Hence, we get the following.

Ò � 	
�� ÷�
����� 5r4 8 % ü � � � Ä ö :�Ð�� � øö :�Ð�� � ø � = ü � � � Ä ö :�Ð�� � ø:	Ñ � '
which is � %w� 8 Ä % #3 �÷ � 8 = #3���� 3;÷ '�' .

Because � � Ò ( � is the number of file writes), the
number of total I/O events is � %w� 8VÄ % #3 �÷ � 8 = #3���� 3�÷ '�' . Fur-
thermore, as above, the total amount of I/O is:

�²Ð¼� �6� �
	
�� ÷�
������� 5r4 8 � � �£% � � � ' Ä ö :�Ð� ø � Ä % � � � ' Ä ö :�Ð� ø

which is � % ý��3�÷ ' . The amount of data that is written is ne-
glected, as its time complexity is only � %w� 8 ' .

It is important to note that according to the above anal-
ysis, the total amount of data read,

�tÐ
, decreases by

� �	:	Ð
as
:�Ð

increases. This is unlike any out-of-core parallel pro-
gram that we have seen.

Assuming that the total in-core buffer size is fixed, there
is still a degree of freedom to choose the size of the row
and column buffers. Suppose that the in-core buffer size
contains a total of

:
rows and columns. One possible allo-

cation is to use one a one-column buffer and a
: � � row

buffer. Then the amounts of data through I/O can be re-
duced to the minimum. However, increasing the row buffer
size increases the number of I/O operations. For exam-
ple, if we choose

:	Ð¡� � :�� û and
:$Ñ���:�� û (as we did in

our experiments), then the number of I/O operations is re-
duced. Another concern is that a larger row buffer size may
cause more load imbalance, because the row buffer size de-
termines when our data redistribution scheme (which bal-
ances the load during program execution) terminates. How-
ever, given our data redistribution scheme, this effect is not
significant because we use a relatively small in-core buffer
size. This is discussed further below and in the next section.

The pseudo-code for our scheme is given below. For
clarity, we call the first half of the row buffer � �"!$#�% !0# and
the second half � �"!$#�% !�8 . Also, the column buffer is called& ��'(#�% ! .

The total number of iterations, ) , is ü ýÿ 3 ÷ � 8*� � . On itera-
tion

�
, the longest diagonal to compute is diagonal

� Ä ö :$Ð�� � ø ,
which contains �"� � � ö :	Ð�� � ø matrix elements. The algo-
rithm follows.

1: for all
�D�ËÈ

to ) � � do
2: Diagonal number + �ú� � ö :	Ð�� � ø
3: k Ñ7ÑD�ËÈ (# of uncomputed columns in & ��'(#�% ! )
4: for all , Ð��ËÈ to � � � Ä ö :�Ð-� � ø with step ö :�Ð-� � ø do
5: Read elements from row , Ð through row , Ð`=% ö :�Ð�� � ø � � ' into � �"!$#�% !�8 .
6: if k Ñ�Ñ/. ö :�Ð�� � ø then
7: � ÑX� �
8: else



9: if k Ñ7ÑV�ËÈ then
10: � ÑX� ü ÿ 3;÷�� 8*�3�� �
11: else
12: � ÑX� ü ÿ 3;÷�� 8*� 110 �(�3�� = � �
13: end if
14: end if
15: for all , ÑX� � to � Ñ do
16: if k Ñ7ÑV�ËÈ OR , Ñ¥@�ËÈ then
17: Read +3254 % :$Ñ2� ö :�Ð�� � ø ' cols into & ��'(#�% !
18: end if
19: for all � �ËÈ to +3264 % :0Ñ � � � ö :�Ð�� � ø � � ' do
20: Compute ö :�Ð-� � ø elements in next column

above diagonal + in & ��'(#�% !
21: end for
22: Update k Ñ�Ñ
23: if k Ñ�ÑX�ËÈ then
24: Write elements in & ��'(#�% ! to column file
25: end if
26: end for
27: Write computed elems in � �"!$#�% !0# to row file
28: Switch � �"!$#�% !�8 and � �"!$#�% !$#
29: end for
30: Write computed elements in � �"!$#�% !0# to row file
31: end forºDCwº ¢�a7§�]	Y�a<½ ^¾]	M6U ¿�M6h¤QfY$[87���^X]��2QT�7�� ¡QfY�M�Icbw�dfQfY�aw]0gVh

The out-of-core parallel secondary structure prediction
algorithm is a (relatively) straightforward combination of
both the in-core parallel algorithm and out-of-core sequen-
tial algorithm. The algorithm in its entirety is given in our
accompanying technical report [16]. Here, we focus only
on the differences from the algorithm for the out-of-core,
sequential algorithm. They are as follows.

9 Each processor iterates over its section (set of rows) of
the matrix (as is typical in many parallel programs).

9 An in-core buffer must be allocated to hold communi-
cated (received) data; if it cannot be held in memory, it
must be stored on disk.

9 Load balancing must be done. The idea is similar to the
distributed-memory, in-core version. The difference is
that the value of

Ê
is
:	Ð�� �

instead of 1 (as was used in
the in-core version). See [16] for full details.

4 Performance

This chapter discusses the results of our experiments. All
results were obtained using a cluster of 16 Sun workstation
nodes. Each node was a 1 GHz UltraSPARC IIIi processor,
with a 64K/32K (data/instruction) split L1 cache, 1MB L2
cache and 512 MB main memory. Tests were run when the
only other system activities were daemon processes.

� One-File Time (s) Two-File Time (s)
100 1.77 0.12
200 14.05 0.58
400 112.77 2.28

Table 1. One- versus two-file approach.

If the RNA secondary structure prediction program is in-
core, the primary data structure is the upper triangular part
an � � � matrix of doubles, which means that the total
memory consumed is

ô � � � � 8 bytes, since the ele-
ments are double-precision numbers. When the program is
out of core, the row buffer contains

:	Ð
rows ( � elements

per row), and the column buffer contains
:�Ñ

columns; typ-
ically,

:�Ð;: � . Hence, the total size of the in-core buffer
(the ICLA) in the sequential program is


 Ä % :	ÐA=¤:$Ñ ' Ä � .
For the parallel program, another buffer containing

:$Ð
rows

is required to hold values communicated from neighboring
processors; hence, the in-core buffer size in bytes for the
parallel program isô 5 ÑX� 
 Ä % � :�Ð�<�= =J:$Ñ�<�>w' Ä � �
? C7E @ M6SXMBAù]�QT�DCFE Qz�HG aebeMúIJI/IùY0QfWZO0g

Section 3.2.2 explains that we use a two-file approach,
along with redundant computation, to avoid strided file ac-
cess. (We cannot measure the time for the entire program
because it takes so long that there is interference from other
processes.) Table 1 shows results from a program that sim-
ulates the access patterns of the secondary structure predic-
tion code. The table shows that the execution time is two
orders of magnitude smaller with the two-file approach.

Note that the cost for faster disk access is twofold: first,
there is extra space consumed on the disk due to the extra
file, which we believe is a good trade-off given the size of
modern storage systems. Second, there is an extra update
operation for each point. The number of these extra oper-
ations is linear in the total number of matrix elements, in
that each matrix element is exactly updated twice instead
of once. Still, the two-file approach is vastly superior; this
is because compared with the � %w��� ' prediction algorithm,
the extra update operations are negligible.

? CwB KKI�M M6UV^LI�FHMP§	^Vb<]$§
We measured speedup over problem sizes of � � �HM

through � � � � M , covering each power of 2. At 8K and
16K, the problem is out of core. The ICLA size was ap-
proximately N�Oý of the total problem size, which corresponds
to roughly �QP to less than

� P , depending on the problem
size. When the problem size doubles, the execution time
is increased about 8 fold. The raw times verify that RNA
secondary structure prediction is a cubic-time algorithm.

We show a graph of speedup in Figure 6. When the prob-
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Figure 6. Speedup with different sizes.

Total ICLA Size (MB) Time (seconds)
Computation I/O Total

0.4 (12) 212.7 181.3 408.8
1 (36) 227.9 61.67 313.8
2 (60) 249.1 38.01 305.2
3 (108) 289.8 22.66 328.4
4 (132) 318.4 18.36 351.9
5 (156) 335.0 16.06 365.5
6 (180) 347.0 14.01 374.6

Table 2. Breakdown of times for � � � È 
 � .
The total time includes startup time that is
not included in either computation or I/O.

lem size is small, for example, 16 MB ( � � � È � � ) or 64
MB ( � � � È � 
 ), speedup is poor because overhead (com-
munication) dominates computation. On the other hand,
when � is large ( � . � È 
 � ), speedup is nearly linear in
the number of processors, as computation dominates.

The in-core buffer size, denoted
ô 5 Ñ , has a significant

impact on the speed of the out-of-core program. We per-
formed detailed tests for � � � È 
 � and � � 
���
	�

, with
various in-core buffer sizes. Both sequential and parallel
programs were executed to measure the (pure) computa-
tion time, I/O time, and communication time (if applicable).
Figure 7 shows the result of the sequential out-of-core pro-
gram with matrix size � � 
���
��

(top), as well as the result
for a parallel out-of-core program for � � 
���
	�

(bottom),
respectively. Table 2 shows the result of the sequential out-
of-core program with matrix size � � � È 
 � .

The tests show that when the in-core buffer size in-
creases, the (pure) computation time grows gradually, and
the I/O operation time decreases. This is a counterintuitive
result in general, and is in contrast to the performance of
typical out-of-core programs. The expectation is that as the
ICLA increases, I/O time is monotonically non-increasing,
and computation time is relatively constant.
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Figure 7. Effect of in-core buffer size (
ô 5 Ñ ).

The top graph is of the sequential program,
and the bottom one is a parallel program.

The reason why the pure computation time increases
with in-core buffer size is due to an increasing number of
cache misses. This is in turn caused by the unique data ac-
cess pattern of the secondary structure prediction algorithm.

Specifically, the data accesses pattern is a “zig-zag” one.
A full explanation can be found in [16], which we omit due
to space considerations. The basic idea is that a more lo-
calized data access pattern results from a smaller in-core
buffer size. Essentially, the larger the in-core buffer, the
more cache misses that result.

Another typical aspect of out-of-core programs is that as
long as the ICLA is “large enough”, the I/O overhead is neg-
ligible. In other words, the I/O cost is dependent primarily
on the matrix size, rather than on the ICLA size. However,
our experimental results (Figure 7) show that the I/O time
drops significantly as the row buffer size increases.

This is because, as discussed in Section 3, R8S ��TVU #W-X � ,
for a fixed problem size

ô
. This phenomenon is caused by

the algorithm for ICLA scheme, in which the total amount



N = 8192 N=4096ô 5 Ñ Time YZR ô 5 Ñ Time YZR
0.3 1853 0.030 0.3 176.0 0.022
0.6 1244 0.040 0.6 143.9 0.038
1 970.2 0.740 1 126.9 0.083
3 932.5 1.67 3 123.3 0.200
5 874.3 4.42 5 118.7 0.554
10 964.3 12.8 10 135.0 1.94
20 1006 44.7 20 152.1 7.41

Table 3. Load imbalance with various in-core
buffer sizes for four-processor experiments.
Sizes are in MB, and times are in seconds.

of data brought into memory via I/O operations is deter-
mined by the in-core buffer size. This is also in contrast to
typical out-of-core programs.

The in-core buffer size also determines at which iteration
we cease balancing the load via data redistribution. The
larger the in-core buffer, the earlier we stop. In Table 3, YZR
is defined as the largest difference in execution time among
all processors. The table shows that when the in-core buffer
size is small, the load imbalance is negligible. For example,
for � � 
���
��

and � � � , when
ô 5 Ñ¡� û MB, the load

imbalance is YZR � �R� � � seconds, while execution time is
$� ��� � � seconds. On the other hand, for large row buffer
sizes, YZR can be over 15% of total execution time. As we
have already shown that best performance is achieved for
modest in-core buffer sizes, load imbalance will not be a
significant problem.

Therefore, the relationship between in-core buffer size
and execution speed is not monotonic. On one hand, the
in-core buffer size should be large because less I/O will be
performed. On the hand, if the in-core buffer size exceeds
the cache size, cache misses can be a significant cost. Our
experience indicates that an effective in-core buffer size is
close to the cache size.

5 Summary and Future Work

In this paper, we have presented an approach to ex-
tend the RNA secondary structure prediction algorithm to
a distributed-memory, out-of-core parallel version. Our im-
plementation uses several novel techniques, including (1)
a unique two-file approach to trade a small amount of extra
computation for better locality, (2) an in-core buffer scheme
that actually reduces the total amount of I/O, (3) a unique
matrix partitioning scheme, and (4) a data redistribution
scheme to balance load.

Experimental results showed that if the problem size
is small, such that it is not necessary to be out-of-core,
we cannot obtain a good speedup. If the problem size is
large enough, the program is able to achieve good speedup.
For instance, the speedup is 6.1 at 8 processors for an


��À
	���¤
���
	�
problem. We also found that that the in-

core buffer size has a significant impact on the performance.
Counterintuitively, the computation time increases and the
I/O time decreases as the in-core buffer size increases.

One area for future work is to focus on allocation of the
in-core buffer. In particular, given a fixed size buffer, there
is an additional dimension that we have not fully explored—
the choice of the in-core row buffer size versus the in-core
column buffer size. This tradeoff could further affect exe-
cution time, and we intend to address this issue more fully.
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