
Jigsaw: A High-Utilization, Interference-Free Job Scheduler for
Fat-Tree Clusters

Staci A. Smith
∗

smiths949@cs.arizona.edu

Department of Computer Science

The University of Arizona

Tucson, AZ, USA

David K. Lowenthal

dkl@cs.arizona.edu

Department of Computer Science

The University of Arizona

Tucson, AZ, USA

ABSTRACT
Jobs onHPC clusters can suffer significant performance degradation

due to inter-job network interference. Approaches tomitigating this

interference primarily focus on reactive routing schemes. A better

approach—in that it completely eliminates inter-job interference—is

to implement scheduling policies that proactively enforce network

isolation for every job. However, existing schedulers that allocate

isolated partitions lead to lowered system utilization, which creates

a barrier to adoption.

Accordingly, we design and implement Jigsaw, a new job-isolating

scheduling approach for three-level fat-trees that overcomes this

barrier. Jigsaw typically achieves system utilization of 95-96%, while

guaranteeing dedicated network links to jobs. In scenarios where

jobs experience even modest performance improvements from

interference-freedom, Jigsaw typically leads to lower job turn-

around times and higher throughput than traditional job scheduling.

To the best of our knowledge, Jigsaw is the first scheduler to elimi-

nate inter-job network interference while maintaining high system

utilization, leading to improved job and system performance.

CCS CONCEPTS
• Computer systems organization→ Parallel architectures.

KEYWORDS
Fat-tree, inter-job network interference, scheduling, utilization

ACM Reference Format:
Staci A. Smith and David K. Lowenthal. 2021. Jigsaw: A High-Utilization,

Interference-Free Job Scheduler for Fat-Tree Clusters. In Proceedings of the
30th International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’21), June 21–25, 2021, Virtual Event, Sweden. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3431379.3460635

1 INTRODUCTION
Schedulers on most HPC clusters allocate dedicated nodes to each

job but do not take network resources into account. This means that

multi-node jobs often compete with each other for the network,

∗
Smith is currently at Google, Inc.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HPDC ’21, June 21–25, 2021, Virtual Event, Sweden
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8217-5/21/06. . . $15.00

https://doi.org/10.1145/3431379.3460635

which can lead to substantial job performance degradation [6–8].

The resulting performance degradation can be problematic for ad-

ministrators as it leads to higher job turnaround times and lower

system throughput, and the variability is also problematic for users

when tuning code or determining hours to request.

Due to the potential for large job slowdowns, there has been

significant research into alleviating inter-job network interference.

Many mitigation approaches focus on avoiding congestion through

routing techniques, both in hardware [28] and software [10, 30].

These routing techniques all make a best effort to route traffic after
the job scheduler places jobs onto the cluster. They cannot make

any guarantees about worst-case interference, and they require

more complicated hardware and software algorithms for routing.

A conceptually more elegant approach is to have the job sched-

uler enforce complete network isolation of application traffic for

each job via resource allocation policies. In addition to the obvious

performance benefit, this decreases the burden on system software

and avoids the complexity of hardware adaptive routing. This is

not a new idea; for example, the scheduler on BlueGene/L sys-

tems allocates only electrically-isolated partitions, or midplanes, to
jobs [1]. Much more recently, researchers have also studied sched-

ulers that can achieve similar isolated network partitions on fat-tree

based systems [26, 37]. However, one major difficulty with such

job-isolating schedulers is that in order to ensure that performance

is not degraded, the scheduler must provide each job access to the

same guarantee of underlying bandwidth in its isolated partition

as there is on the full system. This requirement necessarily leads

to constraints on job-to-node assignment, which tends to lower

system utilization. In fact, it is quite difficult to create job-isolating

schedulers that achieve high system utilization, and this creates a

key barrier to widespread adoption. In particular, no job-isolating

scheduler to date has delivered system utilization generally over

90%, whereas traditional job schedulers usually deliver utilization

above 97% under sufficient system demand.

In this work, we remove the aforementioned utilization barrier

with Jigsaw, the first scheduling approach we know of that simul-
taneously achieves job-level network isolation, full bandwidth of

job allocations, and high system utilization on general three-level

fat-trees. When scheduling a job, Jigsaw obeys novel conditions

for node and link allocation that guarantee the availability of full

bandwidth in every allocated partition. Because the conditions

are precise—in contrast to the heuristic conditions used by previ-

ous approaches—Jigsaw is able to reduce fragmentation of system

resources, which is the key to high utilization. Our experiments

show that Jigsaw achieves 95-96% system utilization in most cases,

https://doi.org/10.1145/3431379.3460635
https://doi.org/10.1145/3431379.3460635

without sacrificing the bandwidth available to jobs. This combi-

nation typically leads to lower average job turnaround time and

higher throughput than traditional job scheduling under even mod-

est assumptions about performance improvement from job-level

isolation.

Our work makes the following contributions:

• We develop a new job scheduler, Jigsaw, that is the first

to provide job-level isolation while both maintaining full

interconnect bandwidth and fully utilizing system resources.

• We develop novel formal conditions on node and link al-

location and use them to prove that Jigsaw allocates full-

bandwidth partitions. The proof includes an intermediate re-

sult that three-level fat-trees are rearrangeable non-blocking,

which as far as we know is the first such proof.

• We show that Jigsaw improves system utilization significantly—

by 4-7 percentage points—compared to previous job-isolating

schedulers. This utilization increase, combined with job iso-

lation, leads to a decrease in average job turnaround time by

up to nearly 50% compared to traditional job scheduling.

Our work shows that scheduling approaches to eliminate inter-

job network interference on fat-trees can provide strong guaran-

tees on job performance, maintain high system utilization, and

remove the need for complex routing approaches to manage net-

work contention. Guaranteeing isolated network partitions to jobs

also allows application developers to focus on minimizing intra-job
network interference through existing techniques [11, 13, 17], with-

out concern that outside interference will frustrate their efforts. The

use of a scheduler like Jigsaw would improve job performance on

current HPC clusters while maintaining the high system utilization

that administrators often require.

2 BACKGROUND
In this section, we discuss the fat-tree topology, inter-job network

interference, and existing mitigation strategies for interference.

2.1 Fat-Tree Networks
The fat-tree is a popular network topology for HPC computing

clusters. Originally proposed by Leiserson [23], a fat-tree is a tree

whose links become “fatter" (have higher bandwidth) at each level

going up from leaves to root. Because the link bandwidth increases,

the links near the root of the tree do not create a bottleneck when

nodes communicate across the tree.

In practice, fat-tree networks are constructed using high-radix

routers connected in a folded Clos topology [20]. Current high-radix

routers allow three-level fat-trees to scale up to over ten thousand

nodes, and the folded Clos topology is easily wired out of routers

and links with uniform radix and bandwidth.

2.2 Inter-Job Network Interference
In recent years, inter-job network interference has been identified

as a culprit behind job performance variability on HPC systems. On

torus- and dragonfly-based clusters, it can cause production appli-

cations to slow down by 100-150% [6, 7, 30]. Although full fat-tree

networks have uniform bandwidth at each level and are rearrange-

able non-blocking, they too can suffer from network interference

due to job placement, communication patterns, and routing [16].

Under static routing [36], which is typically used on fat-tree clus-

ters, multi-job workloads can lead to network hotspots despite

the attempt to balance all possible paths across links [10, 22, 30].

As a result, communication intensive benchmarks slow down by

as much as 120% in controlled experiments [30], and production

applications slow down by as much as 66% in simulations [18].

2.3 Existing Mitigation Approaches
We break existing approaches to mitigating inter-job network in-

terference into routing-based and scheduling-based approaches.

2.3.1 Routing-Based Approaches. There are currently a few ap-

proaches to decreasing inter-job network interference using routing

mechanisms [10, 22, 30]. These approaches do not require changes

to the job scheduler; they all work by attempting to route packets

in a way that reduces congestion after job placements are already

fixed. An advantage of this strategy is that it does not introduce any

scheduling constraints, leaving node utilization unaffected. How-

ever, these routing mechanisms cannot guarantee that the worst-

case performance degradation for jobs is small. Thus, jobs may

experience significant performance degradation anyway, degrading

throughput and turnaround time despite high node utilization. We

discuss more specifics of these approaches in Section 7.

In addition to the approaches above, adaptive routing [28] is

sometimes used to balance network traffic. Adaptive routing uses

local information at each switch to try to detect network hotspots

and send packets down less congested paths, which adds consider-

able complexity to the network hardware. Until recently, fat-tree

networks have typically used simpler, static routing instead [36].

To the best of our knowledge, the recent Summit and Sierra sys-

tems [34] are the first HPC fat-tree-based clusters to adopt adaptive

routing. We do not yet know how effectively adaptive routing bal-

ances traffic for general, production workloads on these systems.

However, adaptive routing is used in dragonfly networks, where it

is clearly not sufficient to mitigate all network interference under

production workloads [7, 8, 30]. Perhaps most importantly, adaptive

routing, like any routing mechanism, cannot guarantee freedom

from inter-job interference.

2.3.2 Scheduling Approaches. Alternatively, inter-job network in-

terference can be completely eliminated by using a scheduling pol-

icy that guarantees isolated network partitions to each job in the

system. At least two such scheduling policies have been proposed

for fat-tree based clusters [19, 37]. In contrast to routing approaches,

job-isolating scheduling requires new node placement constraints,

and these can lead to system fragmentation and lower node uti-

lization. Throughout Sections 3 and 4 we refer to both internal

and external fragmentation of nodes and links, which are analo-

gous to the phenomena of the same names in memory allocation.

Specifically, internal fragmentation of nodes or links occurs when

a given scheme requires that a leaf allocate all nodes or links to the

same job, but the job does not use all nodes or links (analogous to

wasting part of a virtual page). External fragmentation of nodes or

links occurs when there are enough nodes or links for a job, but

making the allocation violates node and link conditions (analogous

to having sufficient free memory, but it is not contiguous).

D SendersReceivers

Leaves

L2 switches

Spines

SendersReceivers
SD

?

D ReceiversSenders

Figure 1: Violations of full interconnect bandwidth constraint. On the left, different numbers of uplinks and downlinks cause
tapering; if two senders pair with two receivers, the flows must share some of the same links. In the center, arbitrary node
allocations cause sharing despite sufficient links; if three senders pair with three receivers, two flows are forced to share the
left-most link. On the right, poorly-chosen uplinks and downlinks, though balanced, lead to a lack of connectivity; if two
senders pair with two receivers and the flows are mapped to different links at the first hop, one flow reaches a dead end at the
top (denoted with a red star), and one receiver cannot receive a message (denoted with a red question mark).

In previous job-isolating scheduling approaches, node utilization

has dropped by an average of 10% compared to baseline schedul-

ing [26, 37] due to fragmentation. Since these approaches guarantee

interference-freedom, however, worst case performance degrada-

tion due to inter-job interference is zero—potentially improving

throughput and turnaround time despite lower node utilization.

In addition, when there is no inter-job interference on the net-

work, application developers can focus on minimizing network

contention within the job. Because the only possible traffic on

the job’s network partition comes from the job itself, the devel-

oper can improve performance by leveraging knowledge of the

application with existing techniques for reducing communication

contention [5, 11, 13, 17, 25].

Thus, the main disadvantage of job-isolating scheduling ap-

proaches is lowered utilization; in other respects, scheduling ap-

proaches have significant advantages over current routing-based

approaches. The next section describes the motivation and formal-

ization behind Jigsaw.

3 JIGSAW THEORY
In this section, we first motivate Jigsaw’s novel three-level fat-tree

conditions for allocation of nodes and links to jobs. Then, we give

Jigsaw’s conditions themselves, which (1) provide each job with

strict isolation and bandwidth comparable to a dedicated fat-tree

network, as well as (2) allow the system to achieve high utilization.

Finally, we outline a proof that these conditions are necessary and

sufficient to lead to Jigsaw achieving the full bandwidth described

in (1).

3.1 Motivation
In this workwe strive to develop a job scheduler that simultaneously

achieves three goals, the first two of which are constraints. First,

the job scheduler must allocate isolated partitions that are free from

inter-job interference. Second, the job scheduler must allow access

to full interconnect bandwidth inside each partition. Finally, the

job scheduler strives to provide high utilization—at least 95%—so

that turnaround time and throughput will typically be better than

with existing job schedulers.

Satisfying any two of these three goals is straightforward. For
example, a scheduler can trivially provide isolation and allow access

to full interconnect bandwidth by running jobs one at a time on the

entire machine. Of course, unless every job uses all nodes—which

is not the case on any supercomputer we know of—utilization

will suffer due to excessive fragmentation of nodes (and links).

Alternatively, a scheduler can allow access to full interconnect

bandwidth and high utilization by allowing jobs to share network

links. This is how current job schedulers on high-performance

computing systems operate; the downside is that the sharing of

network links violates network isolation. Below, we discuss each

of the three goals in more detail.

Isolation. The first constraint, isolation, ensures that jobs do not

interfere with each other on the network. This requires that each

node and each link be (exclusively) assigned to at most one job.

Most existing job schedulers ensure only node isolation.

Full interconnect bandwidth. The second constraint, full inter-

connect bandwidth, ensures that an allocated partition has the

bandwidth properties of the fat-tree itself. Specifically, the partition

assigned to a job must be rearrangeable non-blocking: any permuta-

tion of traffic among the nodes of a job can be routed such that only

one flow travels over any of the job’s links. One consequence of

enforcing this constraint is that each leaf or L2 switch must have at

least as many uplinks allocated to a job as downlinks (see Figure 1,

left). Violating this principle can lead to two flows of an arbitrary

permutation being forced to share a link. Another consequence

is that we cannot allow full generality in node-to-job assignment

(see Figure 1, center). The example shows three leaves with one,

two, and three nodes (in blue) assigned to a job, and the left-most

down-link into the left-most leaf is shared by two flows. Finally,

every link in the allocation must be carefully selected for overall

connectivity. Figure 1 (right) shows an example in which balanced

uplinks and downlinks have been selected independently at each

switch. Although a sufficient number of links is present, some links

N=11

Internal fragmentation

N=11

Internal fragmentation

N=3 can't be placed

External fragmentation

Figure 2: Fragmentation of nodes or links in prior approaches. On the left, internal fragmentation of nodes under the LaaS
approach is shown; the wasted node is highlighted grey. In the center, internal fragmentation of links under the TA approach
is shown; links are implicitly reserved for the first job that can physically reach them, although in practice the job may not
utilize all links. Again, the possibly wasted links are highlighted grey. On the right, external fragmentation of nodes under the
TA approach is shown; enough nodes and links are available for a three-node job, but it cannot be placed due to TA’s policy.

are wasted as they cannot reach all allocated switches; effectively,

the allocation is again tapered as it was in the leftmost example.

The intuition provided by these examples will be formalized in

Sections 3.2 and 3.3.

High utilization. While the third goal, high utilization, is not a

constraint, it requires allowing sufficient flexibility in assigning

nodes and links to jobs. This generally helps in reducing fragmenta-

tion of nodes and links. The challenge is to provide high utilization

while maintaining the isolation and full bandwidth constraints. No

prior research that we know of has been able to do this; typically,

prior approaches suffer excessive fragmentation because precise

node and link allocation conditions for three-level fat-trees are

not developed. This leads to heuristic approaches that simplify

scheduling algorithms but lead to wasted nodes or links. Specifi-

cally, previous job-isolating scheduling techniques have suffered

from internal node fragmentation (LaaS [37]) or both internal link

fragmentation and external node fragmentation (TA [19]).

For example, insisting that all nodes on a leaf switch be assigned

to a single job, as LaaS [37] does, leads to internal node fragmenta-

tion (see Figure 2, left). In addition, insisting that nodes in a job can

use any conceivable paths between them, as TA does [19], leads to

internal link fragmentation (see Figure 2, center). Finally, requiring

that a job must be assigned to a single leaf if it can fit (another part

of the TA algorithm) leads to external node fragmentation (see Fig-

ure 2, right). In contrast, we develop precise allocation conditions

that are both necessary and sufficient for isolation and full inter-

connect bandwidth. Thus, unlike the existing approaches discussed

above, our scheduler can consider every legal placement that is

possible for a job at scheduling time.

3.2 Formal Conditions
This section describes our conditions, which lead to the Jigsaw

scheduler (described in Section 4) achieving all three goals: isolation,

full interconnect bandwidth, and high utilization. We categorize

the conditions by the goal to which they contribute.

Before describing the conditions, we note that a three-level fat-

tree is composed of a set of independent two-level fat-trees con-

nected together at the third level by spine switches. For brevity, we

refer to these two-level subtrees as simply trees for the remainder

of this section.

3.2.1 Isolation. The conditions needed to ensure isolation follow

directly from the description in the previous section. If nodes i and
j are assigned to two different jobs, then i , j; and, if links k and l
are assigned to two different jobs, then k , l . It is clear that these
conditions are necessary and sufficient to ensure job isolation.

3.2.2 Full Interconnect Bandwidth. Here, we must constrain node

and link assignments; unconstrained node or link assignments can

lead to violation of full interconnect bandwidth, as was shown in

Figure 1. We list the conditions
1
below; Section 3.3 discusses the

proof that the conditions below are necessary and sufficient to

guarantee full interconnect bandwidth. Note that we take it as a

given that every leaf and L2 switch must be allocated the same

number of uplinks as downlinks; Figure 1 (left) showed clearly that

without this assumption, tapering of the fat-tree occurs.

(1) The N nodes of a job must be evenly distributed across T
trees with nT nodes each, plus an optional remainder tree

with nrT < nT nodes.

(2) Within each of the T trees, the nodes must be distributed

across LT leaves with nL nodes each. In the remainder tree,

they must be distributed across LrT leaves that also have nL
nodes each, plus an optional remainder leaf with nrL < nL
nodes.

(3) The nodes must be allocated across a set of identical trees

and one remainder tree; and all leaves in the allocation must

have the same number of nodes except a single remainder

leaf in the remainder tree. Note that N = T · nT + nrT =
T (LT · nL) + (LrT · nL + n

r
L) by these conditions.

1
Two of these conditions that apply only to two-level fat-trees, namely the latter half

of (2) and the entirety of (4), were first identified in prior work on LaaS [37].

Sr
S

T=2, nT=4

N=11

nT
r =3

LT=2, nL=2 LT
r =1, nL

r =1

S S

S0
*

S0
*r

Leaves

L2 switches

Spines

T0
*

Figure 3: A legal job allocation fitting the formal conditions
described in this section.

(4) Within each allocated two-level tree, the LT (or LrT) leaves
must connect to a common set of L2 switches S , while the
remainder leaf must connect to a set of L2 switches Sr ⊂ S .

(5) Each of the allocated trees must use a consistent set of L2

switches S ; which means that in every tree, the set S must

contain L2 switches at the same set of indices within the tree.

Formally, each tree S must contain the L2 switches at i1, i2,
..., inL for some set of ik that is common across all trees in

the allocation.

(6) At the top level, the ith L2 switch of each tree is part of a

full-bipartite graph with a subset of the spines; we denote

as T ∗i this set of L2 switches, spines, and links. The partition

T ∗i has the same structure as a two-level fat-tree, and so it

has conditions similar to (2) and (4). Namely, if the ith L2

switch of an allocated tree is in S , then it must be allocated a

balanced number of uplinks to the spines; each such switch

must connect to the same set of spines S∗i , except if it is in
the remainder tree. In this case it must connect to a subset

of the spines S∗ri ⊆ S∗i .

3.2.3 High Utilization. As mentioned in the previous section, high

utilization requires avoiding wasting nodes and links. Two condi-

tions help to achieve this. At the node level, the number of nodes

assigned to a job must be exactly the number of nodes that the

job requested. Denoting the number of requested nodes by Nr and

the number of assigned nodes by N , this means that N = Nr . At

the link level, every leaf and L2 switch must be allocated the same

number of uplinks as downlinks; note that this condition also is

part of the set of full interconnect bandwidth conditions, but here

it guarantees that the minimum number of links are used.

3.2.4 Summary. Figure 3 shows an example of a legal allocation

fitting all node and link conditions, withT ∗
0
highlighted. The alloca-

tion of links to a job must be enforced via modified routing, and the

remainder leaf and tree require special care when routing to ensure

Figure 4: The Clos network equivalent of a three-level fat-
tree. Every node in the fat-tree is duplicated as both an in-
put node (left) and an output node (right), and the tree is
“unfolded", sideways, to form a Clos network.

that all nodes can be reached via allocated links. This is described

in Section 4.

3.3 Full Bandwidth Proof Sketch
The node and link allocation conditions fulfill the full interconnect

bandwidth property discussed in the motivation above. Specifically,

the conditions are both necessary and sufficient for a job’s allocation
to be rearrangeable non-blocking. Here, we provide a sketch for

the proof of this fact; the full proofs of necessity and sufficiency are

too lengthy to be included in the body of this paper, but they are

provided in their entirety in the extended version of our paper [31].

Formally, a network is rearrangeable non-blocking if, for any per-

mutation of traffic among its nodes, there exists a routing that maps

at most one flow of traffic to every link. To prove the necessity of

the conditions listed in Section 3.2.2, we show that if each individ-

ual condition does not hold, then the allocation cannot support a

particular traffic permutation among its nodes without contention.

Specifically, we pick two subsets of nodes A and B of size n, and
we show that ifA sends n flows to B they will be confined to fewer

than n links. Figure 1 showed concrete examples of unavoidable

flow conflicts that occur when the conditions are not met; in the

extended version of our paper [31], we formally prove conflicts

always occur in such cases.

To prove the sufficiency of the conditions, we must take an

arbitrary partition that satisfies them and show that an arbitrary

permutation can be routed with at most one flow per link. To do

this, we view the three-level fat-tree as an equivalent Clos network,

shown in Figure 4. The Clos network has distinct input nodes (left)

and output nodes (right); each level of switches from left to right

is referred to as a stage of the network. The Clos network that

corresponds to a three-level fat-tree has five stages.

The general method of the proof draws inspiration from the ex-

isting result that two-level fat-trees are rearrangeable non-blocking.

First, we take the entire fat-tree in Figure 4 to illustrate the method.

Suppose that P is an arbitrary permutation of input nodes to output

nodes, so that every input node sends a flow to exactly one unique

output node. We use Hall’s Marriage Theorem [15] to find a subset

of flows in P such that the subset contains exactly one flow coming

from each leaf and one flow going to each leaf. (Hall’s Marriage

Theorem guarantees that such a subset of flows exists).

We can route all flows in the subset across the same center-stage

network (for example, the grey network in Figure 4), with each

link at the first and last stage carrying exactly one of the flows.

Now, notice that the center-stage network is itself a smaller Clos

network, equivalent to a two-level fat-tree. It is already known that

a two-level fat-tree is rearrangeable non-blocking, so the flows can

be routed with at most one per link across the center-stage network

as well [3]. Thus, this subset of flows is satisfactorily routed across

the three-level fat-tree.

We then remove the subset of flows and the links used from

the network, leaving behind only the white switches in Figure 4.

The remaining portion of the network forms a (smaller) three-level

fat-tree, and the remainder of P forms a permutation of its input

nodes to its output nodes. Thus, we repeat the previous steps until

every flow in P has been routed.

Now, to extend this proof to a partition satisfying our allocation

conditions, we notice that such a partition has a form quite close to

a full three-level fat-tree. Given the conditions on node placement

and link allocation, we can actually augment the partition to form

a complete three-level fat-tree by simply adding additional nodes

to the remainder leaf and additional leaves to the remainder tree

(along with corresponding additional links). Thus, to extend the

proof to such a partitionA, we augmentA as just described, and we

augment the permutation P over A with additional flows between

the added nodes. Then, we apply the same method of proof while

taking care to route the flows in P across links actually allocated

to A.
Thus, we have formalized placement conditions that are both

necessary and sufficient for the resulting partition to have band-

width equivalent to a full fat-tree network. No looser conditions

can guarantee partitions that satisfy this property, and tighter con-

straints like those used in previous work will necessarily exclude

some possible placements. In the next section, we use these con-

straints to create a novel job-isolating scheduling algorithm that

outperforms previous approaches.

4 JIGSAW IMPLEMENTATION
We now describe Jigsaw, a new job-isolating scheduling approach

that leverages the theory developed in the previous section. Viewed

from a high level, Jigsaw simply enforces the conditions described

in the previous section, so that Jigsaw always allocates isolated

partitions, and those partitions have full interconnect bandwidth.

However, Jigsaw also must achieve high utilization. It turns out

that permitting any allocation satisfying the formal conditions in

Section 3.2 is too permissive. First, the conditions we found allow a

wide variety of legal allocations—the number of possible allocations

is exponential in the size of the tree, making an exhaustive search

for placements infeasible for large systems. Even more concerning,

being maximally permissive actually leads to excessive external
fragmentation; this is because each allocation is permitted to use a

Algorithm 1 The Jigsaw allocation routines. Once a node and

link allocation is found, the resources are assigned to the job and

the system routing is modified to route the job’s traffic within its

allocation only (see Figure 5).

func get_allocation(size)
T ← all two-level trees; PL3 ← all L2 up-ports

L ← all leaves per tree; PL2 ← all leaf up-ports per tree

A← an empty allocation to be populated below

▷ Look for a single-subtree allocation first.

for LT , nL , nrL s.t. LT · nL + n
r
L = size do

for t in two-level trees do
if find_L2(A, LT , nL , nrL , L[t], PL2[t]) then

return A
▷ Look for a three-level allocation if two-level failed.

nL ← all nodes per leaf ▷ Jigsaw condition

for T , nT , nrT s.t. (T · nT + n
r
T = size & nL |nT) do

LT ←
nT
nL

sltns ← an empty list of solutions per tree

for t in two-level trees do (*) ▷ find two-level sltns

A′ ← a temporary empty allocation

find_all_L2(A′, sltns , LT , nL , 0, L[t], PL2[t])

if find_L3(A, sltns , T , nrT , T , PL3, any sltn) then
return A

return no allocation found

▷ Note: find_L2 is similar but returns first solution found.

func find_all_L2(ref A, ref sltns , LT , nL , nrL , L
t
, PtL2)

for l in Lt do
if l has nL nodes and nL free links in PtL2 then

update A with l ▷ use l in allocation

update Lt ▷ start from next leaf after l
update PtL2 ▷ remove links not free for l
if A contains LT leaves then ▷ base case

if nrL = 0 or find remainder leaf then
add A to sltns[t] (**)

else ▷ recurse

find_all_L2(A, sltns , ..., Lt , PtL2)

undo all updates

func find_L3(ref A, sltns , T , nrT , T , PL3, L2sltn)
for t in T do

for sltn in sltns[t] do
if (sltn has same L2/ports as L2sltn/PL3) then

update A with t , sltn ▷ use t in allocation

update T ▷ start from next tree after t
update PL3 ▷ remove links not fitting sltn
update L2sltn ▷ set to sltn if t is first tree
if A contains T trees then ▷ base case

if nrT = 0 or find remainder tree then
return true

else ▷ recurse

if find_L3(A, sltns , ..., PL3, L2sltn) then
return true

undo all updates

return false

SD SD

Figure 5: Changing the routing in Jigsaw; shown is a single packet routed from a source node (S) to a destination node (D). The
left-hand figure shows that using traditional D-mod-k routing, the first hop (in black with a red arrow next to it) occurs on a
link that is not allocated to the job. The right-hand side shows Jigsaw’s routing, which uses a wraparound approach to ensure
that only allocated links (in blue) are used.

different number of nodes per leaf, leading to an arbitrary number

of free nodes on each leaf scattered across the machine. For larger

jobs requiring N nodes, the probability that the scattered free nodes

are (legally) usable becomes quite small. This tends to require the

system to have to drain far more than N nodes before a placement

can be found, leading to periodic dips in utilization. Similarly, there

may be enough links available for a node allocation, but they do

not connect to common L2 switches or spines.

Jigsaw handles both of the above issues simultaneously with one

restriction to our set of formal conditions. Specifically, Jigsaw re-

quires job allocations that span three levels to use all nodes per leaf

except for the remainder leaf. This restriction reduces the number

of placements to search (making the Jigsaw running time fast; see

Section 6.4) as well as reducing the external fragmentation due to

scattering of free nodes across the machine.

Pseudocode for Jigsaw is given in Algorithm 1 (see previous

page). The function GET_ALLOCATION looks for a Jigsaw-compliant

node and link allocation for a job requesting size nodes. Jigsaw first

looks for two-level (single-subtree) allocations.
2
If the job cannot

be allocated in a single subtree, GET_ALLOCATION moves on to look

for three-level allocations instead. In this case the allocated nodes

are divided across subtrees, with each subtree containing a valid

two-level allocation for its subset of nodes. Thus we must find

all possibilities for valid two-level allocations of subsets of nodes

(*) via FIND_ALL_L2. Once these are stored in sltns , we look for a

global combination of sub-allocations in FIND_L3.
The functions FIND_ALL_L2 and FIND_L3 are analogous in struc-

ture. In FIND_L3 we use an exhaustive, recursive-backtracking

search for a valid combination of sub-allocations within trees. Jig-

saw looks for the next tree with a sub-allocation that fits the global

solution—namely, the tree must contain an allocation using the

right set of L2 switches and having appropriate L2 up-ports avail-

able to connect to the other trees. If enough matching trees are

found, the solution is immediately returned (base case). Note that

FIND_ALL_L2 follows the same structure, but since it is searching

2
As LaaS shares a few conditions with Jigsaw, its algorithm is similar up to here.

for all valid allocations, it adds each completed allocation to sltns
and continues the search (**), rather than immediately returning.

Finally, once Jigsaw returns an allocation, the routing tables

must be adjusted. This is necessary because traffic must be routed

only on links within the allocation, and standard D-mod-k routing

is completely unaware of the Jigsaw allocation (see Figure 5). A

valid adjusted routing can easily be obtained by mapping normal

D-mod-k routing onto the partition and using wraparound for ports

on remainder switches. The actual changing of the routing tables

can be done on the fly, for example via the subnet management

software on an InfiniBand system, as shown in prior work [10].

In awide variety of tests, Jigsaw proves to achieve high utilization

and throughput with scalable scheduling time on the large clusters.

The next section describes our evaluation in detail.

5 EVALUATION SETUP
This section describes our experimental infrastructure and evalu-

ation setup. All of our code, traces, and results are available in a

repository [32].

To evaluate the different scheduling approaches, we simulate job

queues on various fat-trees. We compare Jigsaw to several other

job-isolating scheduling approaches described in this section, and

also to Baseline: a traditional, unconstrained scheduler. We evaluate

all approaches in terms of average system utilization, given by

U =
time spent by jobs on all nodes

potential time on all nodes

=

∑jobs

j=1 Nj · tj

Nsystem · ttotal
.

Here Nj and Nsystem are the number of nodes in job j and the total

number of nodes in the system, respectively; tj and t
total

are the

runtime of job j and the total time spent running the jobs in the

trace, respectively. Because clusters are not drained and restarted

often, for realism we include only the steady-state portion of the

simulation in this computation.

In addition, we evaluate performance in terms of job turnaround

times and system throughput. Job turnaround time is the length of

time between when a given job arrives in the queue and when it

finishes running. Thus, turnaround time is related to wait time (the

time between arrival and beginning to run), but also encompasses

the performance of the job once it is running. We measure through-

put via makespan, which is the length of time between when the

first job arrives in the queue and when the last job running on

the system completes. Shorter turnaround times and makespan are

both desirable.

5.1 Clusters and Traces
We evaluate on a range of full (maximal-size) fat-trees, where we

vary the switch radix to attain different node counts. We run ex-

periments with four different cluster sizes: 1024, 1458, 2662, and

5488 nodes (built with radix-16, radix-18, radix-22, and radix-28

switches, respectively).

We use job queue traces from several LLNL clusters, including

Thunder and Atlas [12] as well as Cab [33]. We also use synthetic

traces generated in the same way as the ones in the original LaaS

paper [37]; these are modeled on a trace from the Julich JUROPA

cluster. Because we generate the synthetic traces, they allow us to

effectively scale our experiments to different-sized fat-trees.

In the synthetic traces, the job sizes are drawn from an exponen-

tial distribution, and the job run times are drawn from a uniform

random distribution. In the traces from HPC clusters, the job size

distribution is roughly exponential in shape but contains more job

sizes that are powers of two; the job run times are skewed towards

short-running jobs with only a handful of long-running jobs.

The synthetic traces have all jobs arriving at time zero. For the

Thunder and Atlas traces, we discard actual job arrival times, mak-

ing all jobs available at time zero for these traces as well. Thus

we can test the scheduling approaches under heavy cluster usage;

we are not particularly interested in cases where the system uti-

lization is low due to a lack of pending jobs. However, to analyze

turnaround time effectively, it is necessary to run experiments with

realistic job arrival times as well. Therefore we retain the arrival

times in the Cab traces, though we scale arrival times by 0.5 in the

Aug-Cab and Nov-Cab traces because of low baseline utilization in

those months. Table 1 contains a summary of the traces.

5.2 Schemes for Comparison
We compare Jigsaw to the following approaches, in addition to

Baseline. The first two are existing approaches, while the last is a

theoretical bounding approach of our own.

5.2.1 Links as a Service (LaaS). In Links as a Service (LaaS) [37], the
scheduler allocates dedicated network links (and nodes) to each job.

Unlike Jigsaw, LaaS does not develop explicit placement conditions

for three-level fat trees; instead it reduces the three-level problem

to a two-level problem and leverages easier-to-identify conditions

for two levels. Specifically, to reduce three levels to two levels, entire
leaves take the place of nodes, L2 switches take the place of leaves,

and spines take the place of L2 switches. The drawback of the

LaaS approach is that this forces job sizes to be rounded up to the

nearest multiple of the leaf size, causing internal fragmentation

(see Figure 2, left).

5.2.2 Topology-Aware Scheduling (TA). Unlike LaaS and Jigsaw,

in the topology-aware scheduling (TA) [19] approach, links are

Table 1: Characteristics of job queue traces used in our eval-
uation. All traces contain single-node jobs.

Trace name System Number Max job Job run Arrival

nodes of jobs nodes times (s) times

Synth-16 – 10,000 138 20-3000 N

Synth-22 – 10,000 190 20-3000 N

Synth-28 – 10,000 241 20-3000 N

Aug-Cab 1296 30,691 257 1-86,429 Y

Sep-Cab 1296 87,564 256 1-57,629 Y

Oct-Cab 1296 125,228 258 1-93,623 Y

Nov-Cab 1296 50,353 256 1-86,426 Y

Thunder 1024 105,764 965 1-172,362 N

Atlas 1152 29,700 1024 1-342,754 N

not explicitly allocated to jobs. Instead, TA follows a set of node-

allocation rules that avoid all placements in which two jobs could

conceivably contend for links under an arbitrary routing. The full

set of rules involves containing small-enough jobs within single

leaves, larger jobs within single subtrees, and only jobs larger than

a subtree across the entire machine; a job of a given type will not

be able to share leaves or subtrees with other jobs of certain types.

The drawbacks of the TA approach are internal fragmentation due

to the implicit allocation of links (see Figure 2, center), along with

external fragmentation caused by the requirement that jobs must

be assigned to single leaves and/or single subtrees, if possible (see

Figure 2, right).

5.2.3 Least-Constrained Scheduling with Link-Sharing (LC+S). Jig-
saw only uses a subset of the possible legal placements determined

by the conditions we developed in Section 3.2. As we explained

in Section 4, allowing the full set of possible placements (i.e., the

least possible constraints) actually produces lower utilization than

Jigsaw because of external fragmentation of nodes and links. Thus,

to reduce link fragmentation, we add a relaxation to the least con-

strained approach that allows jobs to share network links as much

as possible while maintaining interference levels that are expected

to be negligible (though not zero). Specifically, given a job j that
requires, on average, x% of the cluster’s peak bandwidth per link,

we search for and allocate that amount of bandwidth, leaving the

rest of the link available to future jobs.

Clearly, this approach is of theoretical interest only; it is imprac-

tical for real systems because the required bandwidth for each job is

not provided to the job scheduler. But in our evaluation, we suppose

that this information is made available.

We note that this relaxation can also be combined with LaaS or

Jigsaw, but we find that a least constrained approach benefits the

most from additional flexibility in link allocation. Thus, we include

for comparison least constrained with link sharing (denoted LC+S)

as a theoretically near-optimal, low-interference scheduler.

5.3 Implementation Details
We have implemented all scheduling approaches inside the original

code base released with LaaS [37]. In addition, we have added

backfilling capability to the scheduling simulator (which initially

supported only FIFO scheduling). We use the EASY backfilling

approach, in which a single job at the head of the queue is assigned

a reservation when backfilling occurs, and as many jobs as possible

in the lookahead window are backfilled [29]. EASY backfilling is

available in modern resource managers such as Flux [2].

As seen in Algorithm 1, the Jigsaw implementation uses a brute-

force search for a valid job placement, returning the first allocation

found. The Jigsaw search is fast in practice, as are the LaaS and TA

searches. While the search space for LC+S is much larger, a valid

allocation for LC+S is usually found quickly; however, its worst

case search time for a single job allocation can be hours (which

typically occurs when no allocation currently exists). Therefore,

in our LC+S implementation we guard against the worst case by

adding a timeout to each job scheduling event.

5.4 Experiment Parameters
Finally, we describe specific parameters used in our experiments.

We address, in turn, the performance improvement scenarios for

jobs run in isolation (used in our turnaround time and makespan

analysis); the bandwidth needs of jobs (used for the LC+S experi-

ments); and miscellaneous parameters used across experiments.

5.4.1 Job Performance Scenarios. Whenwe evaluate job turnaround

times and makespan, we take into account the fact that some jobs

will likely perform better when run in isolation. For each job trace,

we explore different job performance scenarios, each with its own

set of assumptions about which jobs will perform better and by

how much. We use four of the scenarios from the TA scheduling

paper [26], namely the 5%, 10%, 20%, and “V2" scenarios. In addition,

we create one scenario of our own, which we call Random, that is

less optimistic about performance improvement than the above sce-

narios. In the x% scenarios, each job larger than four nodes speeds

up by x% under job-isolating scheduling approaches compared to

Baseline. In the V2 scenario, jobs are randomly assigned to different

speed-up buckets depending on their size, with a minimum possible

speed-up of 0% and a maximum possible speed-up of 30%; within a

bucket, the amount of speed-up scales linearly with job node count

(see the TA paper for details [26]). Finally, in our Random scenario,

only jobs larger than 64 nodes ever speed up, and each such job

randomly speeds up by either 0%, 5%, 15%, or 30%.

5.4.2 Link-Sharing Parameters. For the LC+S experiments, we have

to determine average bandwidth needs for each job in our traces.

For our evaluation, we randomly assign jobs in the traces to one

of four classes with bandwidth needs ranging from 0.5 GB/s per

link to 2.0 GB/s per link. We assume a peak link bandwidth of

5 GB/s for the cluster. Based on existing empirical evidence, we

cap total utilization of each link at 80%, above which performance

degradation is expected to increase sharply [30].

5.4.3 General Parameters. Finally, we select general parameters

for all the experiments. The three synthetic traces have mean job

sizes of 16, 22, and 28, and we simulate them on 1024-, 2662-, and

5488-node clusters, respectively. We simulate the Thunder, Atlas,

and Cab traces on the 1458-node cluster. This is the smallest of

our experiment clusters that is larger than all three of Thunder,

Atlas, and Cab. Note that we could also have chosen the 1024-node

cluster given the maximum job sizes in the three traces. However,

that cluster has eight nodes per leaf, meaning the leaf size evenly

divides many of the job sizes in the Thunder, Atlas, and Cab traces.

In general, this is not true for most clusters and job traces—but it

slightly improves system utilization for LaaS, which would skew

our evaluation (although Jigsaw still outperforms LaaS even in

this case). Therefore, we evaluate on the 1458-node cluster for the

sake of generality. Finally, we use a backfill window of 50 in our

experiments, and we use a timeout of 5 seconds for LC+S.

6 RESULTS
In this section we evaluate the different job-isolating scheduling

approaches—TA scheduling (denoted TA), LaaS, and Jigsaw—and

include for comparison the (unrealistic) bounding approach LC+S.

In the results presented here, all approaches (including Baseline)

use EASY backfilling.

We find that Jigsaw outperforms existing job-isolating sched-

uling approaches on system utilization, job turnaround time, and

makespan. It achieves system utilization that is usually within 3-5

percentage points of Baseline’s utilization; and because its utiliza-

tion is close to Baseline, Jigsaw often leads to better job turnaround

times and makespan than Baseline under modest assumptions of

improved job performance in isolated placements. We also examine

average job scheduling time for each approach, finding that Jigsaw

is fast in practice and therefore a practical choice for large clusters.

6.1 Average System Utilization
We first consider average system utilization, a metric which needs

to be at or above 95% under sufficient demand for the cluster in

order for many HPC system administrators to consider adopting a

given scheduling scheme [9]. Figure 6 shows the average system

utilization with different scheduling approaches for each of the job

queue traces in Table 1.

Across traces, average system utilization with Jigsaw is typically

95-96%, versus 97-100% with Baseline. The only exceptions are

Oct-Cab and Atlas, where Jigsaw utilization is only 93% and 92%,

respectively. The worst case utilization under Jigsaw (and in fact

all schemes, including Baseline) is on Atlas, because there were

several whole-machine job requests.

We see that Jigsaw performs significantly better than both TA

and LaaS, the existing approaches to job-isolating scheduling. On

the traces we tested, which include those used in the TA paper

and generated from the same distributions as the LaaS paper, TA

resulted in the lowest system utilization at 85-88%. Because TA

does not explicitly allocate links, its placement choices are the

most constrained, and it suffers the most from fragmentation. For

example, a small job that fits within a leaf must wait for enough
nodes to be available on a single leaf, whereas the same small job

can be spread over multiple leaves with fewer nodes when using

Jigsaw.

LaaS’s utilization comes next after TA’s at 90-91% on all traces

except one at 93%; this utilization is well below Baseline and also

below the desired 95% threshold. LaaS’s utilization is lower than

 80

 85

 90

 95

 100

Synth-16 Synth-22 Synth-28 Atlas Thunder Aug-Cab Sep-Cab Oct-Cab Nov-Cab

A
v
e
ra

g
e
 u

ti
liz

a
ti

o
n
 (

%
)

Average system utilization for different scheduling approaches and job queues

Baseline LC+S Jigsaw LaaS TA

Figure 6: Average system utilization for different approaches and traces. The synthetic, Atlas, and Thunder traces have all
jobs arriving at time zero for heavier load; the Cab traces use real job arrival times. The y-axis starts at 80% so that significant
differences between approaches can be seen clearly and because lower utilizations never occur in our experiments.

Table 2: Frequency of instantaneous percentage utilization
ranges for a trace of ∼100,000 jobs on Thunder.

Approach >=98 95-97 90-95 80-90 60-80 <=60

LaaS 4133 53720 78072 52546 21261 1717

Jigsaw 54186 51789 50299 36586 17086 1503

TA 20443 27134 46923 68262 42923 5764

Jigsaw’s because of internal fragmentation of free nodes and links

on the last leaf in the LaaS allocation (see Figure 2). In our experi-

ments, the nodes lost to internal fragmentation account for 3-7% of

the system on average, while Jigsaw does not incur this penalty.

We see that LC+S often leads to higher utilization than Jigsaw,

however. This is because with the (unrealistic) addition of job-level

link usage information along with link sharing, jobs only take as

much of each link as they need so that external fragmentation of

links is minimized. We see that Jigsaw achieves the same utilization

as LC+S on some traces, with a maximum difference of 3.7 per-

centage points on Aug-Cab. Thus, Jigsaw’s utilization is probably

approaching the limit of what is achievable with complete isolation.

Analyzing the results in depth, Table 2 shows frequency of instan-

taneous utilization values for each of the three isolated scheduling

approaches during simulation of the Thunder trace, where instan-

taneous utilization at time t is the number of nodes allocated at t
divided by the total number of nodes in the system. For Table 2, we

measure instantaneous utilization each time a job is scheduled or

completed. Under Jigsaw, instantaneous utilization is at or above

98% for roughly a quarter of the data points, versus only a tenth

of the data points under TA and virtually none of the data points

under LaaS. In addition, instantaneous utilization under Jigsaw is

below 80% slightly less than a tenth of the time (which is compara-

ble to LaaS), versus almost a quarter of the time for TA. The reason

that LaaS almost never achieves instantaneous utilization above

98% is that about 3% of system nodes are typically lost to internal

fragmentation (allocated to jobs that do not need them) throughout

the simulation. This limits average utilization under LaaS. While

TA does not suffer from internal fragmentation, we can see that it

experiences significant external fragmentation from the fact that

utilization drops below 80% much more often than it does under

LaaS or Jigsaw. This external fragmentation, which occurs because

of the relatively inflexible limitations on where a job can be placed,

limits the average utilization under TA. Because Jigsaw is built

on the formal placement conditions we developed for three-level

fat-trees, it is able to lessen the impact of external fragmentation

and fully eliminate internal fragmentation, leading to the favorable

utilization results shown in this section.

6.2 Average Job Turnaround Time
We now consider another metric for scheduler performance: aver-

age job turnaround time. Figure 7 shows the average job turnaround

time for all jobs and for large jobs (greater than 100 nodes), respec-

tively. The averages are normalized to the averages under Baseline.

The first cluster of bars shows the worst case, in which no jobs ex-

perience any performance improvement from running in isolation.

However, many studies have observed performance degradation

of applications due to inter-job interference on the network [6–

8, 30]. Therefore we focus on turnaround times under the different

performance-improvement scenarios that were given in Section 5.

The first three scenarios involve jobs larger than four nodes speed-

ing up by a fixed amount (5, 10, or 20%) each, when run in isolation.

The last two scenarios are less optimistic in that some jobs do not

speed up at all, and the amount of speed up is randomized.

We show results for the Aug-Cab and Oct-Cab traces—Sep-Cab

and Nov-Cab performed similarly to Aug-Cab, while Oct-Cab is

the worst case (for all metrics, including utilization). For Aug-Cab,

the average turnaround time with Jigsaw is better than Baseline in

every speed-up scenario (see the filled portion of the bars). However,

large jobs typically have to wait longer than smaller jobs due to

backfilling, so in some scenarios the average turnaround time for

large jobs remains above Baseline (see the additional empty portion

of the bars). Specifically, the 10% and 20% speed-up scenarios are

sufficient for Jigsaw to beat Baseline on large jobs, while in other

scenarios average turnaround time for large jobs is a few percent

higher.

For Oct-Cab, Jigsaw beats Baseline on average turnaround time

in the 10% and 20% speed-up scenarios, while it is just 1-3% higher

in the other scenarios. While large jobs typically wait longer, they

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

None 5% 10% 20% V2 Random

T
u
rn

a
ro

u
n
d
 t

im
e
 (

n
o
rm

a
liz

e
d
)

Job turnaround times for Aug-Cab normalized to Baseline

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

None 5% 10% 20% V2 Random

T
u
rn

a
ro

u
n
d
 t

im
e
 (

n
o
rm

a
liz

e
d
)

Job turnaround times for Aug-Cab normalized to Baseline

TA (all/lg. jobs)

LaaS (all/lg. jobs)

Jigsaw (all/lg. jobs)

LC+S (all/lg. jobs)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

None 5% 10% 20% V2 Random

T
u
rn

a
ro

u
n
d
 t

im
e
 (

n
o
rm

a
liz

e
d
)

Job turnaround times for Oct-Cab normalized to Baseline

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

None 5% 10% 20% V2 Random

T
u
rn

a
ro

u
n
d
 t

im
e
 (

n
o
rm

a
liz

e
d
)

Job turnaround times for Oct-Cab normalized to Baseline

TA (all/lg. jobs)

LaaS (all/lg. jobs)

Jigsaw (all/lg. jobs)

LC+S (all/lg. jobs)

Figure 7: Average turnaround times (normalized to baseline; lower is better) for two traces with different assumptions on job
performance under isolation. The filled portion of each bar shows the average for all jobs; the full bar shows the average for
larger jobs only (those over 100 nodes). The first scenario is no performance improvements (the worst case). The next three
scenarios assume jobs with more than four nodes all speed up by 5%, 10%, or 20%, respectively. The V2 scenario assumes jobs
speed up linearly with node count based on a random assignment. The Random scenario assumes jobs over 64 nodes speed up
by 0%, 5%, 15%, or 30% at random.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

None 5% 10% 20% V2 Random

M
a
ke

sp
a
n
 (

n
o
rm

a
liz

e
d
)

Makespans for Thunder normalized to Baseline

TA

LaaS

Jigsaw

LC+S

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

None 5% 10% 20% V2 Random

M
a
ke

sp
a
n
 (

n
o
rm

a
liz

e
d
)

Makespans for Atlas normalized to Baseline

TA

LaaS

Jigsaw

LC+S

Figure 8: Makespans normalized to Baseline for two traces (lower is better). The speed-up scenarios are the same as Figure 7.

are also better than Baseline in the 10% and 20% scenarios; in others

they are at most 10% worse. Again, Oct-Cab was the worst case

trace for Jigsaw, yet Jigsaw still nearly meets and sometimes beats

Baseline in the speed-up scenarios.

For both traces, we can see that Jigsaw turnaround times are

always considerably better than TA turnaround times. Jigsaw turn-

around times are also better than LaaS turnaround times; for exam-

ple, on Oct-Cab with the 10% speed-up scenario, normalized LaaS

turnaround times are 1.00 for all jobs and 1.05 for large jobs, versus

0.89 and 0.95 for Jigsaw.

6.3 Makespan
Finally, in Figure 8, we show makespan (normalized to Baseline)

for the different approaches on the Thunder and Atlas traces. Un-

der all speed-up assumptions, makespan with Jigsaw is the same

as or better than Baseline—by up to 15%. In contrast, under TA

the makespan is always worse than Baseline except for the 20%

speed-up case, and LaaS is between TA and Jigsaw in effectiveness.

In the worst case (with no speed-ups), makespan under Jigsaw is

only 6% higher than Baseline, versus 5% higher for LC+S, 8% higher

Table 3: Average scheduling time per job in seconds.

Synth-16 Sep-Cab Thunder Synth-28

TA 0.00283 0.00252 0.00128 0.00709

LaaS 0.00294 0.00257 0.00106 0.00947

Jigsaw 0.00305 0.00283 0.00104 0.00998

LC+S 0.05550 0.09239 0.05333 0.25500

for LaaS, and 14% higher for TA. Therefore, Jigsaw has a minimal

impact on makespan even in the worst case, and it achieves lower

makespan than Baseline in scenarios where jobs experience per-

formance benefits from job-isolating scheduling. It also produces

similar makespan to the (unrealistic) LC+S bounding algorithm.

6.4 Scheduling Time
Table 3 summarizes scheduling times for four representative exper-

iments on clusters, from smallest to largest. We can see that Jigsaw

scheduling time is on a par with existing approaches (TA and LaaS),

and it scales well to high node counts—up to 5488 nodes in our

tests, which represents a system larger than Sierra and Summit,

two of the top three HPC systems as of November 2020 [24]. In

the worst case, Jigsaw’s average scheduling time per job is only 10

milliseconds.

In contrast, LC+S, as the least-constrained, near-optimal ap-

proach, does not scale as well with cluster size. In the worst case,

on the 5488-node cluster, average scheduling time per job for LC+S

is 255 ms, an order of magnitude larger than worst-case Jigsaw time

(and recall that LC+S requires a 5-second timeout for scheduling

per job in order to be feasible, while Jigsaw does not). Thus, given

the sharp increase in scheduling time from radix-18 to radix-28, it

is not clear how much farther LC+S will scale in terms of system

size.

Therefore, we see that Jigsaw finds job placements just as quickly

as existing job-isolating approaches, while also beating them on all

performance metrics. In contrast to LC+S, which must search the

largest possible solution space, Jigsaw scales well up to more than

5000 nodes and likely far beyond. Therefore we find that Jigsaw

would be practical for immediate deployment on even the largest

fat-tree based systems.

7 RELATEDWORK
The focus of this paper is on using scheduling policies to reduce

or eliminate inter-job network interference. As we have discussed,

inter-job network interference can be completely eliminated by

using a scheduling policy that guarantees isolated partitions to

each job. On fat-trees, two previous approaches to network isolation

exist. As shown in this paper, our work improves on both existing

approaches: Links as a Service (LaaS) [37] and topology-aware

scheduling (TA) [19, 26].

Asmentioned in Section 2, there aremultiple previous techniques

developed to handle intra-job interference, which can be used once

a job-isolating scheduler removes the possibility of inter-job inter-

ference. One well known technique is topology mapping [5, 13, 17],

in which the communication graph is assumed to be known and

then the mapping of process-to-node is done so as to reduce the

frequency and volume of communication. Another is communica-

tion scheduling [11, 25], in which collective operations are staged

so that contention during the collective is naturally minimized.

Several papers have observed that network hotspots can occur

on fat-trees under static routing, and they have suggested various

ways to minimize hotspots by updating the routing as running jobs

change [10, 22, 30]. Lee et al. proposed setting up routes for the

traffic of each job as it enters the system, using the least congested

paths available [22]. Domke et al. proposed Scheduling-Aware Rout-

ing (SAR) [10], which balances all potential flows in the system

upon job exit or entry, based on the insight that pairs of nodes

will only communicate if they belong to the same job. Our prior

work proposed Adaptive Flow-Aware Routing (AFAR) [30], which

detects and alleviates hotspots by using knowledge of the actual

flows of traffic between nodes. All three approaches require a global

controller that periodically updates system routing based on the

current state (i.e. software-defined networking), and most require

information or system software support that is not currently avail-

able. None of the approaches provide guarantees on worst-case

interference.

Finally, several have studied themagnitude of performance degra-

dation due to inter-job network interference. On the fat-tree in-

terconnect, Jain et al. studied the impact of tapering and other

network configurations on job performance and found that inter-

job network contention can slow down applications by as much

as 66% in simulations [18]. Our prior work observed that commu-

nication intensive benchmarks slow down by as much as 120% in

controlled experiments on a 1296-node three-level fat-tree [30].

Alongside fat-trees, the dragonfly interconnect [21] is a popular

choice for HPC clusters, so many studies of inter-job interference

have focused on dragonfly as well, both on real systems and in

simulation [4, 7, 14, 27, 30, 35].

8 CONCLUSION
In this paper we have addressed the problem of inter-job network

interference on HPC clusters. Researchers have demonstrated that

this type of interference leads to system performance degradation

and individual job performance variability [6–8, 30]. Most exist-

ing mitigation techniques focus on using routing to mitigate the

effects of interference, but it is also possible to leverage scheduling

policies that guarantee dedicated network partitions to jobs. The

downside of all such existing scheduling approaches is lowered

system utilization, which discourages widespread adoption.

Thus, in this paper we have designed and implemented Jig-

saw, the first interference-free scheduler for three-level fat-trees to

achieve system utilization at or above 95% under most workloads.

Because system utilization under Jigsaw is close to that of traditional

scheduling, we find that Jigsaw typically leads to improvements

in job turnaround time and throughput when job performance im-

provements are taken into account. In addition, Jigsaw is simpler

to implement than existing routing schemes that aim to mitigate

interference, while providing guaranteed freedom from interfer-

ence. Since each job is guaranteed network isolation, application

developers can focus their efforts on optimizing intra-job network

performance without worrying about network traffic outside their

control, and performance variability due to inter-job network in-

terference is eliminated. Finally, Jigsaw schedules jobs quickly on

clusters of 5000 nodes or more, making its use on existing HPC

systems both practical and beneficial. Our work shows that the use

of Jigsaw on fat-tree clusters greatly improves system performance

at little cost to utilization.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation under Grant No. 1526015. We are also indebted to the

following people for their helpful feedback: Abhinav Bhatele, Bronis

de Supinski, Kate Isaacs, Nikhil Jain, Michelle Strout, Xin Yuan, and

the anonymous reviewers. In addition, Stephen Herbein provided

us with the Cab traces used in our experiments.

REFERENCES
[1] N. R. Adiga, G. Almasi, Y. Aridor, R. Barik, D. Beece, R. Bellofatto, G. Bhanot, R.

Bickford, M. Blumrich, and A. A. Bright. 2002. An Overview of the Blue Gene/L

Supercomputer. In Supercomputing.
[2] Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen Her-

bein, Helgi I. IngÃşlfsson, Joseph Koning, Tapasya Patki, Thomas R.W. Scogland,

Becky Springmeyer, and Michela Taufer. 2020. Flux: Overcoming scheduling

challenges for exascale workflows. Future Generation Computer Systems 110
(2020), 202–213.

[3] Vaclav E. Benes. 1965. Mathematical Theory of Connecting Networks and Telephone
Traffic (1st ed.). Academic Press.

[4] Abhinav Bhatele, Nikhil Jain, Yarden Livnat, Valerio Pascucci, and Peer-Timo

Bremer. 2016. Analyzing Network Health and Congestion in Dragonfly-based

Systems. In International Parallel and Distributed Processing Symposium.

[5] Abhinav Bhatele and Laxmikant V Kale. 2008. Application-specific topology-

aware mapping for three dimensional topologies. In International Symposium on
Parallel and Distributed Processing.

[6] Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, and Katherine E. Isaacs.

2013. There goes the neighborhood: performance degradation due to nearby jobs.

In Supercomputing.
[7] Abhinav Bhatele, Jayaraman J. Thiagarajan, Taylor Groves, Rushil Anirudh,

Staci A. Smith, Brandon Cook, and David K. Lowenthal. 2020. The Case of

Performance Variability on Dragonfly-Based Systems. In International Parallel
and Distributed Processing Symposium.

[8] Sudheer Chunduri, Kevin Harms, Scott Parker, Vitali Morozov, Samuel Oshin,

Naveen Cherukuri, and Kalyan Kumaran. 2017. Run-to-run Variability on Xeon

Phi Based Cray XC Systems. In Supercomputing.
[9] Bronis de Supinski. 2020. Personal Communication. (2020).

[10] Jens Domke and Torsten Hoefler. 2016. Scheduling-Aware Routing for Super-

computers. In Supercomputing.
[11] A. Faraj and X. Yuan. 2005. Message Scheduling for All-to-All Personalized

Communication on Ethernet Switched Clusters. In International Parallel and
Distributed Processing Symposium.

[12] Dror G. Feitelson. 2018. Logs of Real Parallel Workloads from Production Systems.

https://www.cse.huji.ac.il/labs/parallel/workload/logs.html.

[13] Juan J. Galvez, Nikhil Jain, and Laxmikant V. Kale. 2017. Automatic Topology

Mapping of Diverse Large-Scale Parallel Applications. In International Conference
on Supercomputing.

[14] Taylor Groves, Yizi Gu, and Nicholas J. Wright. 2017. Understanding Performance

Variability on the Aries Dragonfly Network. In International Conference on Cluster
Computing.

[15] Philip Hall. 1935. On Representatives of Subsets. Journal of the London Mathe-
matical Society s1-10, 1 (1935), 26–30.

[16] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2008. Multistage

Switches are not Crossbars: Effects of Static Routing in High-Performance Net-

works. In International Conference on Cluster Computing.
[17] Torsten Hoefler and Marc Snir. 2011. Generic topology mapping strategies for

large-scale parallel architectures. In International Conference on Supercomputing.
[18] Nikhil Jain et al. 2017. Predicting the Performance Impact of Different Fat-Tree

Configurations. In Supercomputing.

[19] Nikhil Jain, Abhinav Bhatele, Xiang Ni, Todd Gamblin, and Laxmikant V. Kale.

2017. Partitioning Low-diameter Networks to Eliminate Inter-job Interference.

In International Parallel and Distributed Processing Symposium.

[20] Andrzej Jajszczyk. 2003. Nonblocking, repackable, and rearrangeable Clos net-

works: fifty years of the theory evolution. IEEE Communications Magazine 41, 10
(2003), 28–33.

[21] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008. Technology-

Driven, Highly-Scalable Dragonfly Topology. SIGARCH Comput. Archit. News 36
(June 2008), 77–88. Issue 3.

[22] Jason Lee, Zhou Tong, Karthik Achalkar, Xin Yuan, and Michael Lang. 2016.

Enhancing InfiniBand with OpenFlow-Style SDN Capability. In Supercomputing.
[23] C.E. Leiserson. 1985. Fat-trees: Universal Networks for Hardware-Efficient Su-

percomputing. IEEE Transactions on Computers 34, 10 (October 1985).
[24] Hans Meuer, Erich Strohmaier, Jack Dongarra, and Horst Simon. 2009. “Top500

Supercomputer Sites”. http://www.top500.org.

[25] P. Patarasuk and X. Yuan. 2007. Bandwidth Efficient All-reduce Operation on

Tree Topologies. In Workshop on High-level Parallel Programming Models and
Supportive Environments.

[26] Samuel A. Pollard, Nikhil Jain, Stephen Herbein, and Abhinav Bhatele. 2018.

Evaluation of an Interference-Free Node Allocation Policy on Fat-Tree Clusters.

In Supercomputing.
[27] Daniele De Sensi, Salvatore Di Girolamo, and Torsten Hoefler. 2019. Mitigating

Network Noise on Dragonfly Networks through Application-Aware Routing. In

Supercomputing.
[28] Arjun Singh. 2005. Load-Balanced Routing in Interconnection Networks. Ph.D.

Dissertation. Dept. of Electrical Engineering, Stanford University.

[29] Joseph Skovira, Waiman Chan, Honbo Zhou, and David A. Lifka. 1996. The

EASY-LoadLeveler API Project. In Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing.

[30] Staci A. Smith, Clara Cromey, David K. Lowenthal, Jens Domke, Nikhil Jain,

Jayaraman J. Thiagarajan, and Abhinav Bhatele. 2018. Mitigating Inter-Job

Interference Using Adaptive Flow-Aware Routing. In Supercomputing.
[31] Staci A. Smith and David K. Lowenthal. 2021. Jigsaw: A High-Utilization,

Interference-Free Job Scheduler for Fat-Tree Clusters (Extended Version). http:

//dkl.cs.arizona.edu/publications/papers/hpdc21-extended.pdf.

[32] Staci A. Smith and David K. Lowenthal. 2021. Jigsaw HPDC 2021 Submisson

Repository. https://osf.io/vxk7m/?view_only=None.

[33] Flux Framework Team. 2020. 2014 Cab Supercomputer Job Scheduling Traces.

https://doi.org/10.5281/zenodo.3908771

[34] Sudharshan S. Vazhkudai et al. 2018. The Design, Deployment, and Evaluation

of the CORAL Pre-Exascale Systems. In Supercomputing.
[35] Xu Yang, John Jenkins, Misbah Mubarak, Robert B. Ross, and Zhiling Lan. 2016.

Watch Out for the Bully! Job Interference Study on Dragonfly Network. In Super-
computing.

[36] Eitan Zahavi. 2010. D-Mod-K routing providing non-blocking traffic for shift
permutations on real life fat trees. CCIT Report #776. Israel Institute of Technology.

[37] Eitan Zahavi, Alexander Shpiner, Ori Rottenstreich, Avinoam Kolodny, and Isaac

Keslassy. 2016. Links as a service (LaaS): Guaranteed tenant isolation in the

shared cloud. In Symposium on Architectures for Networking and Communications
Systems.

https://www.cse.huji.ac.il/labs/parallel/workload/logs.html
http://www.top500.org
http://dkl.cs.arizona.edu/publications/papers/hpdc21-extended.pdf
http://dkl.cs.arizona.edu/publications/papers/hpdc21-extended.pdf
https://osf.io/vxk7m/?view_only=None
https://doi.org/10.5281/zenodo.3908771

	Abstract
	1 Introduction
	2 Background
	2.1 Fat-Tree Networks
	2.2 Inter-Job Network Interference
	2.3 Existing Mitigation Approaches

	3 Jigsaw Theory
	3.1 Motivation
	3.2 Formal Conditions
	3.3 Full Bandwidth Proof Sketch

	4 Jigsaw Implementation
	5 Evaluation Setup
	5.1 Clusters and Traces
	5.2 Schemes for Comparison
	5.3 Implementation Details
	5.4 Experiment Parameters

	6 Results
	6.1 Average System Utilization
	6.2 Average Job Turnaround Time
	6.3 Makespan
	6.4 Scheduling Time

	7 Related Work
	8 Conclusion
	References

