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ABSTRACT
The use of clouds to execute high-performance computing
(HPC) applications has greatly increased recently. Clouds
provide several potential advantages over traditional super-
computers and in-house clusters. The most popular cloud is
currently Amazon EC2, which provides a fixed-cost option
(called on-demand) and a variable-cost, auction-based op-
tion (called the spot market). The spot market trades lower
cost for potential interruptions that necessitate checkpoint-
ing; if the market price exceeds the bid price, a node is taken
away from the user without warning.

We explore techniques to maximize performance per dol-
lar given a time constraint within which an application must
complete. Specifically, we design and implement multiple
techniques to reduce expected cost by exploiting redundancy
in the EC2 spot market. We then design an adaptive algo-
rithm that selects a scheduling algorithm and determines
the bid price. We show that our adaptive algorithm exe-
cutes programs up to 7x cheaper than using the on-demand
market and up to 44% cheaper than the best non-redundant,
spot-market algorithm.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Cost of Re-
source Provisioning

Keywords
Cloud; Cost; Resource Provisioning; Fault-tolerance

1. INTRODUCTION
Traditionally, high-performance computing (HPC) users

execute scientific applications on dedicated HPC clusters
hosted by national laboratories, companies or universities,
typically managed through some kind of block allocation or
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grant mechanism. However, recently the use of cloud re-
sources to execute HPC applications is becoming a popular
alternative, due to factors such as machine availability and
lower wait queue time. Success stories of scientific appli-
cations at HPC scale on the cloud have appeared in the
popular press [13]. Unlike standard HPC clusters, however,
cloud resources come with variable usage costs for individ-
ual users. Cloud resource providers, such as Amazon EC2,
offer several pay-as-you-go offerings for purchasing cloud re-
sources, which presents a complex optimization problem:
What is the most cost effective strategy to execute a given
high-performance computing application?

Often, HPC users simply execute their applications on
EC2 in the on-demand market, which provides dedicated
access to a set of machines for a fixed cost per unit time.
However, if the application completes before the deadline
by which the user requires the results, a second market, the
EC2 auction (“spot”) market, can result in lower cost. While
the spot market can provide resources at low cost, jobs are
terminated immediately if the current spot price exceeds the
bid price. Thus, applications must checkpoint periodically
to use the resources productively. Overall, the spot market
requires two key decisions: (1) how much to bid; and (2)
when to checkpoint.

We explore algorithms to determine the bid price and
when to schedule checkpoints for HPC applications that exe-
cute on EC2. The algorithms attempt to minimize total user
cost while honoring a user-specified application time bound.
In one of our key contributions, our algorithms exploit re-
dundancy across multiple groups of EC2 resources, so-called
zones, to obtain higher availability. We show that, despite
higher up-front cost, redundancy often results in lower to-
tal application cost because of less frequent downtimes and
therefore lower checkpoint frequency.

Each algorithm has its strengths and weaknesses, which
leads us to an adaptive algorithm that automatically selects
from the algorithms based on current conditions. Our adap-
tive algorithm uses past spot price behavior to determine
an effective algorithm along with an effective bid price. We
also consider a relatively simple but often effective scheme
that simply bids an excessively large amount, which avoids
termination at the risk of higher cost.

We make the following contributions in the paper.

‚ We show that on the EC2 spot market, checkpoint-



insertion algorithms using redundancy typically result
in lower cost than their non-redundant counterparts.

‚ We analyze and categorize situations in which the dif-
ferent algorithms perform well.

‚ We develop an adaptive approach that automatically
selects an algorithm based only on past spot price be-
havior.

Our evaluation revealed several insights. Compared to the
naive approach of using on-demand, our adaptive scheme
yields up to 7x lower cost. In addition, our adaptive scheme
executes programs up to 44% cheaper than the best-case
existing non-redundant algorithms that use the spot mar-
ket. In comparison to an approach in which a user simply
bids a large amount in order to avoid job termination, our
adaptive scheme provides a significant advantage in avoid-
ing situations in which the cost is much larger than simply
using the on-demand market.

The paper is organized as follows: Section 2 provides the
necessary background, and Section 3 describes how we ex-
ploit redundancy. We describe our algorithms in Section 4,
the experimental setup in Section 5, and the experimental
results in Section 6. These results motivate the need for
an adaptive policy, which is described and evaluated in Sec-
tion 7. We then describe related work in Section 8 and
conclude in Section 9.

2. OVERVIEW
In this section we first describe the mechanics of the EC2

spot market and define the problem of selecting a fault-
tolerance mechanism for time-constrained runs. Next, we
describe why our work on the spot market on Amazon EC2
is relevant, in general, to clouds. Finally, we describe our
system model.

2.1 EC2 Spot Market
The standard offering from Amazon EC2, known as on-

demand pricing, guarantees resource availability for an hour
of use at a fixed rate. At the end of every hour, the contract
between the user and the cloud provider is renewed, and
resource usage is granted for the next hour. Alternatively,
EC2 auctions unused resources, which Amazon denotes the
spot market. Spot prices can be significantly less than their
on-demand counterparts for high-end EC2 resources. Pop-
ular HPC offerings such as Cluster Compute Eight Extra
Large (CC2) instances are as much as eight times less expen-
sive on the spot market as their corresponding on-demand
prices. On the spot market, the user selects a bid price,
and EC2 grants the resource if the bid is higher than the
(EC2-maintained and demand-based) spot price. However,
the system terminates the resource immediately and without
warning if the spot price moves above the bid.

The spot market employs the following set of rules:

‚ Hour-boundary pricing: The user is charged for the
hour based on the spot price (not the bid price) at the
start of the hour. Spot price movements within the
user’s bid price do not affect the rate for that hour.

‚ Partial-hour usage: Partial-hour resource usage due to
abrupt termination by EC2 is not charged to the user.

‚ Fixed bid: Once a spot request is submitted, the user
cannot alter the bid. To change the bid, the user must
cancel the spot request and submit a new request.

‚ Abrupt termination: EC2 does not notify the user be-
fore terminating a resource.

‚ Uncertain wait time: The user does not acquire a re-
source when the spot price is larger than the bid price.

To exploit low spot market prices for running tightly cou-
pled HPC applications, one must use fault-tolerance tech-
niques. Generally, HPC applications use checkpointing for
such situations, which has a tradeoff between the overhead
of checkpoints and how much computation is lost when a
failure occurs. Previous work in this area focuses on pre-
dicting failures by analyzing real-time spot price data (see
Section 8).

Running applications on the spot market does not provide
a guaranteed completion time. Many scientific HPC ap-
plications must complete within a user-defined time bound
in order to be useful. The bound depends upon context
(e.g., “finish the weather prediction for tomorrow before the
evening newscast at 7pm”). Typically, the deadline is fur-
ther from the current time than the application takes to
complete assuming uninterrupted execution. The difference
between the deadline and the earliest possible completion
time is slack. Given non-zero slack, the spot market can be
used. However, the application then requires an algorithm
to schedule checkpoints that minimizes the total cost.

2.2 Relevance to General Clouds
Our research on Amazon EC2 is relevant and applicable

to the cloud in general. Amazon EC2 has become a popular
platform for running scientific applications cost-effectively
in recent years. In the HPC arena, Amazon EC2 has been
evolving to provide top-of-the-line, HPC-grade compute re-
sources securing a high ranking in the well-known Top-500
supercomputer list [15]. Stories of hero-type runs on EC2
frequently appear in the news [13]. Recent success sto-
ries on running scientific applications on the spot market
present an attractive performance-per-dollar trade-off com-
pared to existing, institution-owned HPC clusters [14]. A
recent study shows that Amazon EC2 is significantly larger
in compute capacity than their competition combined [4].
Consequently, the problem of selling unused capacity during
sluggish demand is much more important to Amazon than
other providers and will continue to exist for current and
future cloud providers. Note also that our work, while tar-
geted towards MPI applications in this paper, is in no way
dependent on MPI.

Amazon’s spot price mechanism is, in our view, not likely
to change in the future. The objective behind the way Ama-
zon’s spot market has been structured is two-fold. One goal
is to attract a sufficient number of users at a significantly dis-
counted price compared to on-demand, so that the operating
costs of already running unused instances is recovered. The
second goal is to prevent users from monopolizing resources
through the spot market, which would decrease Amazon’s
profit. The discounted nature of spot prices satisfies the first
objective. On the other hand, Amazon provides no guaran-
tees on instance up time via abrupt termination along with
a fixed bid price, which accomplishes the second objective.
Work by Ben-Yehuda et al. [1] on statistically analyzing the



Term Description

tc Checkpoint cost
tr Restart cost
B User’s bid price
S Spot price
C Total uninterrupted computation time
Cr Remaining computation time
D User-defined time bound (deadline)
P Progress made
T Current time
Tr Remaining time
Tu Instance up-time
Tl Slack time
Ts Scheduled checkpoint time

Table 1: System model variables.

spot prices concluded that the spot prices are not purely
based on user bid or resource supply, and hence users may
not be able to make well-informed predictions of the spot
prices over a long period of time.

Modifications to the spot market are full of practical prob-
lems. For example, instead of abrupt termination, the user
could be provided with a notification beforehand. Another
modification could be to notify the user about an out-of-bid
situation and charge at a higher rate for a shorter billing
cycle (less than one hour), allowing for a checkpoint before
termination. Briefly, such schemes generally are undesirable
to Amazon, because they could lead to fewer users using the
(higher profit-generating) on-demand market. Appendix A
discusses in detail the ramifications of such modifications.

2.3 System Model
Next, we present definitions for our underlying system

model of both the Amazon EC2 spot market and checkpoint
scheduling mechanisms. EC2 offers top-of-the-line HPC com-
pute clusters, labeled CC2 instances, with node performance
competitive to computing resources found on traditional ded-
icated HPC clusters at universities or national laboratories.
In this paper, based on our previous experience as well as
that of other groups [11], we use the spot market to run only
CC2 instances and ignore other inferior clusters.

The user specifies an experiment as a configuration of a
number of nodes, problem size, execution time and job com-
pletion deadline. We denote as C the (user-provided) exe-
cution time for the given number of nodes and problem size,
i.e., the time to execute the application under the EC2 on-
demand option with no system interruptions. The user also
provides the deadline, which we denote as D, which is the
time span in which the job must complete (D ě C). We de-
note the slack between the deadline and the given execution
time as Tl (Tl = D ´ C).

Let B be the user’s bid price, which is the maximum
amount the user is willing to pay per hour, and let S be
the spot price. When S exceeds B, the currently running
spot instance is terminated. Similarly, when S becomes less
than or equal to B, a currently submitted spot instance is
initiated. We assume constant checkpoint and restart costs
for a configuration denoted by tc and tr respectively. Vari-
able Ts denotes the time at which a checkpoint is initiated.
Table 1 summarizes the variables in our model.

Figure 1 provides an example. The x-axis shows the pro-
gression of time and the y-axis shows price per hour. Plot

Figure 1: Spot price movements and state transi-
tions: (a) spot price movements and progress; (b)
instance states and checkpoint-restart costs.

(a) shows a scenario on the spot market with a user bid of
B and movement over time of spot price S. Plot (b) shows
the state transitions of the instance corresponding to the
spot price movements relative to B. The instance starts at
T0 because S ă B. At time Ta, S ą B, so the instance is
terminated. When S is again less than B at time Tb, the in-
stance is re-initiated. The application restarts from its initial
state since no checkpoint was taken (so its state was lost at
Ta). The user schedules a checkpoint at Ts where the system
takes tc time to checkpoint (shown in dark grey). Termina-
tion again occurs at Tc, as does instance re-initiation at Td .
However, the application restarts from the checkpoint taken
at Ts. The restart operation R takes tr time (shown in light
grey). The user is charged the value of S at Tb for the first
hour. Net application progress, denoted by P , is shown by
the grey horizontal bar at the bottom of plot (b). Dotted
boxes denote speculative progress that is not committed by a
checkpoint. Empty boxes denote no computational progress
due to a checkpoint, a restart, or system downtime.

3. EXPLOITING REDUNDANCY
EC2 auctions computational resources at different data

centers (known as availability zones) at independent bid
prices. For applications with significant slack and low check-
point cost, bidding in a single zone results in low cost while
still meeting the deadline. However, for applications with
little slack or high checkpoint cost, or during times of spot
price volatility, bidding only in a single zone can incur:

‚ Low system availability while the spot price is high;

‚ High checkpoint overhead; or,

‚ High rollback costs.

For such situations, the user could simply increase the
bid. However, this choice does not guarantee high system
availability at low cost, due to the nature of spot price move-
ments (see Section 6). Thus, we introduce redundancy as an
alternate, complementary fault-tolerance mechanism.
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Figure 2: Availability for the three CC2 zones in the
US-East region and the combined availability during
a 15 hour period on December 19, 2012.

3.1 Redundancy in Independent Zones
Figure 2 shows an example of three CC2 zones in the US-

East region. The solid portions show when the zones are up,
and the textured portions when they are down. The top bar
shows the combined up time; i.e., the times that at least one
zone is up. Clearly, redundancy demonstrates potential for
significantly increased up time in situations where individual
zones have volatility.

However, for redundancy to be a viable solution, the move-
ments in spot prices in different EC2 zones must be suf-
ficiently independent. To investigate the interdependence
of prices in different zones, we employed a Vector Auto-
Regression, using the Akaike criteria to determine the op-
timal number of lags. As expected, each zone has a strong
dependency on its own price history. Though there is some
statistical significance in the dependencies across zones, the
size of the effect is consistently 1-2 orders of magnitude
smaller than within a zone. This difference of magnitude
in same-zone vs. across-zone lagged price effects indicates
an opportunity for computational arbitrage.

3.2 General Algorithm to Determine Check-
points with Redundant Zones

In order to use the spot market efficiently across multiple
zones, we need new algorithms to determine when to check-
point. These algorithms lead to a set of policies to optimize
use of spot market resources.

We start with the base algorithm that Algorithm 1 shows
and extend it in the following section. The base algorithm
alone extends prior work in two ways: first, it guarantees
completion within the user time bound D; and second, it
allows use of multiple zones. Our algorithm takes several
parameters as input—the number of zones (degree of redun-
dancy), N ě 1; the bid and spot prices (B and Si); and the
checkpoint and restart costs (tc and tr) — and determines
when to initiate checkpoints.

A zone is considered up when a spot instance is requested,
and B ě S for the zone. Each zone runs a separate MPI
application in its entirety with a fixed number of (user-
specified) virtual machine instances. In the algorithm, Instancei
refers to the application executing on zone i (@i P N). Based
on the conditions on the spot market and the remaining time

Algorithm 1 Algorithm framework to schedule check-
points. Inputs are number of zones, N , bid and spot prices
(B and Si), and checkpoint and restart costs (tc and tr).
Instancei is initially down (@i, 1 ď i ď N).

1: while Tr != 0 && Cr != 0 do
2: for i = 1 to N do
3: if Instancei is up and B ă Si then
4: Instancei Ð down;
5: else if Instancei is down and B ě Si then
6: Instancei Ð waiting;
7: end if
8: end for
9: Tr Ð D ´ T
10: Cr Ð C ´ P
11: if (Tr ““ C ´ P ` tc ` tr) then
12: /* switch to on-demand to meet deadline */
13: Checkpoint();
14: RestartOnDemand(); /* single zone */
15: else
16: if (D i P N | Instancei is up) then
17: if (CheckpointConditionpq) then
18: P Ð Checkpoint();
19: for i = 1 to N do
20: if Instancei is waiting then
21: Instancei Ð up;
22: RestartFromRecentCheckpoint();
23: ScheduleNextCheckpoint();
24: end if
25: end for
26: end if
27: else
28: /* No zone is up */
29: for i = 1 to N do
30: if Instancei is waiting then
31: Instancei Ð up;
32: RestartFromPreviousCheckpoint();
33: ScheduleNextCheckpoint();
34: end if
35: end for
36: end if
37: end if
38: Compute(); /* run on all zones that are up */
39: end while

Tr, the algorithm chooses between on-demand and the spot
market and selects N if the spot market is chosen. We as-
sume that the algorithm monitors application progress, P ,
through an interface; e.g. MPI_Pcontrol is often used to
indicate iteration completion in iterative MPI applications.
Because the algorithm continuously monitors Tr, it can po-
tentially handle changes in the input parameters such as the
deadline D (modified by the user during application run-
time) or variation in application performance (which affects
P ).

Lines 2-8 update the state of Instancei based on B and
Si. Lines 9 and 10 update the current Tr and Cr respec-
tively. Line 11 ensures that the deadline D will be met
by using on-demand market if the remaining time is equal
to the remaining computation plus migration overhead (i.e,
a checkpoint and a restart). If at least one zone is up
and CheckpointConditionpq is true, then lines 16-18 take



Algorithm 2 ScheduleNextCheckpointpq for Markov-Daly
policy.

1: ScheduleNextCheckpointpq
2: {
3: ErTus Ð expected uptime(B, i P N);
4: Ts Ð T` opt ckpt(ErTus, tc);
5: }

a checkpoint, update progress and line 23 schedules a new
checkpoint.

To avoid checkpoint and restart overheads every time a
zone is re-started, we introduce waiting state. Lines 5-6
mark a zone that is eligible to run as waiting (B ě Si; but
no spot instance is requested on the zone). Thus, the zone
can receive a checkpoint from another zone before starting.
A running zone that takes a checkpoint at line 18 restarts
waiting zones (lines 19-22) from that checkpoint by request-
ing a spot instance on the zone and marks them as running.
If no zone is running, lines 29-33 restart all waiting zones
from a previous checkpoint, the zones are marked as run-
ning, and the next checkpoint is scheduled. The algorithm
is generic and can accept any CheckpointConditionpq and
ScheduleNextCheckpointpq. We define each policy, as de-
scribed in the next section, by these two functions.

4. REDUNDANCY-BASED POLICIES
In this section we describe our policies that exploit re-

dundancy. In turn, we describe our Periodic, Markov-Daly ,
Edge, and Threshold checkpointing policies.

4.1 Periodic policy — checkpointing at hour
boundaries

Given N zones, ScheduleNextCheckpointpq (see Algo-
rithm 1) schedules a checkpoint at regular intervals (at the
end of every hour in this paper) such that the checkpoint
completes within the hour boundary (Ts “ hour ´ tc) [18].
The user is charged S at the end of each hour, as long as B ą
S throughout the hour. Function CheckpointConditionpq
returns true when T “ Ts.

4.2 Markov-Daly policy — predicting up time
Building on previous work [2] to predict up time for single

zone cases (and without considering checkpointing), we use
a variant of the Chapman-Kolmogorov equation to get the
expected up time of a zone using the zone’s price history.
Algorithm 2 shows the basic idea behind
ScheduleNextCheckpointpq: first, calculate the expected
uptime given a bid price; then, use that expected up time to
determine the optimal checkpoint frequency. The Markov
model produces the expected up time. We then use Daly’s
equation [3], a well-known tool to calculate optimal check-
point frequency to safeguard against hardware failures, to
obtain the optimal checkpoint frequency. As with Periodic,
CheckpointConditionpq simply checks if T “ Ts. We calcu-
late ErTus for each zone on line 3 of Algorithm 2. For zones
with independent price movements (see Section 3), the com-
bined ErTus is the sum of ErTus of individual zones. Thus,
ErTus for the replication-based scheme is necessarily larger
than with individual zones. We combine ErTus and tc as in-
put to Daly’s equation to calculate the optimal checkpoint

Figure 3: Rising Edge checkpoint policy. Part (a)
shows user bid and spot price movements; Part (b)
shows instance states, checkpoint-restart events and
costs, and net progress.

frequency, which decreases as N increases. The Appendix
fully details our Markov approach.

4.3 Rising Edge policy — reacting to rising
price

This algorithm (referred to as Edge hereafter) sets
CheckpointConditionpq from Algorithm 1 to true whenever
an upward movement occurs in the spot price S in an execut-
ing zone [18]. The upward movement indicates that S ą B
might occur soon. Hence by taking a checkpoint, progress is
saved. Function ScheduleNextCheckpointpq is a no-op, be-
cause the checkpoint decision is made instantaneously based
solely on current values of B and S. Figure 3 shows the steps
involved in the Edge policy. For a zone with relatively stable
spot prices, the Edge policy saves checkpoint costs compared
to periodic checkpointing, but can lose substantial progress
if the spot price increases sharply.

4.4 Threshold checkpoint scheduling policy —
reducing cost of Edge policy

Previous work on scheduling checkpoints in a single zone [7]
describes an algorithm that is an outgrowth with the Edge
policy. The algorithm operates on two thresholds.
CheckpointConditionpq is set to true if either of the fol-
lowing two conditions is true in an executing zone. First,
a price threshold PriceThresh is calculated as the average
of minimum spot price Smin and B. The first condition is
true when S shows a rising edge and PriceThresh ď S.
Second, a time threshold T imeThesh is calculated as the
probabilistic average up time of a zone. Another variable,
execution time at B, equals the up time at bid price B since
the most recent restart or checkpoint. The second condi-
tion is true when T imeThresh is less than execution time
at B. ScheduleNextCheckpointpq schedules an immediate
checkpoint if either condition is true.

5. SIMULATION SETUP
This section describes our assumptions about the working

environment, applications and checkpointing policies. We
make the following assumptions about experiment configu-
rations to evaluate policies presented in the paper.



‚ The problem size and number of MPI tasks are fixed
for an experiment.

‚ Bid prices for all nodes in a zone are identical.

‚ Checkpoints are stored onto an I/O server that runs
in an on-demand instance as long as spot instances are
running.

HPC users typically run MPI applications on the spot
market along with one or more I/O instances through the on-
demand option with persistent storage (e.g., EBS volumes
on EC2) attached [9]. A typical I/O server setup (non-CC2)
at the on-demand price costs only a fraction of the total
cost of running a tightly coupled MPI application at scale.
Hence, we ignore the cost of running such I/O server setup
in our experiments. A sophisticated multi-I/O server setup
has been discussed elsewhere and is beyond the scope of this
work [9].

Recovery costs for an MPI application on the spot mar-
ket include instance queuing delay, which is the time be-
tween the submission of the spot request (S ď B) to the
time when the instance is accessible. Previous studies have
shown that Amazon EC2 instances incur a measurable boot
time on the on-demand option (order of several minutes in
the worst-case) [11]. We measured the queuing delay on
the spot market for CC2 instances by submitting spot in-
stance requests at 7:00 AM and 7:00 PM every day for two
months with the bid price equal to the instantaneous spot
price. We measured the time between the submission of the
spot request to the time when the instance was available
for login by attempting to establish an SSH connection to
the instance every ten seconds after the instance became
“running”. We observed an average queuing delay of 299.6
seconds with best-case and worst-case delays of 143 seconds
and 880 seconds, respectively. The queuing delay on the
spot market contributes to an added penalty to application
recovery cost.

Another major factor contributing to checkpoint costs orig-
inates from inferior network bandwidth on the cloud. We
confirm previous findings that showed that when using system-
level checkpointing, MPI benchmarks from the NAS bench-
mark suite showed up to 200 seconds of overhead for small
problem sizes at up to 64 tasks [5]. Due to limited funds, we
could not perform extensive runs on EC2 to measure check-
point costs for real applications with large working sets. Pre-
vious work shows that real applications spend a significant
portion of the hour in checkpoint and restart operations (up
to tens of minutes) [9] and we therefore assume checkpoint
and restart overheads compatible with the range of existing
studies of 300 to 900 seconds. For simplicity, we also assume
checkpoint and restart costs are equal. Although resource
acquisition on the spot market involves variable delay even
in perfect conditions (S ď B), our assumptions about fixed
restart costs do not negatively affect the correctness of our
work.

For the purpose of simulation, we assume an uninter-
rupted application execution time of 20 hours. We choose
slack values of 15% to 50% (3 to 10 hours). We use the spot
price history of CC2 instances with Linux of over 12 months
(between December 2012 to January 2014). The state of
spot prices in all zones is sampled at a 5-minute interval for
all three zones. Spot price movements within a 5-minute
interval (although present) are rare and hence the loss in

precision does not affect the key findings in our work. We
observe several low, moderate and high spot price volatility
windows in our 12-month data. However, for representative
results, we use low spot price volatility and high spot price
volatility windows for evaluation of our policies over differ-
ent spot price behaviors. For low spot price volatility win-
dow, we use the spot price data for March 2013 with average
spot price of $0.30 and a variance of less than 0.01 in each
zone. Similarly, for the high spot price volatility window, we
use the spot price data for January 2013 with average spot
prices between $0.70 to $1.12 and a variance of up to 2.02
in each zone. We run 80 experiments over partially overlap-
ping chunks in each spot price window. To build the system
state for Markov-Daly policies, we use a price history size of
2 days and we assume bid prices between $0.27 to $3.07 in
steps of $0.20. We use bid prices larger than $2.40 to avoid
failures due to occasional spot price spikes of up to $3.00.

6. EVALUATION OF POLICIES
We now show the effectiveness of the various policies dis-

cussed in Section 4. Figure 4 compares different single-zone
checkpointing policies with the best-case redundancy-based
policy. The comparison is shown for low and high volatil-
ity windows as well as low and high slack values; in addi-
tion, the checkpoint cost is fixed at 300 seconds. For each
single-zone checkpoint policy, we merge the results from all
three individual zones (each of which could be selected by a
user) to generate one boxplot. Similarly, due to space limi-
tations and consistency, we pick the best-case redundancy-
based policy for each experiment, though our redundancy-
based policies perform fairly similarly (with Markov-Daly
performing slightly better than others). We observed di-
minishing returns with N ď 2 zones for redundancy, and so
we do not include this case in our evaluation. The x-axis
shows checkpoint scheduling policies, and the y-axis shows
the total cost per instance in dollars. The boxplot shows
the variation in cost of execution at different slack values
(denoted Tl) for low (top) and high (bottom) volatility win-
dows. For plots (a) and (c), Tl “ 15% of computation time,
and for plots (b) and (d), Tl “ 50%. Due to limited space,
we do not show the boxplots for high checkpoint cost (900
seconds). We summarize which policies have lowest cost in
Table 2 (low checkpoint costs) and Table 3 (high checkpoint
costs).

We make several observations from the boxplots. First, at
low Tl (plots (a) and (c)), spot price volatility determines if
single-zone or redundancy-based policy results in the least
cost. In general, low volatility results in higher availability
(uptime) per zone at low bid. For time-constrained execu-
tion, higher availability on the spot market results in lower
overall costs due to lower use of the (expensive) on-demand
option. In the case of low volatility (plot (a)), Periodic is
superior due to low checkpoint cost (which in our implemen-
tation of Periodic is incurred hourly) as well as infrequent
restarts (because with low volatility, there are fewer fail-
ures). This is true even at low bids. On the other hand, for
high volatility, redundancy generally results in lower cost
(plot (c)). This is because of (1) lower checkpoint overhead
and (2) higher combined system availability at a lower bid.
For example, in the case of low Tl with high volatility (plot
(c)), the best-case redundancy-based policy results in 23.9%
lower costs than Periodic, which is the best-case existing
single-zone policy in this case.
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Figure 4: Comparison of single-zone checkpoint and best-case redundancy-based policies for checkpoint cost
= 300 seconds at B = $0.27, $0.81 and $2.40. The comparison is shown for two data-sets: low volatility (top
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($2.40/hr), and a horizontal black line at $5.40 shows reference cost at lowest spot price ($0.27/hr). Protocol
abbreviations are Threshold, Rising Edge, Periodic, Single-Zone Markov-Daly, and Redundancy-based (best-
case)

Second, at a high Tl (plots (b) and (d)), single-zone poli-
cies generally show lower costs than redundancy-based poli-
cies because a single zone has a sufficiently high proba-
bility of executing solely on the spot market at a low bid
price. Again, low or high volatility influences the cost dif-
ference between single-zone and redundancy-based policies.
In case of low volatility (plot (b)), Periodic and single-zone
Markov-Daly show lower median costs (confirming prior re-
sults for Periodic [18]). For high volatility (plot (d)), the
best-case redundancy-based policy shows median costs sim-
ilar to single-zone policies. In this case, median costs depend
on particular price movements in individual experiments.

Third, redundancy generally shows better median costs
at lower bid prices (B ď $0.81) due to the lower possibility
of paying for all three zones at a higher combined avail-
ability. Higher Tl results in lower worst-case costs but does
not significantly affect the median costs of redundancy-based
policies. This is because the checkpoint/restart overhead is
already low and system availability is already high, so there
is little added benefit from additional slack. As mentioned
earlier, Table 2 summarizes the results for low checkpoint
costs.

Table 3 summarizes the best policies for configurations
with large checkpoint costs (900 seconds). For low and high
volatility windows with low Tl, the best-case redundancy-

based policy yields the lowest median-costs. (up to 56%
better than the best single-zone policy). For high Tl, low
spot price volatility results in single-zone Periodic as well as
Markov-Daly yielding the lowest median costs; this is due to
their low checkpoint frequency when slack is high. For high
spot price volatility and high Tl, Markov-Daly yields the
lowest median costs. We observe that Edge and Threshold
policies result in high median costs due to high recovery costs
resulting from inadequate checkpointing at low bid prices.
This confirms prior results [8]. Hence, we exclude Edge and
Threshold in all further evaluation.

Spot price
Slack

volatility 15% 50%

Low Periodic Periodic/Markov-Daly

(bid = $0.81) (bid = $0.81)

High Redundancy Markov-Daly

(bid = $0.81) (bid = $0.81)

Table 2: Optimal policies for the experiments with
tc “ 300 seconds, low (15%) and high (50%) slack for
low and high spot price volatility windows.



Spot price
Slack

volatility 15% 50%

Low Redundancy Periodic/Markov-Daly

(Bid = $0.27 ) (Bid = $0.81)

High Redundancy Markov-Daly

(Bid = $0.81) (Bid = $2.40)

Table 3: Optimal policies for the experiments with
tc “ 900 seconds, low (15%) and high (50%) slack
and low and high spot price volatility windows.

Summary.
The critical point here is that for different experiment

configurations and bid prices, different protocols result in
the best costs. Spot price volatility also influences the me-
dian costs. In addition, the boxplots above show only a
small subset of the permutations of bid price, checkpoint
policy and number of zones from which the user can select.
Note that in general single-zone Periodic shows better me-
dian costs at B “ $0.81, whereas, higher bid prices result in
better costs for single-zone Markov-Daly . Higher bid prices
(after a sweet-spot) generally increase the median cost for
redundancy-based policies as a result of paying more for ad-
ditional zones. These factors motivate an adaptive mecha-
nism to select the most appropriate policy given past and
current conditions on the spot market. In the next section,
we design, implement, and evaluate such a mechanism.

7. ADAPTIVE POLICY
As we showed in Section 6, the best choice of policy changes

depending on the condition of the spot market. This section
first explains our design and implementation of an“adaptive
policy” (denoted Adaptive hereafter) that can switch check-
point or redundancy-based policies dynamically depending
on spot market conditions. Next, we evaluate Adaptive,
which shows that we achieve two broad results. The first
is that Adaptive typically results in a policy that is as good
or nearly as good as the best policy from Section 4. The
second is that Adaptive in general avoids choosing a policy
that leads to high cost.

7.1 Description
The optimal algorithm for time-constrained execution of

an experiment depends on two fixed parameters (the slack
(Tl) and the checkpoint cost ptcq), and three variables (bid
price (B), number of zones used (N), and the policy used).
It also depends on changes in the spot price (S). From a
user perspective, the problem of selecting the correct pol-
icy to optimize cost while completing in the time-bound is
nontrivial. Furthermore, the best policy changes over time
depending on S. Finally, the values of B and N need to
be chosen; the algorithms in the previous subsection do not
indicate how to choose them. In this section we describe our
novel Adaptive checkpoint scheduling scheme, which chooses
an effective policy as well as B and N .

Adaptive works as follows. First, it boot-straps by reading
the spot price history prior to the experiment start time to
load the “current state”. At each 5-minute step, Adaptive
simulates cost and computation for each permutation of B,
N , and policy; B is chosen in a range of $0.27 to $3.07 (the
upper bound covers occasional spikes) in steps of $0.20 and
N is 1, 2, or 3. During an experiment, Adaptive selects a new

permutation, if any of the following is true: (1) the current
zone has been terminated due to S ą B; (2) the billing hour
has ended; or (3) the new policy does not change the running
zone or B in the current billing hour.

A new configuration is chosen at run-time as follows. To
guarantee completion by the user’s deadline, Adaptive con-
siders the following inequality:

Cr ´ Tr ˆ P
T

ą 0 (1)

where, Cr is the remaining computation, Tr is the remain-
ing time to meet the deadline, and P

T denotes the current
rate of progress (see Table 1). Adaptive evaluates P

T for each
permutation of B, N , and policy. For a permutation, if the
left hand side of the inequality is positive, then a switch to
on-demand will occur; otherwise, only spot market will be
used at the current rate of progress (assuming for the mo-
ment that there is no cost to checkpoint and restart during
the switch to on-demand). To select the least-cost policy,
Adaptive estimates, for each permutation, (1) the time on
the spot market before the switch to on-demand and (2)
the remaining time on on-demand (using Inequality (1)).
It is straightforward to estimate the total remaining cost
based on the current rate of expenditure on the spot market
and the fixed rate of $2.40 for on-demand. Then, Adaptive
chooses the permutation with the least predicted remaining
cost. To add checkpoint and restart costs, we merely place
their sum as a term on the left-hand side of Inequality (1).

7.2 Evaluation
We show the effectiveness of Adaptive with two experi-

ments. First, we evaluate the cost-effectiveness of Adaptive
against existing protocols. Second, we compare Adaptive to
a simple but often effective policy called Large-bid [8].

7.2.1 Comparison to Single-Zone and Redundancy-
Based Protocols

Figure 5 compares Adaptive with best-case single-zone
checkpointing policies (Periodic and Markov-Daly) as well
as the best-case redundancy-based policy. As in the previous
subsection, we merge the boxplots of single-zone checkpoint
policies from each zone for a fair comparison. We observe
that B “ $0.81 generally results in better median costs com-
pared to other bid prices. Hence, we choose the bid price of
$0.81 to compare best-case costs of policies (see Figure 4).

The key point is that Adaptive is always at least competi-
tive with the best of the other three algorithms, and which is
best (and worst) changes with spot price and slack. There-
fore, Adaptive avoids situations that would lead to large
costs to the user. In the case of low volatility (plots (a), (b),
(c) and (d)), Adaptive quickly converges to the best-case
single-zone or redundancy-based policy for different Tl and
tc values, resulting in similar median as well as worst-case
costs. Specifically, low Tl values (plots (a) and (b)) result
in median costs of Adaptive that are comparable to exist-
ing policies, but show a smaller range of second and third
quartile costs (and so have low variance). Higher checkpoint
costs (tc “ 900 sec) (plot (b)) result in median cost for Adap-
tive that is up to 44.2% lower than the best-case median
cost across all bid prices for the existing single-zone policy
(which, in this case, is Periodic). Note that the comparison
is between Adaptive and the best-case existing policy—and
a user will not in general be able to determine the best-case
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Figure 5: Comparison of Adaptive policy with other policies: Periodic, Single-zone Markov-Daly and
Redundancy-based (best-case). Results for different spot price volatility windows are shown (low at the
top and high at the bottom). A horizontal grey line at $48.00 shows the cost at on-demand rate ($2.40/hr)
and a horizontal black line at $5.40 shows reference cost at lowest spot price ($0.27/hr).

policy. For higher Tl values (plots (c) and (d)), the median
costs of Adaptive are comparable to single-zone policies, but
again the range of the second and third quartile costs is
smaller.

With high volatility (plots (e), (f), (g) and (h)), the overall
costs for Adaptive are strongly influenced by the amount of
slack Tl. For low Tl (plots (e) and (f)), the median costs for
Adaptive are magnified by checkpoint/restart costs. Specif-
ically, choosing the policy that has high availability at low
amortized checkpoint/restart overhead results in lower costs.
Plot (e) shows that median costs for Adaptive are as good
as the median costs for best-case redundancy-based poli-
cies. Higher checkpoint cost (tc “ 900 seconds) (plot (f))
magnifies errors, if they occur, when an incorrect policy is
chosen near execution start (before there is enough infor-
mation for Adaptive to make a good choice). This error
results in higher checkpoint/restart overhead (in terms of
both checkpoint frequency and cost), which inversely affects
the amount of slack available on the spot market. Thus,
for high checkpoint costs (tc “ 900 seconds) and low slack
(Tl “ 15%) for both low and high volatility windows, Adap-
tive shows higher median costs compared to best-case costs
for redundancy-based policies.

For high Tl (plots (g) and (h)), Adaptive yields better
costs, because a switch to on-demand to compensate for er-
rors near the start of execution is not necessary (due to
larger slack). Although Adaptive does not guarantee a total

cost of less than the cost via on-demand, the upper bound
on the cost is a function of the slack and (user-configurable)
maximum bid price, which also applies to individual policies
except Periodic. However, due to the way the algorithms
select the policy with least predicted cost, total cost never
exceeds 20% above the on-demand cost for our experiments
involving 12-month data. This cost is much less than the
other policies.

7.2.2 Comparison to Large-Bid
Our final comparison is Adaptive to Large-bid [8]. In

Large-bid , the user submits a large B but maintains a sec-
ond, smaller value, L, for cost control. Variable B is chosen
such that it is extremely unlikely that it is ever smaller than
S (e.g., B “ $100; the largest S we have observed in the
12-months data is $20.02). With large bid, the user has no
control over the cost of execution on the spot market; a price
spike can result in a large expense. The motivation behind
Large-bid is that, in general, the spot price remains signifi-
cantly lower than the on-demand price. Variable L provides
limited control of the cost of execution with Large-bid . If S
moves above L, the spot instance is allowed to run for the
on-going hour. If S remains larger than L near the end of
the hour, a checkpoint is taken followed by a manual ter-
mination of the instance. The instance is restarted as soon
as S moves below L. Large-bid is a strictly single zone pol-
icy. Since Large-bid does not provide an upper bound on
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Figure 6: Comparison of Large-bid with Adaptive. Spot price volatility is low (top) and high (bottom). The
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at $48.00 shows the cost at on-demand rate ($2.40/hr) and a horizontal black line at $5.40 shows reference
cost at lowest spot price ($0.27/hr). Circles denote maximum cost incurred.

the cost, we do not consider Large-bid as a candidate policy
for Adaptive.

Figure 6 compares Large-bid with Adaptive. The user
threshold is set from a low price of $0.27 to a high price of
$20.02 (denoted as Max in the figure). As can be seen, in
most cases Adaptive results in better worst-case costs than
Large-bid . On the other hand, Large-bid sometimes results
in lower median costs than Adaptive at different user thresh-
olds for different spot price behavior and experiment config-
urations.

There are two key advantages of Adaptive over Large-bid .
First, Adaptive does not incur large costs— typically well
below on-demand. On the other hand, Large-bid offers no
control over the periodic cost on the spot market until af-
ter the user pays a high periodic cost. For low volatility
window (plot (a)), Adaptive results in similar median costs,
but better worst-case costs than Large-bid . The worst-case
costs for Large-bid are as high as 3.8x the on-demand costs
(the worst-case cost of $183.75 results due to a spike in the
spot price of $20.02 between March 13th to March 14th,
2013). For high volatility window (plot (b)), Adaptive typi-
cally results in better median and worst-case costs than sev-
eral Large-bid threshold values (except for the case where
Tl “ 15% and tc “ 900 seconds). The worst-case costs are

as high as 2.0x the on-demand costs (for Max threshold).
We observe that for moderately volatile prices in a zone,
Large-bid switches to on-demand to meet the time-bound
after paying a high cost on the spot market. Adaptive pre-
dicts the optimal bid price and guarantees a bounded cost
while completing within the time bound. Also, regardless of
slack and checkpoint costs, Adaptive results in comparable
median cost and lower worst-case cost.

Second, Adaptive does not have any user-chosen thresh-
olds. In Large-bid , a low threshold (L = $0.27) results
in lower worst-case cost, but higher median costs. Using
higher threshold values for Large-bid allows more resistance
to checkpoint cost and slack, but increases worst-case cost.
Thus, the “sweet-spot” value of the threshold depends on
future spot prices that are unknown to the user. In con-
trast, Adaptive handles this implicitly, with no input from
the user. Importantly, when no threshold is used (labeled
Naive in the figure), the worst case Large-bid cost is larger
than the worst-case cost for Adaptive. Moreover, without
a threshold, reaching this worst-case cost in a given experi-
ment is more likely, even for a situation with moderate spot
price volatility.

7.3 Summary



Adaptive shows median costs competitive to best-case me-
dian costs for existing single-zone policies. Choosing the
policy with least predicted cost for high spot price volatil-
ity is non-trivial at low slack (Tl). An error in making this
choice is magnified by higher checkpoint/restart costs (tc).
Even for high spot price volatility, Adaptive results in me-
dian costs better than existing single-zone policies and com-
petitive to best-case costs for redundancy-based policies for
a configuration with low Tl and high tc. For other configu-
rations, Adaptive results in median costs similar to the best-
case median costs of the other three policies. Unlike Large-
bid , Adaptive chooses the user bid and the policy with the
least predicted cost resulting in a bounded cost, even with
high spot price volatility.

8. RELATED WORK
The problem of optimizing cost of running HPC applica-

tions on the cloud has been an active area of research. Pre-
vious work focuses on predicting spot price movements for
selecting the optimal bid price and fault-tolerance technique
on the EC2 spot market. Machine learning approaches to
predict future spot prices apply well-known statistical mod-
els to study spot price distribution [6, 1, 10]. Chohan et. al
employ a Markov model to predict instance up time [2] for
MapReduce-type applications.

There exists a large body of work on exploring bid price
prediction and fault-tolerance strategies. Yi et. al present
cost-performance trade-offs of different checkpoint schedul-
ing policies on the spot market [18]. The study shows two
things: that the frequency of checkpointing directly affects
total execution time of the application, and that the fre-
quency of checkpointing affects the time to recover from
failure. Therefore, the choice of frequency also affects to-
tal cost of execution, as higher overhead or higher recov-
ery time both contribute to monetary cost. Yi et. al and
Voorsluys et. al extend the preceding work to explore cost-
effectiveness of different cost-aware checkpointing schemes
coupled with task migration and duplication on to differ-
ent resource types [17, 16]. Since we address tightly coupled
HPC applications running on HPC-grade CC2 instances, ad-
dressing their work is beyond the scope this paper. Jung et.
al present an improved Edge algorithm to efficiently sched-
ule checkpoints [7]. Another scheme presented by
Khatua et. al presents the large-bid approach for cost-
effective runs on the spot market [8]. We address both
schemes in our evaluation. Our work differs from previous
work in two ways: (1) we evaluate redundancy as the first-
class fault-tolerance mechanism at different bid prices, and
(2) our work provides guarantee on job completion times.

Previous work on optimizing cost of time-constrained ex-
ecution on the spot market predicts optimal bid prices for
each hourly billing cycle [12, 19] with a fixed, hourly check-
point frequency. Work by Tang et. al [12] focuses on op-
timizing cost or performance with time or cost constraints,
respectively. Their work does not guarantee a strict deadline
and cannot be directly applied to tightly coupled HPC ap-
plications. Work by Zafer et. al [19] addresses the problem
of running loosely coupled applications and does not pre-
dict optimal checkpoint frequency. Our Adaptive checkpoint
scheduling scheme solves the problem of running tightly cou-
pled HPC applications with a guaranteed completion time
and predicts the optimal bid price, number of zones and
optimal checkpoint frequency for each billing cycle.

9. CONCLUSION
This paper focused on exploiting redundancy for cost-

effective execution on the spot market. The user provides an
execution time bound, and our Adaptive algorithm chooses
a bid price and a checkpoint-insertion algorithm that re-
sults in meeting the bound at low cost. We found that in
comparison to Large-bid , Adaptive has bounded costs and
avoids worst cases in which the user is charged an exceed-
ingly large amount (e.g., more than using the on-demand
market). Overall, we believe that our Adaptive scheme is
a step towards more practical, cost-effective use of the spot
market.

APPENDIX
A. SPOT MARKET MODIFICATIONS

In this appendix we explain in detail the ramifications of
modifications to the spot market mechanism. First, instead
of abrupt termination, the user could be provided with a
notification that the spot price is about to change and the
instance may be terminated. In this case, the user could
take a checkpoint and save application state just before ter-
mination. However, we argue that such a window would
not always be sufficiently large to save the state of an HPC
application with a large working set over a large number of
tasks (the checkpoint costs also involve bottleneck at the
I/O server–ten minutes). On the other hand, a window
of notification sufficiently large to save a checkpoint would
work against the principle of the spot market in which prices
change within ten minutes.

Second, the user could be allowed to adjust the user bid
at run time to retain spot instances at high spot prices.
However, there are several problems with such a provision.
First, spot prices primarily consist of spikes that are difficult
to predict (from our study), thus necessitating the use of a
fault-tolerance mechanism. Second, a scheme in which the
user follows the spot price essentially becomes a “large-bid”
policy described in Section 7, which is inferior in worst-case
costs. Third, for long periods of time where spot prices are
predictable, the provision may enable the user to utilize the
spot market at a much cheaper cost, disrupting the balance
between the spot and on-demand markets. This would lower
Amazon’s overall profit.

Third, when the spot price is about to rise over the user
bid price, Amazon could offer the user a significantly higher
rate for shorter billing cycles (e.g. 5-minute cycle), during
which the application state could be saved. Such an en-
hancement seems better for the user since the user could
pay more to avoid the need to employ fault tolerance. It
also seems better for Amazon, who could attract more users
who would like to avoid the need for fault tolerance. How-
ever, we find the following issues with the provision. First,
it would be difficult to apply pricing at such a short billing
granularity and hard to predict (for both the user and Ama-
zon) how long it will take to save the application state. Sec-
ond, the price for the short billing cycle would likely be
variable, since longer uninterrupted runs for the user could
mean more “value” associated with the checkpoint. Third,
such a scheme would work against the second objective of
the spot market–of keeping the users from hogging low-cost
resources for a long time. Fourth, it would also work against
free partial-hour usage, which is attractive for users with
short-lived burst requests. We argue that the above reasons



would prevent Amazon from making such provisions in the
spot market mechanism.

B. MARKOV MODEL DETAILS
For completeness, we provide the basic idea behind the

Markov model. We calculate the expected up time of the
instance at a bid price B as follows: PROB denotes a 1ˆ N
probability matrix for N different spot prices in the price
history. TRANS is an N ˆ N transition matrix in which
the element at (n,m) represents the probability of spot price
moving from n to m, @ n,m P N (i.e. nth row to mth

column). For a step size of 5 minutes, we predict the state
of PROB for the next step as shown in Equation 2. We
choose step size of 5 minutes because spot price movements
do not occur in such duration in most cases (from our price
history of 12 months).

@j P N,PROBk`1
j “

Nÿ

i“1

rPROBk
j ˆ TRANSi,j ˆ Ipiqs (2)

Ipiq “
#
1, if Pi ď B

0, otherwise

Expected up time ErTus is calculated as a weighted av-
erage over k=1 to Th steps as shown in Equation 3. Intu-
itively, the equation calculates a weighted average of zone
up-time over each step with conditional probability of zone
being terminated at the end of each step (note that the con-
dition is reversed for Ipiq [not shown]). Th is the minimum
value at which the expected up time does not change at
seconds granularity over multiple iterations.

ErTus “
Thÿ

k“1

k ˆ
«

Nÿ

i“1

PROBk
i ˆ Ipiq

ff
(3)
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